

<DOCINFO

AUTHOR ""

TITLE "Exploring Time, Tense and Aspect in Natural Language Database Interfaces"

SUBJECT "Natural Language Processing, Volume 6"

KEYWORDS ""

SIZE HEIGHT "220"

WIDTH "150"

VOFFSET "4">

Exploring Time, Tense and Aspect in
Natural Language Database Interfaces

Natural Language Processing

Editor

Prof. Ruslan Mitkov
School of Humanities, Languages and Social Sciences
University of Wolverhampton
Stafford St.
Wolverhampton WV1 1SB, United Kingdom

Email: R.Mitkov@wlv.ac.uk

Advisory Board

Christian Boitet (University of Grenoble)
John Carroll (University of Sussex, Brighton)
Eugene Charniak (Brown University, Providence)
Eduard Hovy (Information Sciences Institute, USC)
Richard Kittredge (University of Montreal)
Geoffrey Leech (Lancaster University)
Carlos Martin-Vide (Rovira i Virgili Un., Tarragona)
Andrei Mikheev (University of Edinburgh)
John Nerbonne (University of Groningen)
Nicolas Nicolov (IBM, T. J. Watson Research Center)
Kemal Oflazer (Sabanci University)
Allan Ramsey (UMIST, Manchester)
Monique Rolbert (Université de Marseille)
Richard Sproat (AT&T Labs Research, Florham Park)
Keh-Yih Su (Behaviour Design Corp.)
Isabelle Trancoso (INESC, Lisbon)
Benjamin Tsou (City University of Hong Kong)
Jun-ichi Tsujii (University of Tokyo)
Evelyne Tzoukermann (Bell Laboratories, Murray Hill)
Yorick Wilks (University of Sheffield)

Volume 6

Exploring Time, Tense and Aspect in Natural Language Database Interfaces
by Ion Androutsopoulos

Exploring Time, Tense
and Aspect in Natural Language
Database Interfaces

Ion Androutsopoulos
Athens University of Economics and Business

John Benjamins Publishing Company
Amsterdam�/�Philadelphia

The paper used in this publication meets the minimum requirements of American8 TM

National Standard for Information Sciences – Permanence of Paper for Printed
Library Materials, ansi z39.48-1984.

Library of Congress Cataloging-in-Publication Data

Androutsopoulos, Ion
Exploring Time, Tense and Aspect in Natural Language Database Interfaces / Ion

Androutsopoulos.
p. cm. (Natural Language Processing, issn 1567–8202 ; v. 6)

Includes bibliographical references and index.
1. Grammar, Comparative and general--Temporal constructions--Data processing.

2. Grammar, Comparative and general--Verb--Data processing. 3. Computational
linguistics. I. Title. II. Natural language processing (Amsterdam, Netherlands) ; v. 6.

P294.5 A53 2002
415-dc21 2002074690
isbn 90�272�4990�3 (Eur.) / 1�58811�269�1 (US) (Hb; alk. paper)

© 2002 – John Benjamins B.V.
No part of this book may be reproduced in any form, by print, photoprint, microfilm, or any
other means, without written permission from the publisher.

John Benjamins Publishing Co. · P.O. Box 36224 · 1020 me Amsterdam · The Netherlands
John Benjamins North America · P.O. Box 27519 · Philadelphia pa 19118-0519 · usa

Table of contents

Chapter 1
Introduction 1
1.1 What this book is about 1
1.2 Natural language interfaces to databases 5
1.3 Tense and aspect theories 9
1.4 Temporal logics 11
1.5 Temporal databases 13
1.6 Acknowledgements 17

Chapter 2
Linguistic data and an informal account 19
2.1 Introduction 19
2.2 Aspectual classes 20
2.3 The aspectual classes of this book 21
2.4 Criteria for classifying base verb forms 24

2.4.1 The simple present criterion 24
2.4.2 The point criterion 25
2.4.3 The imperfective paradox criterion 26
2.4.4 Other criteria 27
2.4.5 Classifying base verb forms in the airport domain 27

2.5 Verb forms 30
2.5.1 Simple present 30
2.5.2 Simple past 31
2.5.3 Progressive forms 32
2.5.4 Present perfect 36
2.5.5 Past perfect 38

2.6 Temporal verbs 39
2.7 Temporal nouns 40
2.8 Temporal adjectives 41
2.9 Temporal adverbials 41

2.9.1 Punctual adverbials 41

 Table of contents

2.9.2 Period adverbials 46
2.9.3 Duration adverbials introduced by ‘for’ 50
2.9.4 Duration adverbials introduced by ‘in’ 53
2.9.5 Other temporal adverbials 55

2.10 Temporal subordinate clauses 55
2.10.1 Clauses introduced by ‘while’ 55
2.10.2 Clauses introduced by ‘before’ and ‘after’ 58
2.10.3 Other temporal subordinate clauses 62
2.10.4 Tense coordination 63

2.11 Noun phrases and temporal reference 63
2.12 Temporal anaphora 65
2.13 Phenomena that will not be considered 67
2.14 Summary 69

Chapter 3
The TOP meaning representation language 71
3.1 Introduction 71
3.2 The syntax of TOP 72
3.3 TOP’s temporal ontology 77
3.4 TOP model 78
3.5 Variable assignment 80
3.6 Denotation of a TOP expression 80
3.7 The Pres operator 84
3.8 The Past operator 86
3.9 Progressives, non-progressives and the Culm operator 87
3.10 The At, Before and After operators 91
3.11 The Fills operator 95
3.12 The Begin and End operators 95
3.13 The Ntense operator 96
3.14 The For operator 98
3.15 The Perf operator 99
3.16 Occurrence identifiers 103
3.17 Tense anaphora and localisation time 105
3.18 Generic representatives of partitionings 106
3.19 Summary 106

Chapter 4
From English to TOP 109
4.1 Introduction 109

Table of contents 

4.2 HPSG basics 109
4.2.1 Lexical signs, lexical rules and sort hierarchy 110
4.2.2 Schemata and principles 112

4.3 Representing TOP yes/no formulae in HPSG 112
4.4 More on the subsorts of ind 115
4.5 Representing TOP quantifiers in HPSG 119
4.6 Extracting TOP formulae from HPSG signs 120
4.7 Verb forms 121

4.7.1 Single-word verb forms 121
4.7.2 Auxiliary verbs and multi-word verb forms 127

4.8 Predicative and non-predicative prepositions 133
4.8.1 Predicative prepositions 133
4.8.2 Non-predicative prepositions 135

4.9 Nouns 136
4.9.1 Non-predicative nouns 137
4.9.2 Predicative nouns 143

4.10 Adjectives 149
4.11 Temporal adverbials 153

4.11.1 Punctual adverbials 153
4.11.2 Period adverbials 159
4.11.3 Duration adverbials 160

4.12 Temporal complements of habituals 164
4.13 Fronted temporal modifiers 167
4.14 Temporal subordinate clauses 169
4.15 Interrogatives 170
4.16 Multiple temporal modifiers 174
4.17 Post-processing 178
4.18 Summary 181

Chapter 5
From TOP to TSQL2 183
5.1 Introduction 183
5.2 An introduction to TSQL2 183

5.2.1 The traditional relational model 183
5.2.2 TSQL2’s model of time 185
5.2.3 The BCDM version of the relational model 186
5.2.4 The TSQL2 language 189

5.3 Modifications to TSQL2 195
5.3.1 Referring to explicit attributes by number 195

 Table of contents

5.3.2 Additional partitioning units 196
5.3.3 Calendric relations 198
5.3.4 Other minor changes 200

5.4 Additional TSQL2 terminology 203
5.5 Adjustments in TOP and additional TOP terminology 206
5.6 Linking the TOP model to the database 207
5.7 The h functions 210
5.8 The TOP model in terms of database concepts 212
5.9 The h′ functions 213
5.10 Formulation of the translation problem 218
5.11 The translation rules 222
5.12 Optimising the generated TSQL2 code 231
5.13 Related work 233
5.14 Summary 235

Chapter 6
The prototype NLITDB 239
6.1 Introduction 239
6.2 Architecture of the prototype NLITDB 239
6.3 Implementation 241
6.4 Extensions for real-life applications 242
6.5 The airport database 245
6.6 Sample questions and output 247
6.7 Performance 265
6.8 Summary 265

Chapter 7
Related work and directions for further research 267
7.1 Introduction 267
7.2 Related work on NLITDBs 267

7.2.1 Moens 268
7.2.2 Clifford 269
7.2.3 Nelken 272

7.3 Directions for further research 278
7.4 Summary 279

References 283

Index 293

Table of contents 

Appendix A
TOP to TSQL2 translation rules 299
a.1 Translation rules for yes/no formulae 299

a.1.1 π(τ1, . . . , τn) 299
a.1.2 Culm[π(τ1, . . . , τn)] 300
a.1.3 φ1 ∧ φ2 300
a.1.4 Pres[φ′] 301
a.1.5 Past[β,φ′] 301
a.1.6 Perf [β,φ′] 301
a.1.7 Ntense[β,φ′] 301
a.1.8 Ntense[now*,φ′] 302
a.1.9 For[σc, νqty,φ′] 302
a.1.10 Begin[φ′] 302
a.1.11 End[φ′] 302
a.1.12 At[κ,φ′] 302
a.1.13 Before[κ,φ′] 303
a.1.14 After[κ,φ′] 303
a.1.15 At[σg , β,φ′] 303
a.1.16 Before[σg , β,φ′] 303
a.1.17 After[σg , β,φ′] 303
a.1.18 At[σc, β,φ′] 304
a.1.19 Before[σc, β,φ′] 304
a.1.20 After[σc, β,φ′] 304
a.1.21 At[φ1,φ2] 304
a.1.22 Before[φ1,φ2] 305
a.1.23 After[φ1,φ2] 305

a.2 Translation rules for wh-formulae 305
a.2.1 ?β1 . . . ?βk φ

′ 306
a.2.2 ?mxlβ1 ?β2 . . . ?βk φ

′ 306

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.1 (1)

Chapter 1

Introduction

“No time like the present.”

. What this book is about

For at least four decades, a very significant amount of work in artificial in-
telligence and computational linguistics has been devoted to natural language
interaction, i.e., creating computer systems that allow their users to formulate
requests in natural language, and systems that generate automatically appro-
priate natural language responses (Androutsopoulos & Aretoulaki 2002; Reiter
& Dale 2000). One form of natural language interaction that has been stud-
ied extensively, and which is also the focus of this book, is database querying,
where the term natural language interface is often used (Perrault & Grosz 1988;
Copestake & Sparck Jones 1990; Androutsopoulos, Ritchie, & Thanisch 1995b;
Androutsopoulos & Ritchie 2000).

Natural language interfaces to databases (nlidbs) allow their users to re-
trieve information from an underlying database by submitting natural lan-
guage queries, as illustrated in the following dialogue, where ‘U:’ and ‘S:’ mark
user requests and system responses, respectively.

U: Which engineers work in the sales department?
S: J.Adams, T.Smith.

U: What are their salaries?
S: J.Adams 2400

T.Smith 1800
U: What is the average salary in the sales department?
S: 2250.

The interaction may, in general, be in either spoken or written form, although
this book considers only the latter; i.e., it will be assumed that the user types
on a keyboard. This sidesteps speech recognition and synthesis (Jelinek 1997;

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.2 (2)

 Introduction

Dutoit 1997; Gibbon, Moore, & Winski 1997; Hirschberg, Kamm, & Walker
1997; Bernsen, Dybkjaer, & Dybkjaer 1998).

One of the limitations of existing nlidbs is that they were designed mainly
to handle questions that refer to the present, as in the dialogue above or (1.1)–
(1.3), and they do not support adequately the mechanisms that natural lan-
guage employs to express time. For example, very few, if any, temporal adver-
bials (e.g., in 1991, after 5:00 pm) and verb forms (simple past, past continu-
ous, past perfect, etc.) are typically supported, and their semantics are usually
over-simplified or ignored.

(1.1) What is the salary of each engineer?
(1.2) Who is at site 4?
(1.3) Which generators are in operation?

Database researchers have been exploring temporal database systems. These are
intended to store and manipulate in a principled manner information not only
about the present, but also about the past and future (Tansel et al. 1993; Jensen
et al. 1998; Wu, Jajodia, & Wang 1998; Snodgrass 2000). When interfacing to
temporal databases, it becomes crucial for nlidbs to interpret correctly the
temporal mechanisms of natural language, which in questions like (1.4)–(1.6)
include verb tenses, temporal adverbials, and temporal subordinate clauses.

(1.4) What was the salary of each engineer while ScotCorp was
building bridge 5?

(1.5) Did anybody leave site 4 before the chief engineer had
inspected the control room?

(1.6) Which systems did the chief engineer inspect on Monday after
the auxiliary generator was in operation?

Supporting the notion of time in nlidbs is a complex issue, as it requires ideas
from three different time-related disciplines to be combined: linguistic theories
of time, often referred to as tense and aspect theories (Comrie 1976; Comrie
1985; Smith 1997), temporal logics (van Benthem 1991; Gabbay, Hodkinson,
& Reynolds 1994; Gabbay, Reynolds, & Finger 2000), and temporal databases.
This point is easier to understand by considering Figure 1.1, which shows a
simplified form of the architecture that many modern nlidbs adopt.

As shown in Figure 1.1, the natural language question is first processed
by a linguistic front-end. This analyses syntactically and semantically the ques-
tion, and maps it to an expression of an intermediate meaning representation
language, typically some kind of logic. The meaning representation expression
captures formally what the system understands to be the meaning of the nat-

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.3 (3)

Introduction 

natural
language
question

linguistic
front–end intermediate

meaning
representation

DB query
generator database

language
expression

DBMS results

Figure 1.1 Simplified NLIDB architecture

ural language question. The expression is then translated into a database lan-
guage, usually sql (Melton & Simon 1993; Melton, Simon, & Gray 2001), that
is supported by the underlying database management system (dbms); the lat-
ter is the part of the database system that manipulates the information in the
database. Unlike the intermediate meaning representation, the database lan-
guage expression specifies what information needs to be retrieved in terms
of particular database constructs (e.g., rows and columns of tables in the
database). The dbms retrieves this information by evaluating the database lan-
guage expression, and the obtained information is reported back to the user.
A response generator may also be involved, to convert the information to a
form that is easier for the user to read; for simplicity, however, we will ignore
response generation in the largest part of this book. The architecture of Fig-
ure 1.1 has proven to have several advantages (Androutsopoulos, Ritchie, &
Thanisch 1995b; Androutsopoulos & Ritchie 2000); for example, the linguis-
tic front-end is shielded from database-level issues, and it can be reused with
dbmss that support different database languages.

To support the notion of time in nlidbs, then, one first needs a concrete
understanding of the variety, syntax, and semantics of the temporal mecha-
nisms in natural language. The discussion in this book is limited to English.
Ideas from linguistic theories of time can be drawn at this point, though one
has to focus on ideas that are relevant to nlidb questions, as opposed, for ex-
ample, to temporal phenomena that occur in longer event-reporting texts. A
formally defined intermediate meaning representation language is also needed
to represent the time-sensitive semantics of the questions; this is where ideas
from temporal logics can be exploited. Furthermore, the meaning representa-
tion language must facilitate the mapping from natural language to formal rep-
resentation; for example, by providing facilities that allow the semantic contri-
bution of each temporal mechanism of natural language to be captured easily.
Finally, an algorithm is needed to translate automatically from the meaning
representation language to a temporal database language. The algorithm must
be provably correct, in the sense that the database language expressions must
preserve the semantics of the original meaning representations.

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.4 (4)

 Introduction

Although there is a wealth of ideas in linguistic theories of time, tempo-
ral logics, and temporal databases, combining ideas from the three areas is not
always straightforward. For example, it is often unclear how the semantics of
linguistic theories of time can be expressed in formal meaning representation
languages; and although numerous forms of temporal logic have been pro-
posed, very few systematic mappings from natural language to expressions of
those logics exist. Furthermore, there may be components in the temporal on-
tologies of linguistic theories or meaning representation languages that have no
counterparts in temporal database models. The goal of this book is to explore
how ideas from the three areas can be combined and refined, for the purposes
of database querying, in order to produce a theoretical framework that will
serve both as a starting point for developers of natural language interfaces to
temporal databases (nlitdbs) and as a basis for further research.

More specifically, Chapter 2 explores temporal linguistic phenomena that
are likely to appear in English questions to nlitdbs. Drawing on existing tense
and aspect theories, it formulates an account for many of these phenomena
that is simple enough to be embodied in practical nlitdbs. Exploiting ideas
from temporal logics, Chapter 3 then defines a temporal meaning represen-
tation language, called top, which is used to represent the semantics of the
English questions. Chapter 4 shows how hpsg grammars (Pollard & Sag 1994)
can be enhanced to incorporate the tense and aspect account of this book, and
to map a wide range of English questions involving time to appropriate top ex-
pressions. Chapter 5 then presents a provably correct mapping that translates
top expressions to appropriate tsql2 queries (Snodgrass 1995), tsql2 being a
temporal extension of sql. This way a theoretical framework that establishes a
sound route from English questions involving time to a temporal database lan-
guage is constructed. To demonstrate that the framework is workable, it was
used to implement a prototype nlitdb using ale (Carpenter 1992; Carpen-
ter & Penn 2001) and Prolog. The prototype is freely available, and Chapter 6
provides more information about it. Finally, Chapter 7 compares the approach
of this book to other attempts to build nlitdbs, and proposes directions for
further research.

This book is a revised version of the author’s PhD thesis (Androutsopou-
los 1996). The reader will be pointed to the thesis for some mundane de-
tails, mostly parts of large proofs, that have not been included in the book.
A summary of the thesis has also been published (Androutsopoulos, Ritchie, &
Thanisch 1998).

Like any natural language, English possesses a very large variety of tempo-
ral mechanisms, and it would be impossible for a book to consider how all of

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.5 (5)

Introduction 

them can be supported in nlitdbs. Hence, this book focuses on a rich sample
of English temporal mechanisms, paying particular attention to the description
of the sample’s boundaries, and providing additional information to help the
reader form a clear picture of what lies beyond them. Despite this limitation,
the book should prove valuable to both people wishing to develop nlitdbs for
practical applications, and those who plan further research, as it is essentially
the first in-depth exploration of the time-related issues that arise in nlitdbs,
from the linguistic level down to the database.

The remainder of this chapter provides additional information on natural
language interfaces, tense and aspect theories, temporal logics, and temporal
databases, to help the reader obtain a clearer view of the book’s subject before
moving on to the main discussion in following chapters. The book assumes
that the reader has a solid background in symbolic approaches to natural lan-
guage processing and computational linguistics, including unification-based
grammars and formal semantics. Readers who do not have this background are
advised to consult other introductory texts first (Shieber 1986; Gazdar & Mel-
lish 1989; Allen 1995; Cole et al. 1997; Dale, Moisl, & Somers 2000; Jurafsky &
Martin 2000; Mitkov 2002b).

. Natural language interfaces to databases

Let us now examine in more detail the typical architecture of nlidbs, as shown
in Figure 1.2; the top three modules correspond to the linguistic front-end
of Figure 1.1. The user’s request first undergoes a preprocessing stage, which
decomposes the input into tokens, i.e., words, punctuation marks, and other
special symbols. The preprocessor also identifies and normalises expressions
such as dates, times, and proper names. This is usually achieved by employ-
ing pattern-matching rules, and by consulting parts of the database or parts
of the nlidb’s lexicon that contain proper names. For example, both October
12, 2001 and 12/10/2001 would be mapped to a common format; we will use
dd/mm/yyyy as the common date format in this book.

The preprocessed input is then parsed using a grammar, which in many
systems includes rules that specify not only the possible syntactic structures,
but also how these structures can be mapped to expressions of the meaning
representation language. With a meaning representation language similar to
first-order predicate logic, question (1.1) could be mapped to an expression
like (1.7). The question marks are interrogative quantifiers; they mark the vari-

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.6 (6)

 Introduction

natural language
question

preprocessed
input

preprocessor

grammar parser

meaning
representation

discourse
history

post-processor

fully resolved
meaning representation

translation
rules

DB query
generator

domain–dependent
information

preprocessing
rules

lexicon

ontology

basic
translation
information

database
language expression

DBMS

results

linguistic front-end

Figure 1.2 A typical NLIDB architecture in more detail

ables whose values are to be reported. To save space, throughout this book free
variables are treated as existentially quantified.

(1.7) ?x2 ?x3 engineer name(x1, x2) ∧ salary of (x1, x3)

Expression (1.7) requires all the x2 and x3 to be reported, such that x2 is the
name of an engineer x1, and x3 is the salary of x1. In questions like (1.4)–
(1.6), the meaning representation language must provide appropriate facilities
to capture the semantics of the temporal mechanisms of natural language; we
will turn to this issue in later sections.

The meaning representations that are generated at the end of the pars-
ing are often underspecified; for example, they may not specify the exact enti-
ties that pronouns or other anaphoric expressions refer to. The underspecified

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.7 (7)

Introduction 

parts of the meaning representations are resolved in a separate post-processing
stage (Figure 1.2), which usually has access to broader information about the
discourse; for example, in the form of a discourse history that records entities
and facts that have been mentioned. In dialogue systems, where the emphasis is
on engaging the users in dialogues until all the necessary information has been
specified and interpretation problems have been solved, the post-processing is
often one of the responsibilities of the dialogue manager (LuperFoy, Nijholt, &
Veldhuijzen van Zanten 1996; Alexandersson 1999; Androutsopoulos & Are-
toulaki 2002). This is a central coordinating module, which is also responsible
for deciding when enough information is available to execute a user’s request,
or when additional information must be requested from the user by generating
an appropriate response. This book focuses on stand-alone questions, rather
than questions that are parts of larger dialogues. Consequently, dialogue man-
agement issues will not be discussed, and the simple pipeline architecture of
Figure 1.2 will suffice. We will also not consider techniques to resolve anaphoric
expressions (Hirst 1981; Hobbs 1986; Barros & De Roeck 1994; Lappin & Leass
1994; Mitkov 2002a), although several temporal anaphora phenomena will be
identified throughout the book, and preliminary ideas on how to handle some
of them will be discussed.

The parser and the post-processor often consult ontologies, mostly in the
form of hierarchies that reflect the entity types of each application domain; for
example, the hierarchy may show that a salesman is a type of employee, which
is in turn a type of person. Additional restrictions on the possible relationships
between entities of the various types are usually also present; for example, the
manager of each employee must also be an employee, rather than, say, a prod-
uct. Ontologies can be employed, among other things, to disambiguate user
questions, as illustrated in (1.8). The intended meaning is (1.9); i.e., the holder
of the licence is the employee. An nlidb, however, would also have to consider
(1.10), where the licence is held by the branch.

(1.8) List all the employees of Paris branches with driving licences.
(1.9) ?x2 employee name(x1, x2) ∧ branch name(x3, x4) ∧

city name(x5, “Paris”) ∧ works at(x1, x3) ∧ located in(x3, x5) ∧
licence(x6) ∧ for driving(x6) ∧ has(x1, x6)

(1.10) ?x2 employee name(x1, x2) ∧ branch name(x3, x4) ∧
city name(x5, “Paris”) ∧ works at(x1, x3) ∧ located in(x3, x5) ∧
licence(x6) ∧ for driving(x6) ∧ has(x3, x6)

In order to reject (1.10), the ontology would need to contain a restriction stat-
ing that when the second argument of has(x, y) is a driving licence, the first one

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.8 (8)

 Introduction

must be a person. The ontology’s hierarchy, then, would show that employees
are persons, while branches are not, which would rule out (1.10). There will be
opportunities to consider ontologies of this kind in greater detail in Chapter 4.

The fully resolved meaning representation expressions that are generated
at the end of the post-processing are subsequently translated into database
language. This is often achieved using a recursive process. A ground map-
ping shows how basic meaning representation expressions relate to database
constructs; for example, how predicates relate to database tables. Additional
rules then specify how more complex meaning representation expressions
can be translated, invoking recursively other rules to translate simpler sub-
expressions. This approach will be considered in more detail in Chapter 5.

As already mentioned, a response generator may also be present. In most
nlidbs, this is a rather simplistic module that formats the retrieved informa-
tion to make it easier for the user to comprehend. More difficult is the genera-
tion of appropriate responses when the user’s requests carry false presupposi-
tions or do not express literally what the user wants to do. In the first question
below, the system detects the false presupposition that a flight named BA737
exists, and generates an appropriate warning. In the second question, it does
not generate a simple affirmative response; it provides additional information,
attempting to be more helpful.

U: Does flight BA737 depart at 5:00 pm?
S: Flight BA737 does not exist.

U: Does any flight depart at 5:00 pm?
S: Yes, UK160 and BA534.

Responses of this kind are known as cooperative, and in the general case re-
quire a user model to represent the user’s goals and beliefs (Kobsa & Wahlster
1989). In many cases, however, relatively simple techniques suffice (Kaplan
1982). Although this book does not examine techniques to generate cooper-
ative responses, several time-related phenomena that require responses of this
kind will be identified. This implies that future work to add cooperative re-
sponse capabilities to the theory of this book would be particularly useful; we
will return to this point in Chapter 7.

A different kind of responses that some nlidbs generate are paraphrases of
the user’s requests that reflect the system’s understanding (De Roeck & Lowden
1986; Alshawi 1992; Alshawi et al. 1992). The paraphrases help the users detect
cases where their requests have been misinterpreted. Paraphrases are also useful
when ambiguities arise: unambiguous paraphrases of the original request can

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.9 (9)

Introduction 

be generated, asking the user to select the paraphrase that corresponds to the
intended reading.

A significant amount of work on nlidbs has been devoted to portability,
i.e., the ability to reuse nlidbs in different application domains; for exam-
ple, with a database that holds information about train tickets, rather than
the employees of a company. As shown in Figure 1.2, the core components
of nlidbs are to a large extent domain-independent. Many of the resources
that those components use, however, like the preprocessing rules, the lexicon,
the ontology, and the mapping from basic meaning representation expressions
to database constructs, are often domain-specific, and need to be configured
whenever the nlidb is ported to a new application.

The grammar of most nlidbs is designed to be reusable in a range of ap-
plication domains, and, hence, it can be considered, to some extent, domain-
independent. It should be noted, however, that every nlidb has a limited cover-
age of linguistic phenomena. Although Wizard of Oz experiments (Dahlbäck,
Jönsson, & Ahrenberg 1993), where users interact with people pretending to
be nlidbs, can be performed to study the questions of representative users
and adjust the grammar accordingly, mismatches between the coverage of the
grammar and the questions that actual users will submit are inevitable. Clarifi-
cation dialogues and robust parsing techniques (Stallard & Bobrow 1993; Bates
et al. 1994; Briscoe 1997) can be employed to recover from such mismatches;
these issues, however, are beyond the scope of this book. An alternative ap-
proach, which will also not be discussed further, is to make the linguistic ca-
pabilities of the nlidb explicit to its users, in the form of a controlled language
(Epstein 1985; claw 2000), possibly asking them to formulate their requests
by selecting words from menus that reflect the available language constructs
(Tennant et al. 1983).

. Tense and aspect theories

In English, temporal information is conveyed by verb forms (e.g., simple past,
past continuous, present perfect), nouns (e.g., beginning, predecessor, day), ad-
jectives (earliest, next, annual), adverbs (yesterday, twice), prepositional phrases
(at 5:00 pm, for two hours), and subordinate clauses (while tank 4 was empty), to
mention just some of the available temporal mechanisms. A linguistic theory
of time must account for the uses of these mechanisms; for example, it must
specify the temporal semantic content of each verb form, and how temporal
adverbials or temporal subordinate clauses affect the meanings of the overall

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.10 (10)

 Introduction

sentences. The term tense and aspect theory is often used to refer to theories of
this kind, although the precise meaning of ‘tense’ and ‘aspect’ varies from one
theory to the other.

Roughly speaking, in linguistics ‘tense’ usually refers to the ability of some
language expressions to change form in order to convey information about
the location of a situation in time (Comrie 1985); verbs are a typical example
of such expressions in many languages. In contrast, ‘aspect’ does not refer to
the location of a situation in time, but to how the situation is viewed by the
speaker; e.g., whether or not it is conceived as being in progress, or as being
an action or a state (Comrie 1985; Smith 1997). The sentences John sang and
John was singing, then, are identical in terms of location in time (they both
locate the situation in the past), but they differ in terms of aspect. Although
in English tense is a property of verbs, which possibly extends to the syntactic
constituents that contain them, this book is also concerned with other English
mechanisms that specify location in time; for example, temporal adverbials.
Following common practice, we will use the term ‘tense and aspect theory’
with a broad, and strictly speaking imprecise, sense to refer to a theoretical
treatment of all the temporal mechanisms of a natural language.

It is common in tense and aspect theories to classify natural language ex-
pressions or situations described by natural language expressions into aspectual
classes; the German term Aktionsarten, kinds of action, is often used to refer to
these classes. Many aspectual classifications are similar to Vendler’s taxonomy
(1967), which distinguishes between state verbs, activity verbs, accomplishment
verbs, and achievement verbs.1 For example, to run, as in John ran, is said to be
an activity verb; to know, as in John knows the answer, is a state verb; to build, as
in John built a house, is an accomplishment verb; and to find, as in Mary found
the treasure, is an achievement verb.

Vendler’s intuition seems to be that activity verbs, as in John ran, describe
actions or changes in the world. In contrast, state verbs, as in John knows the an-
swer, do not refer to any actions or changes. Accomplishment verbs are similar
to activity verbs, in that they denote changes or actions. In the case of accom-
plishments, however, there is an inherent climax, a point that has to be reached
for the action or change to be considered complete. In build a house, the climax
is the point where the whole of the house has been built. If the building stops
before this point has been reached, the building action is incomplete. In con-
trast, the action of the activity verb to run, as in John ran, with no object, does
not seem to have any climax; the runner can stop at any time without the run-
ning being any more or less complete. If, however, to run is used with an object
denoting a precise distance, as in to run a mile, then the action does have a cli-

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.11 (11)

Introduction 

max: the point where the runner completes the distance. In this case, to run
is an accomplishment verb. Finally, achievement verbs, like to find, describe
instantaneous events. In Mary found the treasure, the actual finding is instanta-
neous; according to Vendler, the time when Mary was searching for the treasure
is not part of the actual finding. In contrast, in John built a house, where the verb
is an accomplishment, the actual building action may have lasted many years.

The so-called imperfective paradox (Dowty 1977; Lascarides 1988; Kent
1993) is a well-known example of semantic differences related to aspectual
classes. The paradox is that if the answer to a question like (1.11) is affirma-
tive, then the answer to the non-progressive (1.12) must also be affirmative. In
contrast, an affirmative answer to (1.13) does not necessarily imply an affir-
mative answer to (1.14), because John may have abandoned the repair before
completing it. Hence, if an nlitdb generates an affirmative response to (1.11),
there must be some mechanism to guarantee that the nlitdb’s answer to (1.12)
will also be affirmative, unlike (1.13) and (1.14).

(1.11) Was IBI ever advertising a new computer?
(1.12) Did IBI ever advertise a new computer?
(1.13) Was J. Adams ever repairing engine 2?
(1.14) Did J. Adams ever repair engine 2?

The difference between (1.11)–(1.12) and (1.13)–(1.14) can be accounted for
by classifying to advertise and to repair as activity and accomplishment verbs,
respectively, and by stipulating that the simple past of an accomplishment verb
requires the climax to have been reached, while the simple past of an activity,
as well as the past continuous of any verb, impose no such requirement. It will
become clear in Chapter 2 that aspectual taxonomies pertain to the semantics
of almost all of the English temporal mechanisms.

. Temporal logics

Time is an important research topic in logic, and many formal languages have
been proposed to express temporal information (van Benthem 1991; Gabbay,
Hodkinson, & Reynolds 1994; Gabbay, Reynolds, & Finger 2000). One of the
simplest approaches is to use the traditional first-order predicate logic, intro-
ducing time as an extra argument of each predicate. Question (1.15) could be
represented as (1.16), where t is a time-denoting variable, ≺ stands for tempo-
ral precedence, � for temporal inclusion, and now is a special term denoting
the present moment.

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.12 (12)

 Introduction

(1.15) Did tank 2 contain water (some time) on 1/10/1999?
(1.16) ∃ t contain(tank2, water, t) ∧ t ≺ now ∧ t � 1/10/1999

The answer to (1.15), then, is affirmative iff (1.16) evaluates to true, i.e., iff
there is a time t, such that t precedes the present moment, t falls within
1/10/1999, and tank 2 contained water at t. (Throughout this book, ‘iff ’ will
be used as a shorthand for ‘if and only if ’.)

An alternative approach is to use temporal operators, like Prior’s P (past)
and F (future) operators (Prior 1967). In that case, formulae are evaluated with
respect to particular times. Assuming that φ is a formula, Pφ is true at a time t
iff there is a time t ′, such that t ′ precedes t, and φ is true at t ′. Similarly, Fφ is
true at t iff there is a t ′, such that t ′ follows t, and φ is true at t ′. Then, (1.17),
(1.19), (1.21), and (1.23) could be represented as (1.18), (1.20), (1.22), and
(1.24), respectively.

(1.17) Tank 2 contains water.
(1.18) contain(tank2, water)
(1.19) Tank 2 contained water.
(1.20) P contain(tank2, water)
(1.21) Tank 2 will contain water.
(1.22) F contain(tank2, water)
(1.23) Tank 2 will have contained water.
(1.24) F P contain(tank2, water)

Additional operators can be introduced to capture the semantics of tempo-
ral adverbials, temporal subordinate clauses, etc. For example, an On operator
could be introduced: if φ is a formula and κ specifies a day, then On[κ,φ] is
true at a time t iff t falls within the day specified by κ, and φ is true at t. Then,
(1.15) could be represented as (1.25).

(1.25) P On[1/10/1999, contains(tank2, water)]

The intermediate meaning representation language of this book, top, uses
temporal operators, mostly because they lead to more compact formulae, and
make the semantic contribution of each linguistic mechanism easier to see. In
fact, top stands for ‘language with Temporal OPerators’. Temporal operators
have also been used by several other researchers (Dowty 1982; Lascarides 1988;
Richards et al. 1989; Kent 1993; Crouch & Pulman 1993; Pratt & Bree 1995).
Unlike logics designed to be used in systems that reason about what changes
or remains the same over time, what can or will happen, what could or would
have happened, or how newly acquired information fits within already known

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.13 (13)

Introduction 

facts or assumptions (McCarthy & Hayes 1969; McDermott 1982; Kowalski &
Sergot 1986; Allen 1983; Allen 1984; Vila 1994), top is not intended to be used
in reasoning. No inference rules for top will be provided, and this is why this
book avoids calling top a logic. It is only a formal language, designed to fa-
cilitate the systematic mapping of English questions involving time to formal
expressions, a mapping most of the above mentioned logics are not concerned
with. In the theory of this book, the answers to the English questions are not
generated by performing inferencing in top, but by translating the top expres-
sions to database language expressions, which are then evaluated by the under-
lying dbms. top will be defined in Chapter 3, where other ideas from temporal
logics will also be discussed.

. Temporal databases

In the relational model, currently the dominant database model, information
is stored in relations (Ullman 1988). A relation can be thought of as a table,
consisting of rows and columns. The tuples of the relation are, informally, the
rows of the table, while the attributes of the relation are the table’s columns.
The salaries relation below shows the present salaries of the current employees
of a company. It has two attributes, employee and salary, and one tuple per
employee.

salaries

employee salary

J. Adams 21000
T. Smith 24000

.

Whenever the salary of an employee is changed, or whenever an employee
leaves the company, the corresponding tuple is modified or deleted. Hence,
the database ‘forgets’ past facts, and does not contain enough information to
answer questions like ‘What was the salary of T. Smith on 1/1/1992?’.

It is certainly true that traditional database models and languages can, and
have been, used to store temporal information. For example, two extra at-
tributes, from and to, can be added to salaries to time-stamp its tuples, i.e., show
when each employee had the corresponding salary, as in salaries2 below. The
lack of special temporal support in traditional database models and languages,
however, complicates time-related data manipulations. We may want, for ex-
ample, to compute from salaries2 a new relation that shows the times when

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.14 (14)

 Introduction

J. Adams and T. Smith had the same salary, along with their common salary, as
in same salaries below. That is, for every tuple of J. Adams in salaries2, we need
to check if the period specified by the from and to values of that tuple overlaps
the period specified by the from and to values of a tuple for T. Smith with the
same salary value. If they overlap, we need to compute the intersection of the
two periods. This cannot be achieved easily in sql-92 (Melton & Simon 1993),
what was until very recently the latest standard for sql, because sql-92 does
not have any special commands to compute the intersection of two periods; in
fact, it does not even have a period datatype.

salaries2

employee salary from to

J. Adams 17000 1/1/1988 5/5/1990
J. Adams 18000 6/5/1990 9/8/1991
J. Adams 21000 10/8/1991 27/3/1993

.
T. Smith 17000 1/1/1989 1/10/1990
T. Smith 21000 2/10/1990 23/5/1992
T. Smith 24000 24/5/1992 28/10/1994

.

same salaries

salary from to

17000 1/1/1989 5/5/1990
21000 10/8/1991 23/5/1992

.

As a further example, adding from and to attributes to every relation allows
relations like rel1 and rel2 below to be formed. Although rel1 and rel2 con-
tain different tuples, they can be seen as representing the same information, if
the salary attribute shows the monthly salary of each person during the corre-
sponding period. Checking if the two relations represent the same information
is not easy in sql-92, because normalising them, i.e., turning them into rel3, an
operation known as coalescing (Böhlen, Snodgrass, & Soo 1996), requires com-
plex sql-92 statements. Additional examples of cases where special temporal
support is particularly desirable in databases can be found in Snodgrass (2000).

Numerous temporal versions of sql and the relational model have been
proposed, that simplify the handling of time-sensitive information (McKenzie
1986; Stam & Snodgrass 1988; McKenzie & Snodgrass 1991; Soo 1991; Kline
1993; Tsotras & Kumar 1996; Wu, Jajodia, & Wang 1998). This book adopts

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.15 (15)

Introduction 

tsql2 (Snodgrass 1995), a temporal extension of sql-92 that was designed by a
committee of temporal database researchers and is a good representative of the
various extensions that have been proposed. Chapter 5 presents a systematic
and provably correct mapping from top to tsql2.

rel1

employee salary from to

G. Foot 17000 1/1/1988 9/5/1988
G. Foot 17000 10/5/1988 9/5/1993
G. Foot 18000 10/5/1993 1/3/1994
G. Foot 18000 2/3/1994 11/2/1995

rel2

employee salary from to

G. Foot 17000 1/1/1988 31/5/1989
G. Foot 17000 1/6/1989 10/8/1992
G. Foot 17000 11/8/1992 9/5/1993
G. Foot 18000 10/5/1993 11/2/1995

rel3

employee salary from to

G. Foot 17000 1/1/1988 9/5/1993
G. Foot 18000 10/5/1993 11/2/1995

At the time this book was being written, ansi recommendations on how to
support time in the sql/Temporal part of the new sql:1999 standard (Melton,
Simon, & Gray 2001), previously known as sql3, had been forwarded to iso
(Snodgrass 2000). The recommendations are based on experience from tsql2
(Snodgrass et al. 1998), but they differ from tsql2 in many ways; the recom-
mendations are closer to atsql (Böhlen, Jensen, & Snodgrass 2000), though
again there are differences. Furthermore, to the best of the author’s knowl-
edge, the recommendations are currently on hold, i.e., they will be considered
by iso at a later point in time; hence, it is difficult to predict if they will be
incorporated in sql:1999, and in exactly what form.

Currently no major commercial dbms provides direct support for tsql2 or
any of the other temporal extensions of sql. However, at least two add-ons for
commercial dbmss exist, that support atsql or other closely related variants by
translating their statements into equivalent, but often much more complex and
hard to understand, statements of traditional sql. The author is aware of two
add-ons of this kind: Tiger and timedb.2 The prototype nlitdb of Chapter 6

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.16 (16)

 Introduction

is currently not linked to any of these add-ons, as this would require ironing
the differences between the tsql2 version of this book and the temporal sql
versions of the add-ons. Nevertheless, the top to tsql2 mapping of this book
should serve as a useful precedent for researchers and developers wishing to
work on nlitdbs with forthcoming temporal versions of sql. Similar map-
pings could be developed for other temporal flavours of sql as they become
more standard in commercial dbmss.

Temporal database researchers distinguish between valid time and trans-
action time. A temporal database may contain information about the history
of the world it models, including predictions about the future. Valid time is
the time-axis that underlies this history. The contents of the database, how-
ever, can be updated, in effect allowing the history of the world to be rewritten.
Some temporal database systems support queries that refer to previously stored
versions of the history. This establishes a second time dimension, transaction
time, which allows queries to refer to past ‘beliefs’ of the database. In (1.26),
then, on 2/1/1995 specifies the transaction time, while 1/1/1989 specifies the
valid time.

(1.26) According to what the database believed on 2/1/1995, what
was the salary of J. Adams on 1/1/1989?

This book focuses on valid time, assuming that the English questions always
refer to the current history in the database; i.e., the transaction time will always
be the present. Furthermore, we will focus on questions about the past and the
present, ignoring any predictions about the future that may be present in the
database; this narrows the range of linguistic phenomena to be considered. As
a further simplification, we will examine only questions, as opposed to requests
to update the contents of the database (Davidson & Kaplan 1983). Assertions
like (1.27) will be treated as yes/no questions; i.e., (1.27) will be treated in the
same way as (1.28).

(1.27) On 1/1/1999 the salary of T. Smith was 17000.
(1.28) Was the salary of T. Smith 17000 on 1/1/1999?

Finally, although the tuples of the relations in the database may be updated,
it will be assumed that the structure of the database remains unchanged; for
example, we will not consider cases where attributes or relations are added or
removed over time (McKenzie & Snodgrass 1990).

NLP4[v.20020404] Prn:21/06/2002; 10:39 F: NLP601.tex / p.17 (17)

Introduction 

. Acknowledgements

The author wishes to thank Graeme Ritchie and Peter Thanisch, who super-
vised the work for his PhD thesis, on which this book is based, at the University
of Edinburgh. The author is also grateful to the Greek State Scholarships Foun-
dation (iky) for funding that work. The writing of this book was partly made
possible by a post-doctoral scholarship from the Greek National Centre for
Scientific Research (ncsr) ‘Demokritos’, and extensive support from the Soft-
ware and Knowledge Engineering Laboratory of the Institute of Informatics
and Telecommunications of ncsr.

The ale grammar of the prototype nlitdb (Chapter 6) is based on previ-
ous ale encodings of hpsg fragments by Gerald Penn, Bob Carpenter, Suresh
Manandhar, and Claire Grover; the author is indebted to all of them. Many
thanks are also due to Chris Brew, who provided additional code for manip-
ulating feature-structures in ale, and Jo Calder for his help with ale, pleuk,
and hpsg grammars.

The author is particularly indebted to Michael Böhlen, Rani Nelken, Maria
Aretoulaki, and Stergos Afantenos, who provided comments on an earlier draft
of this book.

Notes

. According to Mourelatos (1978), a similar taxonomy was developed independently by
Kenny (1963), who notes that his classification is similar to the distinction between kineseis
and energiai introduced by Aristotle in Metaphysics,Θ.1048b, 18–36.

. tiger was developed by a team directed by Michael Böhlen;
see http://www.cs.auc.dk/tiger. timedb was developed by Andreas Steiner;
see http://www.timeconsult.com.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.1 (19)

Chapter 2

Linguistic data and an informal account

“There is a time for everything.”

. Introduction

This chapter explores how temporal information is conveyed in English, fo-
cusing on phenomena that are relevant to nlitdbs. Like any human language,
English possesses a wealth of temporal mechanisms (Comrie 1976; Comrie
1985; Smith 1997). It would be impossible to consider all of them in this book.
Hence, several English temporal mechanisms will be ignored, and simplifying
assumptions will be introduced in some of the mechanisms that will be con-
sidered. One of the goals of this chapter is to help readers who are not familiar
with tense and aspect phenomena appreciate their complexity. A second goal is
to specify exactly which temporal phenomena this book will focus on. A wide
range of English temporal mechanisms will be presented. From those, a subset
containing mechanisms that seem both theoretically interesting and relevant to
nlitdbs will be selected as the target linguistic coverage of this book. An infor-
mal account of the usage of the target mechanisms will also be provided; this
will be formalised in subsequent chapters.

The linguistic coverage of this book is intended to serve only as a start-
ing point towards supporting the notion of time in nlitdbs. No attempt is
made here to cover all the temporal linguistic mechanisms that an nlitdb
might be confronted with. In a real-life nlitdb, the linguistic coverage of this
book would have to be tailored to the range of applications that the nlitdb
targets; for example, using Wizard of Oz experiments (Section 1.2). Unsup-
ported mechanisms that are common in the target range of applications would
have to be added, and the semantics of existing mechanisms might have to be
adjusted to avoid, for example, readings that are uncommon in the targeted
applications.

Although the informal account of this chapter draws on existing analyses
of tense and aspect, this book does not attempt to formulate a new or complete

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.2 (20)

 Chapter 2

tense and aspect theory. The aim is more practical: to explore how ideas from
existing tense and aspect treatments can be integrated into nlitdbs, in a way
that leads to provably implementable systems.

. Aspectual classes

Let us first examine more closely the notion of aspectual classes. As mentioned
in Section 1.3, many tense and aspect treatments build upon Vendler’s tax-
onomy (Vendler 1967), that distinguishes between state verbs (John knows the
answer), activity verbs (John ran), accomplishment verbs (John built a house),
and achievement verbs (Mary found the treasure).

Vendler proposes a number of linguistic tests to determine the aspectual
classes of verbs. According to Vendler, activity and accomplishment verbs can
appear in the progressive, as in (2.1) and (2.2), while state and achievement
verbs cannot, as demonstrated in (2.3) and (2.4). (Throughout the book, as-
terisks will be used to mark ungrammatical sentences.)

(2.1) John is running.
(2.2) John is building a house.
(2.3) *John is knowing the answer.
(2.4) *Mary is finding the treasure.

Activity verbs are said to combine felicitously with for adverbials specifying
duration, as in (2.5), but sound odd with in duration adverbials, as in (2.6).
(Question marks indicate sentences that sound odd, though not ungrammat-
ical.) Accomplishment verbs, in contrast, combine felicitously with in adver-
bials, as in (2.7), and sound odd with for adverbials, as in (2.8).

(2.5) John ran for two minutes.
(2.6) ?John ran in two minutes.
(2.7) John built a house in two weeks.
(2.8) ?John built a house for two weeks.

Finally, according to Vendler, state verbs combine felicitously with for ad-
verbials, as in (2.9), while achievement verbs sound odd, as demonstrated
in (2.10).

(2.9) John knew the answer for ten minutes (but then forgot it).
(2.10) ?Mary found the treasure for two hours.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.3 (21)

Linguistic data and an informal account 

The exact nature of the entities classified by Vendler is unclear. In most cases,
Vendler’s wording suggests that his taxonomy classifies verbs. Some of his ex-
amples, however, like the fact that to run with no object is said to be an activity,
while to run a mile is said to be an accomplishment, suggest that the natu-
ral language expressions being classified are not always verbs, but sometimes
larger syntactic constituents, perhaps verb phrases. In other cases, Vendler’s
arguments suggest that the entities being classified are not natural language
expressions, but world situations denoted by natural language expressions. Ac-
cording to Vendler, ‘Are you smoking?’ asks about an activity, while ‘Do you
smoke?’ asks about a state. In this case, the terms ‘activity’ and ‘state’ seem to
refer to types of situations in the world, rather than types of natural language
expressions. The first question probably asks if somebody is actually smoking
at the present moment. The second one has a habitual meaning: it asks if some-
body has the habit of smoking. Vendler concludes that habits “are also states in
our sense”.

Numerous variants of Vendler’s taxonomy have been proposed. These dif-
fer in the number of aspectual classes they assume, the names of the classes,
the nature of the entities being classified, and the properties assigned to each
class. For example, Vlach (1993) distinguishes four aspectual classes of sen-
tences, and assumes that there is a parallel fourfold taxonomy of world sit-
uations. Moens (1987) distinguishes between ‘states’, ‘processes’, ‘culminated
processes’, ‘culminations’, and ‘points’, commenting that his taxonomy does not
classify real world situations, but ways people use to describe world situations.
Parsons (1989) distinguishes three kinds of ‘eventualities’ (‘states’, ‘activities’,
and ‘events’), treating eventualities as entities in the world. Lascarides (1988)
classifies propositions, i.e., functions from time-periods to truth values, and
distinguishes between ‘state’, ‘process’, and ‘event’ propositions.

. The aspectual classes of this book

Four aspectual classes are employed in this book: states, activities, culminating
activities, and points. Culminating activities and points correspond to Vendler’s
‘accomplishments’ and ‘achievements’, respectively. Similar terms have been
used elsewhere (Moens 1987; Blackburn, Gardent, & de Rijke 1994).

The four aspectual classes of this book correspond to ways of viewing world
situations that people seem to use: a situation can be viewed as involving no
change or action (state view), as an instantaneous change or action (point
view), as a change or action with duration but no inherent climax (activity

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.4 (22)

 Chapter 2

view), or as a change or action with both duration and inherent climax (cul-
minating activity view). The climax is a point that has to be reached for the
action or change to be considered complete, as in Section 1.3. Although there
is evidence that people may distinguish between two subcases of point view,
depending on whether or not the situation is seen as involving a change of
state (Smith 1997), this distinction will be ignored in this book for the sake of
simplicity.

Determining which view the speaker has in mind is important to under-
stand what the speaker means. For example, ‘Which tanks contained oil?’ is typ-
ically uttered with a state view. When an at temporal adverbial, like at 5:00 pm,
is attached to a clause uttered with a state view, the speaker typically means
that the situation of the clause simply holds at the time of the adverbial. There
is normally no implication that the situation starts or stops at the time of the
adverbial. For example, in ‘Which tanks contained oil at 5:00 pm?’ there is nor-
mally no implication that the tanks must have started or stopped containing
oil at 5:00 pm. In contrast, ‘Who ran to the station?’ is typically uttered with
a culminating activity view. In this case, an at adverbial usually specifies the
time when the situation starts or is completed. For example, ‘Who ran to the
station at 5:00 pm?’ probably asks who started to run to the station or reached
it at 5:00 pm.

Some linguistic markers seem to signal which view the speaker has in mind.
For example, the progressive usually signals a state view. Unlike ‘Who ran to the
station at 5:00 pm?’, ‘Who was running to the station at 5:00 pm?’ is typically
uttered with a state view. In the progressive form, the running is simply on-
going at 5:00 pm; it does not start or finish at 5:00 pm. Often, however, there
are no such explicit markers. The processes employed in those cases by hear-
ers to determine the speaker’s view are not yet fully understood. In an nlitdb,
however, where questions refer to a restricted application domain, reasonable
guesses can be made by observing that in each domain, each verb tends to be
associated mainly with one particular view. Certain agreements about how sit-
uations are to be viewed will also have been made during the design of the
database. For example, the designers of the database may have decided that
some situations will be modelled as instantaneous, a decision that users should
be made aware of. Such agreements provide additional information about how
the situations of the various verbs are viewed in each domain.

More precisely, the following approach is adopted in this book. Whenever
the nlitdb is configured for a new application domain, the base form of each
verb is assigned to one of the four aspectual classes, using criteria to be dis-
cussed below. The criteria are intended to detect the view that is mainly associ-

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.5 (23)

Linguistic data and an informal account 

ated with each verb in the particular domain. Following Dowty (1986), Moens
(1987), Vlach (1993), Smith (1997) and others, aspectual class is treated as a
property of not only verbs, but also verb phrases, clauses, and sentences. Nor-
mally, all verb forms inherit the aspectual classes of the corresponding base
forms. Verb phrases, clauses, or sentences normally inherit the aspectual classes
of their main verb forms. Some linguistic mechanisms, however, like the pro-
gressive or some temporal adverbials, may cause the aspectual class of a verb
form to differ from that of the base form, or the aspectual class of a verb phrase,
clause, or sentence to differ from that of its main verb form. The aspectual class
of each verb phrase, clause, or sentence is intended to reflect the view that the
users of the nlitdb typically have in mind when using that expression in the
particular domain.

With verbs like to run, that typically involves a culminating activity view
when used with an expression that specifies a particular destination or distance,
as in to run to the station or to run five miles, but an activity view when used on
its own, it will be assumed that there are two different homonymous verbs. One
has a culminating activity base form, and requires a complement that specifies
a particular destination or distance. The other has an activity base form, and
does not accept such a complement. A similar distinction would be introduced
in the case of verbs whose aspectual class depends on whether or not the verb’s
object denotes a countable or mass entity, as in to drink a bottle of wine vs. to
drink wine (Mourelatos 1978).

Similarly, when a verb can be used in a domain with both habitual and
non-habitual meanings, like to depart in (2.11) and (2.12), a distinction will
be made between a homonym with a habitual meaning, and a homonym with
a non-habitual meaning. The aspectual criteria that will be discussed below
always classify the base forms of habitual homonyms as states. This agrees with
Vendler, Vlach (1993), Moens and Steedman (1988), and Smith (1997), who
all classify habituals as states. The aspectual classes of non-habitual homonyms
will depend on the verbs and the application domain.

(2.11) BA737 (habitually) departs from Gatwick.
(2.12) BA737 (actually) departed from Gatwick five minutes ago.

Approaches that do not postulate homonyms are also possible. For example,
one could treat to run as an activity, that is transformed into a culminating
activity by a destination-denoting object, like to the station. Although perhaps
less satisfactory from a theoretical point of view, the homonyms method leads
to a more straightforward treatment in the hpsg grammar of Chapter 4, where
the base form of each homonym will be mapped to a different lexical entry.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.6 (24)

 Chapter 2

Figure 2.1 Determining the aspectual class of a verb’s base form

In the rest of this book, the terms state verb, activity verb, culminating activ-
ity verb, and point verb refer to verbs whose base forms are classified as states,
activities, culminating activities, or points, respectively.

. Criteria for classifying base verb forms

Let us now turn to the criteria that determine the aspectual class of a verb’s base
form in a particular application domain. Three criteria are employed, and they
are applied in the order of Figure 2.1.

.. The simple present criterion

The first criterion, the simple present criterion, distinguishes state verbs from
point, activity, and culminating activity verbs. The criterion states that if the
simple present of a verb can be used in the particular domain in single-clause
questions with non-future meanings, the verb is a state one; otherwise it is a
point, activity, or culminating activity verb. For example, in domains where
(2.13) and (2.14) are possible, to contain and to own are state verbs.

(2.13) Does any tank contain oil?
(2.14) Which employees own a car?

Some clarifications are needed at this point. First, the simple present some-
times refers to something that is scheduled to happen. For example, (2.15)
could refer to a scheduled assembling; in that case, (2.15) is similar to (2.16).
We will count readings of this kind as future ones. Hence, this use of (2.15)
does not constitute evidence that to assemble is a state verb.

(2.15) When does J. Adams assemble engine 5?
(2.16) When will J. Adams assemble engine 5?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.7 (25)

Linguistic data and an informal account 

Furthermore, in reporting contexts the simple present of verbs that we would
not want to be classified as states can be used with non-future meanings. For
example, in a context where the speaker reports events as they happen, (2.17)
is possible.

(2.17) J. Adams arrives. He moves the container. He fixes the engine.

This use of the simple present, however, is unlikely in nlitdb questions. Hence,
(2.17) does not constitute evidence that to arrive, to move, and to fix are state
verbs.

The reader is reminded that when verbs have both habitual and non-
habitual meanings, a distinction is made between a habitual and a non-habitual
homonym (Section 2.3). Ignoring future meanings, that do not count for the
simple present criterion, (2.18) and (2.19) can only have habitual meanings;
i.e., they can only be understood as involving the habitual homonyms of to
land and to smoke.

(2.18) Which flight lands on runway 2?
(2.19) Does any doctor smoke?

Therefore, in domains where (2.18) and (2.19) are possible, the habitual
homonyms of to land and to smoke are state verbs. (2.18) and (2.19) do not
constitute evidence that the non-habitual homonyms of to land and to smoke
are state verbs.

.. The point criterion

The second criterion, the point criterion, distinguishes point verbs from ac-
tivity and culminating activity ones; state verbs will have already been sep-
arated by the simple present criterion (Figure 2.1). Some verbs denote situ-
ations that are modelled in the database as being always instantaneous. The
point criterion states that if a verb denotes situations of this kind, its base form
should be classified as point; otherwise, it should be classified as activity or
culminating activity.

Later on in this book, a hypothetical airport database will be considered.
That database does not distinguish between the times at which a flight starts
or stops entering an airspace sector. Entering a sector is modelled as instan-
taneous. Furthermore, to enter is only used to refer to flights entering sectors.
Consequently, in that domain to enter is a point verb. If to enter were also used
to refer to, for example, groups of passengers entering planes, and if situations
of that kind were modelled in the database as non-instantaneous, we would

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.8 (26)

 Chapter 2

distinguish between two homonyms of to enter: one used with flights entering
sectors and one with passengers entering planes. The former would be classified
as a point verb, while the latter would be classified as an activity or culminating
activity verb.

In applying the point criterion, one will often have to decide exactly what
is or is not part of the situations that the verbs denote. For example, before
classifying the non-habitual homonym of to depart, one has to decide exactly
what is or is not part of departing. Is boarding part of departing, i.e., is a flight
departing when it is boarding? Is taxiing to a runway part of departing? Or does
departing include only the time at which the flight actually leaves the ground?
The database that will be considered in later sections distinguishes between
the time at which the boarding starts and the time when the flight leaves the
ground. Hence, if a flight starts to depart when it starts to board and finishes
departing when it leaves the ground, then the base form of to depart should not
be classified as point, because the database does not model departures as in-
stantaneous. If, however, departing starts when the front wheels of the aircraft
leave the ground and finishes when the rear wheels leave the ground, the base
form of to depart should be classified as point, because the particular database
does not distinguish between the two times. In any case, the user should be
made aware of what to depart is taken to mean.

The point criterion is similar to observations made by Vendler (1967),
Singh and Singh (1992), Vlach (1993), and others, that ‘achievement’ (point)
verbs are understood as denoting instantaneous situations.

.. The imperfective paradox criterion

The third criterion, the imperfective paradox criterion, distinguishes activity
from culminating activity verbs; state and point verbs will have been identified
by the simple present and point criteria (Figure 2.1). This criterion is based on
the imperfective paradox (Section 1.3). Assertions containing the past continu-
ous and simple past of the verbs, like (2.20)–(2.23), are considered. The reader
is reminded that assertions are treated as yes/no questions. If an affirmative
answer to the past continuous assertion implies an affirmative answer to the
simple past assertion, as in (2.20)–(2.21), the verb is an activity one; otherwise,
as in (2.22)–(2.23), it is a culminating activity verb.

(2.20) John was running.
(2.21) John ran.
(2.22) John was building a house.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.9 (27)

Linguistic data and an informal account 

(2.23) John built a house.

As will be discussed in later sections, the past continuous sometimes has a fu-
ture meaning. With this reading, (2.20) means that John was going to run,
and an affirmative answer to (2.20) does not necessarily imply an affirmative
answer to (2.21). When applying the imperfective paradox criterion, the past
continuous must not have a future meaning.

In various forms, the imperfective paradox criterion has been used by
Vendler (1967), Vlach (1993), Kent (1993), and others.

.. Other criteria

The three criteria above are not the only ones that could be used. The behaviour
of verbs when appearing in various forms or when combining with some tem-
poral adverbials varies depending on their aspectual classes. Alternative crite-
ria can be formulated by observing this behaviour. For example, some authors
classify verbs, or situations denoted by verbs, by observing how easily they ap-
pear in progressive forms, or how easily they combine with for and in duration
adverbials; these phenomena will be examined in later sections. In some cases,
the person classifying the base forms may be confronted with verbs for which
the three criteria of Sections 2.4.1–2.4.3 do not yield clear verdicts. In such
cases, additional evidence for or against classifying a base verb form into a par-
ticular class can be found by referring to following sections, where the typical
behaviour of each class is examined.

.. Classifying base verb forms in the airport domain

To illustrate the use of the three criteria, let us now consider in more detail the
hypothetical airport database, borrowing some terminology from Sripada et al.
(1994). The airport domain will be used in examples throughout this book.

The airport database shows the times when flights arrived at, or departed
from the airport, the times flights spent circling around the airport while wait-
ing for permission to land, the runways they landed on or took off from, the
gates where the flights boarded, etc. The database is occasionally queried us-
ing an nlitdb to determine the causes of accidents, and to collect data that are
used to optimise the airport’s traffic-handling strategies.

The airport’s airspace is divided into sectors. Flights approaching or leaving
the airport cross the boundaries of sectors, each time leaving a sector and enter-
ing another one. The airport is very busy, and some of its runways may also be

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.10 (28)

 Chapter 2

closed for maintenance. Hence, approaching flights are often instructed to circle
around the airport until a runway becomes free. When a runway is freed, flights
start to land. Landing involves following a specific procedure. In some cases,
the pilot may abort the landing procedure before completing it. Otherwise, the
flight lands on a runway, and it then taxies to a gate that is free. The moment
at which the flight reaches the gate is considered to be the time when the flight
arrived; reaching a location and arriving are modelled as instantaneous. Nor-
mally (habitually) each flight arrives at the same gate and time every day. Due
to traffic congestion, however, a flight may arrive at a gate or time other than
its normal ones.

Before taking off, each flight is serviced by a service company. This in-
volves carrying out a specific set of tasks. Unless all tasks have been carried
out, the service is incomplete. Each service company normally (habitually) ser-
vices particular flights. Sometimes, however, a company may be asked to ser-
vice a flight that it does not normally service. After being serviced, a flight may
be inspected. Apart from flights, inspectors also inspect gates and runways. In
all cases, there are particular tasks to be carried out for the inspections to be
considered complete.

Shortly before taking off, flights start to board. Unless all the passengers
that have checked in enter the aircraft, the boarding is not complete, and the
flight cannot depart. There are special arrangements for cases where passengers
are too late. The flight then leaves the gate, and that moment is considered to
be the time at which the flight departed; leaving a location and departing are
modelled as instantaneous. Normally (habitually) each flight departs from the
same gate at the same time every day. Sometimes, however, flights depart from
gates or at times other than their normal ones. After leaving its gate, a flight
may be told to queue for a particular runway, until that runway is freed. When
the runway is free, the flight starts to take off, which involves following a spe-
cific procedure. As with landings, the pilot may abort the taking off procedure
before completing it.

The database also records the status of parts of the airport’s emergency
system. There are, for example, emergency tanks used by the fire-brigade. Some
of those may contain water, others may contain foam, and others may be empty
for maintenance.

Table 2.1 shows some of the verbs that are used in the airport domain. The
verbs to depart, to arrive, and to service are used with both habitual and non-
habitual meanings. Ignoring future meanings, questions (2.24) and (2.26) have
habitual meanings, while in (2.25) and (2.27) the verbs are probably used with

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.11 (29)

Linguistic data and an informal account 

Table 2.1 Verbs in the airport domain

state verbs activity verbs culm. activity verbs point verbs

service (habitually) circle land cross, enter
arrive (habitually) taxi (no destination) take off become
depart (habitually) queue service (actually) reach, leave
contain inspect start, begin
be (non-auxiliary) board stop, finish

taxi (to destination) arrive (actually)
depart (actually)

their non-habitual meanings. Following Section 2.3, we distinguish between
habitual and non-habitual homonyms of to depart, to arrive, and to service.

(2.24) Which flights depart/arrive at 8:00 am?
(2.25) Which flight departed/arrived at 8:00 am yesterday?
(2.26) Which company services BA737?
(2.27) Which company serviced BA737 yesterday?

Similarly, two homonyms of to taxi are assumed, one that requires a comple-
ment denoting a destination, as in BA737 was taxiing to gate 2, and one that
admits no such complement, as in BA737 was taxiing.

The simple present criterion and sentences like (2.28), (2.29), (2.24), and
(2.26) imply that the non-auxiliary to be, to contain, and the habitual to depart,
to arrive, and to service are state verbs.

(2.28) Which gates are free?
(2.29) Does any tank contain foam?

All the other verbs of Table 2.1 are not state verbs. For example, excluding ha-
bitual and future meanings, (2.30)–(2.32) sound unlikely or odd in the airport
domain. (2.33)–(2.35) would be used instead.

(2.30) ?Which flights circle?
(2.31) ?Which flight taxies to gate 2?
(2.32) ?Which flight departs?
(2.33) Which flights are circling?
(2.34) Which flight is taxiing to gate 2?
(2.35) Which flight is departing?

The verbs in the rightmost column of Table 2.1 denote situations that are mod-
elled as instantaneous in the airport’s database. Consequently, by the point cri-
terion, they are all point verbs. In contrast, the situations of the verbs in the

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.12 (30)

 Chapter 2

two middle columns are not modelled as instantaneous. Therefore, those are
activity or culminating activity verbs.

In the airport domain, a sentence like (2.37) means that BA737 spent some
time circling around the airport. It does not imply that BA737 completed any
circle around the airport. Hence, an affirmative answer to (2.36) implies an
affirmative answer to (2.37). By the imperfective paradox criterion, then, to
circle is an activity verb.

(2.36) BA737 was circling.
(2.37) BA737 circled.

Similar assertions and the imperfective paradox criterion imply that to taxi
without a destination and to queue are also activity verbs. In contrast, the verbs
in the third column of Table 2.1 are culminating activity verbs. For example,
in the airport domain an affirmative answer to (2.38) does not imply an af-
firmative answer to (2.39). J. Adams may have aborted the inspection before
completing all the inspection tasks, in which case the inspection is incomplete.

(2.38) J. Adams was inspecting runway 5.
(2.39) J. Adams inspected runway 5.

. Verb forms

Let us now explore the temporal role of the English verb forms. As already men-
tioned in Section 1.5, questions referring to the future are not examined in this
book. Hence, future verb forms, like the simple future and future perfect, as
well as future meanings of other forms, like the scheduled-to-happen mean-
ing of the simple present (Section 2.4.1), will not be considered. To simplify
the linguistic data further, the present perfect continuous and the past perfect
continuous, as in J. Adams has/had been inspecting BA737, will also not be con-
sidered; these forms combine complexities from both progressive and perfect
forms. This leaves six finite verb forms to be discussed: simple present, simple
past, present continuous, past continuous, present perfect, and past perfect.

.. Simple present

In the linguistic coverage of this book, the simple present can be used only
with state verbs to refer to a situation that holds at the present, as in (2.40) and
(2.41). We will examine below the rationale behind this statement.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.13 (31)

Linguistic data and an informal account 

(2.40) Which runways are closed?
(2.41) Does any tank contain water?

Excluding future readings, (2.42) and (2.43) can be understood only with ha-
bitual meanings, i.e., as involving the habitual homonyms of to service and to
depart. These are state verbs, unlike the non-habitual homonyms, which are
culminating activity and point verbs, respectively (Table 2.1). This is consistent
with the statement that the simple present can only be used with state verbs.

(2.42) Which company services BA737?
(2.43) Which flights depart from gate 2?

In the airport domain, to circle is an activity verb; there is no state habitual
homonym. Hence, not allowing the simple present to be used with non-state
verbs rejects (2.44). This is reasonable, because (2.44) can be understood only
with a habitual meaning, which is not available in the airport domain.

(2.44) ?Does BA737 circle?

Instead of simply rejecting (2.44), a cooperative nlitdb would inform the user
that no habitual meaning of to circle is available, suggesting the rephrase of
(2.45). As already mentioned in Section 1.2, however, mechanisms to generate
cooperative responses are not considered in this book.

(2.45) Is BA737 circling?

One could point out that the simple present can be used with non-state verbs
to describe events as they happen (Section 2.4.1), or with a historic meaning
(‘In 1673 a fire destroys the palace.’). These uses, however, are extremely unlikely
in nlitdb questions. Hence, the statement that the simple present can be used
only with state verbs remains valid for the purposes of this book.

.. Simple past

Unlike the simple present, the simple past can be used with verbs from all four
classes, as in (2.46)–(2.51).

(2.46) Which tanks contained water on 1/1/1999?
(2.47) Did BA737 circle on 1/1/1999?
(2.48) Which flights (actually) departed from gate 2 on 1/1/1999?
(2.49) Which flights (habitually) departed from gate 2 in 1999?
(2.50) Which company (actually) serviced BA737 yesterday?
(2.51) Which company (habitually) serviced BA737 last year?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.14 (32)

 Chapter 2

Questions (2.48)–(2.51) show that both the habitual and non-habitual homo-
nyms of verbs like to depart or to service are generally possible in the simple
past. (2.52) is ambiguous. It may refer either to flights that actually departed,
perhaps only once, from gate 2 in 1999, or to flights that normally, habitually,
departed from gate 2 in 1999.

(2.52) Which flights departed from gate 2 in 1999?

The simple past of culminating activity verbs normally implies that the situa-
tion of the verb reached its climax. For example, in (2.53) the service must have
been completed, and in (2.54) BA737 must have reached gate 2 for the answer
to be affirmative.

(2.53) Did Airserve service BA737?
(2.54) Did BA737 taxi to gate 2?

Although strictly speaking correct, a simple negative answer to a question like
(2.54) may in practice be unsatisfactory, if, for example, BA737 was taxiing to
gate 2, but never reached it. (2.55) would be a much more appropriate answer.
Again, a mechanism for cooperative responses is needed to generate answers
like (2.55), but this book does not consider such mechanisms.

(2.55) BA737 was taxiing to gate 2, but never reached it.

Finally, it should be noted that the simple past often has an anaphoric nature.
For example, (2.53) is probably not asking if Airserve serviced BA737 at any
time in the past. (2.53) would typically be used with a particular time in mind,
perhaps the present day, to ask if Airserve serviced BA737 during that time.
A temporal anaphora resolution mechanism is needed to determine the time
that the speaker has in mind. Such mechanisms, however, are not considered in
this book (Section 1.2), and (2.53) will be taken to refer to any past time. The
same approach is adopted with all other verb forms that refer to past situations.
Issues related to temporal anaphora will be considered further in Section 2.12.

.. Progressive forms

Let us now turn to the progressive verb forms that will be considered in this
book: the present continuous and past continuous. The reader is reminded
that future meanings are not considered. This means that, for example, the
case where (2.56) has a reading similar to that of (2.57) will be ignored.

(2.56) Who is/was inspecting BA737?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.15 (33)

Linguistic data and an informal account 

(2.57) Who will/would inspect BA737?

In the following paragraphs, we will examine in turn the progressive forms of
activity and culminating activity verbs, point verbs, and state verbs.

Activity and culminating activity verbs in progressive forms. The present and
past continuous can be used with activity and culminating activity verbs to
refer to a situation that is or was in progress, as in (2.58)–(2.59) in the airport
domain.

(2.58) Are/Were any flights circling?
(2.59) Is/Was BA737 taxiing to gate 2?

In the case of culminating activity verbs, there is no requirement for the climax
to be reached at any time. The past continuous version of (2.59), for example,
does not require BA737 to have reached gate 2 (cf. (2.54)).

Point verbs in progressive forms. With point verbs, the use of progressive forms
is often an indication that the user is unaware that the situation of the verb is
modelled in the database as instantaneous. In the airport domain, for example,
the non-habitual to depart is a point verb, and departing is taken to include
only the time-point where the flight leaves its gate. In contrast, (2.60) seems to
be referring to a situation with duration; a user who is aware that departures are
modelled as instantaneous would normally use (2.61) instead. Similarly, (2.62)
seems to be carrying the assumption that departures are not instantaneous, so
that the speaker can talk while BA737 is departing.

(2.60) BA737 was departing.
(2.61) BA737 departed.
(2.62) BA737 is departing.

In sentences like (2.60)–(2.62), a cooperative nlitdb would warn the user that
departures are modelled as instantaneous. In the absence of mechanisms to
generate cooperative responses, the framework of this book silently accepts the
progressive forms of point verbs as referring to the instantaneous situations
of the verbs. The past continuous simply places the instantaneous situation of
the verb in the past, as when the simple past is used; for example, (2.60) is
taken to have the same meaning as (2.61). The present continuous asserts that
the instantaneous situation of the verb occurs at the present time-point. As
will be discussed in Chapter 5, in practice the database may model time-points
as corresponding to minutes or even whole days. Hence, obtaining an affir-

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.16 (34)

 Chapter 2

mative answer to a yes/no question like (2.62) is less unlikely than the reader
might think.

It is worth noting that people often seem to employ conceptual mecha-
nisms that allow them to add duration to situations that would normally be
thought of as instantaneous (Moens 1987). When confronted, for example,
with a past continuous sentence like (2.63), which seems to require the nor-
mally instantaneous reaching to be seen as having duration, people often at-
tach a preparatory process to the instantaneous situation of the verb; in (2.63),
this could be the covering of a short remaining distance up to the gate. The
progressive is then taken to assert that the preparatory process was in progress.

(2.63) At 5:00 pm BA737 was reaching gate 2.

In other cases, an iterative reading may be employed in order to add duration
to the situation of the verb. In (2.64), for example, the most natural reading is
that John is banging his hand repeatedly.

(2.64) John is banging his hand on the table.

Figuring out, however, exactly which preparatory process should be attached
to an instantaneous situation, or exactly when an iterative reading is licensed
is a difficult task for an nlitdb. Hence, the theoretical framework of this book
provides no mechanisms for adding preparatory processes or for generating
iterative readings.

State verbs in progressive forms. It has often been observed that state verbs are
not normally used in progressive forms (cf. Vendler’s tests in Section 2.2). For
example, (2.65) and (2.67) are easily rejected by most native English speakers.
It is assumed here that to own and to consist would be classified as state verbs,
on the basis that simple present questions like (2.66) and (2.68) are possible.

(2.65) *Who is owning five cars?
(2.66) Who owns five cars?
(2.67) *Which engine is consisting of 34 parts?
(2.68) Which engine consists of 34 parts?

The claim that state verbs do not appear in the progressive is challenged by
sentences like (2.69), from Smith (1986); Kent (1993) and Vlach (1993) provide
similar examples. (2.69) shows that the non-auxiliary to be, which is typically
classified as a state verb, can be used in the progressive.

(2.69) My daughter is being very naughty.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.17 (35)

Linguistic data and an informal account 

Furthermore, some native English speakers find (2.70) and (2.71) accept-
able, though they would use the non-progressive forms instead. It is assumed
here that to border would be classified as state verb, on the basis that (2.72)
is possible.

(2.70) Tank 4 was containing water when the bomb exploded.
(2.71) Which countries were bordering France in 1937?
(2.72) Which countries border France?

Not allowing progressive forms of state verbs also seems problematic in
questions like (2.73), that has a reading very similar to the habitual read-
ing of (2.74).

(2.73) Which company was servicing BA737 in 1999?
(2.74) Which company serviced (habitually) BA737 in 1999?

The reader is reminded that in the airport domain a distinction is made be-
tween the habitual and non-habitual homonym of to service. The habitual
homonym is a state verb, while the non-habitual one is a culminating activity
verb. If progressive forms of state verbs are not allowed, then only the non-
habitual homonym (actually servicing) is possible in (2.73). This does not ac-
count for the apparently habitual meaning of (2.73). One could argue that the
reading of (2.73) is not really habitual, but iterative: servicing many times, as
opposed to having a servicing habit. In sentences like (2.73)–(2.74), however,
the difference between habitual and iterative meaning is hard to define.

Given that it seems harmless to accept sentences like (2.65) and (2.67)
in an nlitdb, the theoretical framework of this book allows state verbs to be
used in progressive forms, with the same meanings as the corresponding non-
progressive forms. This causes (2.73) to receive two readings: one involving the
habitual to service (servicing habitually in 1999), and one involving the non-
habitual to service (actually servicing at some time in 1999); the latter reading
is more likely without the adverbial. (2.65) and (2.67) are treated as equivalent
to (2.66) and (2.68), respectively.

Aspectual shift of progressives. The progressive will be taken to cause an as-
pectual shift from activities and culminating activities to states; no shift is nec-
essary in the case of points. In the airport domain, for example, although the
base form of to inspect is a culminating activity, was inspecting will be a state.
The shift will allow us to account for the meaning of progressives when they
combine with temporal adverbials; this will be discussed further in Section 2.9.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.18 (36)

 Chapter 2

In various forms, similar shifts have been employed by Dowty (1986), Moens
(1987), Vlach (1993), Kent (1993), and others.

.. Present perfect

Like the simple past, the present perfect can be used with verbs of all four aspec-
tual classes to refer to past situations, as in (2.75)–(2.79). With culminating ac-
tivity verbs, the situation must have reached its climax; in (2.79), for example,
the service must have been completed.

(2.75) Has BA737 (ever) been at gate 2?
(2.76) Which flights have circled today?
(2.77) Has BA737 reached gate 2?
(2.78) Which company has (habitually) serviced BA737 this year?
(2.79) Has Airserve (actually) serviced BA737?

Present perfect and present consequences. It has often been claimed that the
English present perfect asserts that some consequence of the past situation
holds at the present (Moens 1987; Vlach 1993; Blackburn, Gardent, & de Rijke
1994). For example, (2.80) seems to imply that there is a consequence of the
fact that engine 5 caught fire that still holds. The consequence could be, for
example, that engine 5 is still on fire, or that it was damaged by the fire and has
not been repaired. In contrast, (2.81) does not seem to imply, at least not as
strongly, that some consequence still holds.

(2.80) Engine 5 has caught fire.
(2.81) Engine 5 caught fire.

Although these claims are intuitively appealing, it is difficult to see how they
could be used in an nlitdb. Perhaps in (2.82) the nlitdb should check not
only that the landing was completed, but also that some consequence of the
landing still holds.

(2.82) Has BA737 landed?

It is unclear, however, what this consequence should be. Should the nlitdb
check that the plane is still at the airport? Should it check that the passengers of
BA737 are still at the airport? Furthermore, in the first case, should the answer
be negative if the plane has departed since the landing? Given this uncertainty,
the framework of this book does not require the past situation to have present
consequences.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.19 (37)

Linguistic data and an informal account 

A second, related point is that when the present perfect combines with for
duration adverbials, there is often an implication that the past situation still
holds at the present. This seems related to the claims that the past situation
must have present consequences. For example, one reading of (2.83) is that
J. Adams is still a manager. (An alternative reading is that J. Adams was simply
a manager for two years, without the two years ending at the present moment.)
In contrast, (2.84) carries no implication that J. Adams is still a manager; in
fact, it seems to imply that he is no longer a manager.

(2.83) J. Adams has been a manager for two years.
(2.84) J. Adams was a manager for two years.

For simplicity, in the framework of this book the still-holding reading of sen-
tences like (2.83) will be ignored, and (2.83) will be treated as having the same
meaning as (2.84).

Present perfect and temporal adverbials. The present perfect does not com-
bine felicitously with some temporal adverbials. For example, (2.85) and (2.88)
sound unacceptable to most native English speakers; they would use (2.86) and
(2.89) instead. In contrast, (2.87) and (2.90) are acceptable.

(2.85) *Which flights have landed yesterday?
(2.86) Which flights landed yesterday?
(2.87) Which flights have landed today?
(2.88) *Which flights has J. Adams inspected last week?
(2.89) Which flights did J. Adams inspect last week?
(2.90) Which flights has J. Adams inspected this week?

Questions (2.85)–(2.90) suggest that the present perfect can be used only if
the time of the adverbial contains not only the time where the past situation
occurred, but also the speech time, the time when the sentence was uttered.
Thomson and Martinet (1986:167) provide a similar account. (2.87) is felici-
tous, because today contains the speech time. In contrast, (2.85) is unaccept-
able, because yesterday cannot contain the speech time. The hypothesis, how-
ever, that the time of the adverbial must include the speech time does not ac-
count for the fact that (2.91) is acceptable by most native English speakers,
especially if the ever is added, even if the question is not uttered on a Sunday.

(2.91) Has J. Adams (ever) inspected BA737 on a Sunday?

Moens and Steedman (1988) also point out that a superstitious person could
utter (2.92) on a day other than Friday the 13th.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.20 (38)

 Chapter 2

(2.92) They have married on Friday 13th!

One could attempt to formulate more elaborate restrictions, to predict exactly
when temporal adverbials can be used with the present perfect. In the case of
an nlitdb, however, it is difficult to see why this would be worth the effort, as
opposed to simply accepting questions like (2.85) as equivalent to (2.86). The
framework of this book adopts the latter approach.

Given that the framework of this book does not associate present conse-
quences with the present perfect, that the still-holding reading of sentences like
(2.83) is not supported, and that questions like (2.85) are allowed, there is not
much left to distinguish the present perfect from the simple past. Hence, for
simplicity, in this book the present perfect will be treated as having the same
meaning as the simple past.

.. Past perfect

The past perfect is often used to refer to a situation that occurred at some
past time before some other past time. Following Reichenbach (1947), let us
call the latter time the reference time. (2.93) and (2.94) have readings where at
5:00 pm specifies the reference time. In that case, (2.93) asks for flights that
Airserve serviced before 5:00 pm, and (2.94) asks if BA737 was at gate 2 some
time before 5:00 pm.

(2.93) Which flights had Airserve serviced at 5:00 pm?
(2.94) Had BA737 been at gate 2 at 5:00 pm?

With culminating activity verbs, the climax must have been reached before,
or possibly at, the reference time. For example, in (2.93) the services must have
been completed up to 5:00 pm. Perhaps some consequence of the past situation
must still hold at the reference time. As with the present perfect, however, such
consequential links will be ignored in this book.

When the past perfect combines with temporal adverbials, it is often un-
clear if the adverbial is intended to specify the reference time or directly the
time of the past situation. For example, (2.95) could mean that BA737 had
already reached gate 2 at 5:00 pm, or that it reached it at 5:00 pm. In the lat-
ter case, (2.95) is similar to the simple past (2.96), except that (2.95) creates
the impression of a longer distance between the time of the reaching and the
speech time.

(2.95) BA737 had reached gate 2 at 5:00 pm.
(2.96) BA737 reached gate 2 at 5:00 pm.
(2.97) BA737 had reached gate 2 by 5:00 pm.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.21 (39)

Linguistic data and an informal account 

By adverbials are often used in practice to clarify that the adverbial specifies
the reference time, as in (2.97) (cf. (2.95)). By adverbials, however, are not
considered in this book.

When the past perfect combines with for duration adverbials and a refer-
ence time is specified, there is often an implication that the past situation still
held at the reference time. For example, (2.98) seems to imply that J. Adams
was still a manager on 1/1/1999. As in the case of the present perfect, this
implication will not be captured by the framework of this book.

(2.98) J. Adams had been a manager for two years on 1/1/1999.

Aspectual shift of past perfect. The past perfect will be taken to trigger an as-
pectual shift from activities, culminating activities, and points to states. For
example, the base form of to inspect is a culminating activity in the airport
domain, but had inspected will be treated as a state. This shift will allow us to
account for the behaviour of the past perfect when combining with temporal
adverbials, and it seems to be a property of all perfect forms. However, since the
present perfect is treated as having the same meaning as the simple past (Sec-
tion 2.5.4), no such shift will be postulated in the case of the present perfect.
Similar shifts have been employed by Moens (1987), Vlach (1993), and others.

. Temporal verbs

Through their various forms, all verbs can convey temporal information. Some
verbs, however, like to begin or to precede, are of a more inherently temporal
nature. They differ from ordinary ones, like to build or to contain, in that they
do not describe directly situations, but rather refer to situations introduced
by other verbs or nouns; Passonneau (1988) makes a similar observation. In
(2.99), for example, to begin refers to the situation of to build. The verbs to
start, to end, to finish, to follow, to continue, and to happen all belong to this
category of special temporal verbs.

(2.99) They began to build terminal 9 in 1985.

Only four of these special verbs will be considered in this book: to start, to begin,
to stop, and to finish. For simplicity, all four of them will be allowed to combine
with state and activity verbs. It should be noted, however, that with state verbs
to begin and to finish usually sound unnatural, as demonstrated in (2.100) and
(2.101); and with activity verbs, as in (2.102), it could be argued that the use of

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.22 (40)

 Chapter 2

to begin or to finish indicates that the speaker has a culminating activity view in
mind, rather than an activity one.

(2.100) ?Which tank began to contain water on 27/7/1999?
(2.101) ?Which tank finished containing water on 27/7/1999?
(2.102) Which flight began/finished circling at 5:00 pm?

When combining with culminating activity verbs, to start and to begin have the
same meanings. The verbs to stop and to finish, however, differ: to finish requires
the climax to be reached, while to stop requires the action or change to simply
stop, possibly without being completed. For example, in (2.103) the service
must have simply stopped, while in (2.104) it must have been completed. Non-
habitual readings are assumed here.

(2.103) Which company stopped servicing BA737 at 5:00 pm?
(2.104) Which company finished servicing BA737 at 5:00 pm?

With point verbs, like to enter and to leave in the airport domain, the use of to
start, to begin, to stop, and to finish, as in (2.105) and (2.106), typically signals
that the person submitting the question is unaware that the situation of the
point verb is taken to be instantaneous. In such cases, the temporal verbs will
be ignored, i.e., (2.105) and (2.106) will be treated as (2.107).

(2.105) Which flight started to enter sector 2 at 5:00 pm?
(2.106) Which flight finished leaving gate 2 at 5:00 pm?
(2.107) Which flight entered sector 2 at 5:00 pm?

Ideally, an nlitdb would also warn the user that the temporal verb is ignored,
and that the situation is modelled as instantaneous. This is another case where
cooperative responses are necessary.

. Temporal nouns

In a similar manner, some nouns have a special temporal nature. Nouns like
development or inspection, for example, are similar to verbs, in that they intro-
duce world situations that occur in time. The role of development in (2.108) is
very similar to that of to develop in (2.109).

(2.108) When did the development of masque start?
(2.109) When did they start to develop masque?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.23 (41)

Linguistic data and an informal account 

Other nouns, like predecessor and successor, indicate temporal order, or refer
to start or end-points, like beginning or end. Finally, many nouns, as well as
proper names, refer to time periods, points, or generally entities of the tempo-
ral ontology; e.g., minute, July, event.

This book will consider only nouns like year, month, week, day, minute, and
proper names like 1999, July, 1/1/1999, Monday, 3:05 pm. Temporal nouns of
a more abstract nature, like period, point, interval, event, time, duration, nouns
referring to start or end-points, nouns introducing situations, and nouns of
temporal precedence will not be considered.

. Temporal adjectives

There are also adjectives of a special temporal nature. Some refer to temporal
order, like current, previous, earlier. Some refer to durations; e.g., brief, long.
Others, like annual or daily, specify frequencies. Adjectives of this kind are not
examined in this book, with the exception of current, which is supported to
illustrate some issues related to temporal anaphora.

. Temporal adverbials

We now turn to adverbials that convey temporal information. This book con-
siders four types of temporal adverbials: punctual adverbials, period adverbials,
and duration adverbials introduced by for and in. For each type, we will con-
sider in turn the cases where the adverbials modify, i.e., attach to, expressions of
the four aspectual classes: states, points, activities, and culminating activities.

.. Punctual adverbials

Some adverbials are understood as specifying time-points. Following Vlach
(1993), the term punctual adverbials will be used to refer to them. In English,
punctual adverbials are usually prepositional phrases introduced by at, as in at
5:00 pm or at the end of the inspection. In this book, only punctual adverbials
consisting of at and clock-time expressions, like at 5:00 pm, will be considered.

Punctual adverbials with states. When combining with state expressions,
punctual adverbials specify a time where the situation of the state expression
holds. There is usually no implication that the situation of the state starts or

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.24 (42)

 Chapter 2

stops at the time of the adverbial. (2.110), for example, asks if tank 5 was empty
at 5:00 pm. There is no requirement that the tank must have started or stopped
being empty at 5:00 pm. Similar comments apply to (2.111).

(2.110) Was tank 5 empty at 5:00 pm?
(2.111) Which flight was at gate 2 at 5:00 pm?

In other words, punctual adverbials normally have an interjacent meaning with
states, not an inchoative (start time of situation) or a terminal one (end time
of situation). These terms are borrowed from Kent (1993), who explores the
behaviour of at, for, and in adverbials, arriving at conclusions similar to the
ones presented here.

In narrative contexts, punctual adverbials combining with states some-
times have inchoative meanings. For example, the at 8:10 am in (2.112) most
probably specifies the time when J. Adams arrived (started being) in Glasgow.
In nlitdb questions, however, this inchoative meaning seems unlikely. For ex-
ample, it seems unlikely that (2.113) would be used to enquire about persons
that arrived in Glasgow at 8:10 am. Hence, for the purposes of this book, it
seems reasonable to assume that punctual adverbials combining with states
always have interjacent meanings.

(2.112) J. Adams left Edinburgh early in the morning, and
at 8:10 am he was in Glasgow.

(2.113) Who was in Glasgow at 8:10 am?

Punctual adverbials with points. With point expressions, punctual adverbials
specify the time where the instantaneous situation of the point expression takes
place, as in (2.114) and (2.115). The reader is reminded that to enter and to
reach are point verbs in the airport domain (Section 2.4.5).

(2.114) Which flight entered sector 2 at 23:02?
(2.115) Which flight reached gate 5 at 23:02?

Question (2.116) is ambiguous. It may involve the non-habitual homonym of
to depart, which is a point verb in the airport domain; in that case, 5:00 pm is
the time of the actual departure. Alternatively, it may involve the state habitual
homonym, in which case 5:00 pm is the habitual departure time. In the latter
case, at 5:00 pm will be treated as a prepositional phrase complement of the
habitual to depart, not as a temporal adverbial. This reflects the fact that the at
5:00 pm does not specify a time when the habit holds, but it forms part of the

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.25 (43)

Linguistic data and an informal account 

description of the habit, i.e., it is used in a way very similar to how from gate 2
is used in (2.117).

(2.116) Which flight departed at 5:00 pm?
(2.117) Which flight departed (habitually) from gate 2 (last year)?

Punctual adverbials with activities. With activities, punctual adverbials usu-
ally have an inchoative meaning, but an interjacent one is also possible in some
cases. (2.118), for example, could refer to a flight that either joined the queue
of runway 2 at 5:00 pm or was simply in the queue at 5:00 pm. The reader is
reminded that in the airport domain, to queue and to taxi without a destination
are activity verbs. The inchoative meaning seems the preferred one in (2.118).
It also seems the preferred one in (2.119), though an interjacent meaning is
arguably also possible. The interjacent meaning is easier to accept in (2.120).

(2.118) Which flight queued for runway 2 at 5:00 pm?
(2.119) BA737 taxied at 5:00 pm.
(2.120) Which flights circled at 5:00 pm?

With past progressive forms of activity verbs, punctual adverbials normally
have only interjacent meanings. Compare, for example, (2.118) and (2.119)
to (2.121) and (2.122). One would not normally use punctual adverbials with
present continuous forms, since in that case the situation is known to take place
at the present.

(2.121) Which flight was queueing for runway 2 at 5:00 pm?
(2.122) BA737 was taxiing at 5:00 pm.

Following the arrangements of Section 2.5.3, it will be assumed that the pro-
gressive triggers an aspectual shift from activities and culminating activities to
states. Hence, although to queue is an activity verb in the airport domain, was
queueing is a state expression. Along with the assumption that punctual adver-
bials have only interjacent meanings when combining with states, this accounts
for the fact that (2.121) can only be understood with an interjacent meaning.
Similar comments apply to (2.122).

Punctual adverbials with culminating activities. With culminating activities,
punctual adverbials usually have inchoative or terminal meanings; when they
have terminal meanings, they specify the time at which the climax was reached.
In the airport domain, for example, to land, to taxi to a destination, and to
inspect are culminating activity verbs. The terminal reading is the preferred

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.26 (44)

 Chapter 2

one in (2.123). In (2.124) both readings seem possible, while in (2.125) the
inchoative meaning seems the preferred one.

(2.123) Which flight landed at 5:00 pm?
(2.124) Which flight taxied to gate 4 at 5:00 pm?
(2.125) Who inspected BA737 at 5:00 pm?

One could argue that in (2.123) the speaker does not have a culminating ac-
tivity view in mind, but a point view, whereby the landing situation is seen
as consisting of only the time-point at which the aircraft touches the ground.
Indeed, as will be explained in following paragraphs, it will be assumed that
punctual adverbials change the aspectual class of the expressions they modify
to point. With culminating activities, this is achieved by forcing the modified
expressions to refer to either the beginnings or the completions of the situa-
tions they would normally denote. In (2.123), the completion of the landing is
conceptually more salient than its beginning, which is why the terminal read-
ing is the preferred one. In (2.124) and (2.125), however, neither the beginning
nor the completion is more salient, which is why the questions sound much
more unclear than (2.123); in practice, a speaker would use temporal verbs like
to start or to finish (Section 2.6) to specify the intended reading.

It could also be argued that, as with activities, an interjacent meaning is
sometimes also possible when punctual adverbials combine with culminating
activities. In that case, (2.124) would refer to a flight that was on its way to gate
4 at 5:00 pm. The inchoative or terminal reading, however, is usually much
more dominant with culminating activities, and, for simplicity, the interjacent
meaning will be ignored.

With progressive forms of culminating activity verbs, punctual adverbials
normally have only interjacent meanings. Compare, for example, (2.123)–
(2.125) to (2.126)–(2.128). This is in accordance with the assumption that the
progressive triggers an aspectual shift to state (Section 2.5.3).

(2.126) Which flight was landing at 5:00 pm?
(2.127) Which flight was taxiing to gate 4 at 5:00 pm?
(2.128) Who was inspecting BA737 at 5:00 pm?

Punctual adverbials and past perfect. As already mentioned in Section 2.5.5,
in sentences like (2.129) the adverbial can refer either directly to the situation,
meaning that the taxiing started or ended at 5:00 pm, or to the reference time,
in which case the taxiing had already finished at 5:00 pm.

(2.129) BA737 had taxied to gate 2 at 5:00 pm.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.27 (45)

Linguistic data and an informal account 

(2.130) BA737 had [taxied to gate 2 at 5:00 pm].
(2.131) BA737 [had taxied to gate 2] at 5:00 pm.

The treatment of sentences like (2.129) in this book will become clearer in
Chapter 3. A rough description, however, can be given here. (2.129) is treated
as syntactically ambiguous between (2.130), where the adverbial applies to the
past participle taxied, and (2.131), where the adverbial applies to the past per-
fect had taxied. The past participle (taxied) inherits the aspectual class of the
base form (culminating activity), and refers directly to the situation of the verb
(the taxiing). In contrast, the past perfect (had taxied) is a state, because the
past perfect causes an aspectual shift to state (Section 2.5.5). The past perfect
refers to a time-period that starts immediately after the end of the situation
of the verb (the end of the taxiing) and extends indefinitely. Let us call it the
consequent period.

In (2.130), then, a punctual adverbial combines with the culminating ac-
tivity past participle. According to the discussion above, two readings arise: an
inchoative reading, whereby the taxiing started at 5:00 pm, and a terminal one,
where the taxiing finishes at 5:00 pm. In contrast, in (2.131) the punctual ad-
verbial combines with the past perfect had taxied, which is a state expression
that refers to the consequent period. Hence, only an interjacent reading arises:
the time of the adverbial must simply be within the consequent period, which
implies that the taxiing must have been completed at the time of the adverbial.
A similar arrangement is used when the past perfect combines with period
adverbials, duration for and in adverbials, or temporal subordinate clauses.

Lexical, consequent, and progressive states. There is sometimes a need to dis-
tinguish between expressions that are states because they have inherited the
state aspectual class of a base verb form, and expressions that are states because
of an aspectual shift introduced by a past perfect or a progressive form. Follow-
ing Moens (1987), the terms lexical state, consequent state, and progressive state
will be used to distinguish the three genres, respectively. In the airport domain,
for example, the base form of to contain is a lexical state, while the base form
of to queue is an activity. The simple past queued and the past participle queued
are also activities. The past perfect had queued is a consequent state, while the
present continuous is queueing is a progressive state.

Aspectual shift of punctual adverbials. As already briefly mentioned, it is as-
sumed that punctual adverbials cause the aspectual class of the syntactic con-
stituent they modify to become point. This will allow us to account for sen-

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.28 (46)

 Chapter 2

Table 2.2 Punctual adverbials in this book

meanings of punctual adverbials

with state interjacent
with activity inchoative or interjacent
with culm. activity inchoative or terminal
with point time of instantaneous situation

The resulting aspectual class is point.

tences with multiple temporal adverbials in Chapter 4. In (2.131), for exam-
ple, the taxied to gate 2 inherits the culminating activity aspectual class of the
base form. The past perfect causes the aspectual class of had taxied to gate 2
to become consequent state. Finally, the at 5:00 pm causes the aspectual class
of had departed at 5:00 pm to become point. Table 2.2 summarises the main
observations of this section.

.. Period adverbials

Unlike punctual adverbials, that are understood as specifying points in time,
adverbials like in 1999, on Monday, yesterday, as in (2.132)–(2.134), are usually
understood as specifying longer, non-instantaneous periods of time. The term
period adverbial will be used to refer to them.

(2.132) Who was the sales manager in 1999?
(2.133) Did BA737 circle on Monday?
(2.134) Which flights did J. Adams inspect yesterday?

Before and after adverbials, as in (2.135), can also be considered period ad-
verbials, except that in this case one of the boundaries of the period is left
unspecified. In (2.135), for example, the end of the period is the beginning
of 2/5/1999; the beginning of the period is left unspecified. Before and af-
ter can also introduce temporal subordinate clauses; this will be discussed in
Section 2.10.2.

(2.135) Which company serviced BA737 before 2/5/1999?

This book examines only period adverbials introduced by in, on, before, and
after, as well as today and yesterday. In can also introduce duration adverbials,
like in two hours; this will be discussed in Section 2.9.4. Other period adver-
bials, like from 1996 to 1999, since 1996, last week, or two days ago, will not be
considered.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.29 (47)

Linguistic data and an informal account 

Period adverbials with states. When period adverbials combine with state ex-
pressions, the situation of the state expression must hold for at least some time
during the period of the adverbial. In (2.136), for example, the person must
have been a manager for at least some time in 1999. Similarly, in (2.137), the
person must have been at gate 2 for at least some time on the previous day.

(2.136) Who was a manager in 1999?
(2.137) Who was at gate 2 yesterday?

There is often, however, an implication that the situation holds throughout the
period of the adverbial. (2.138), for example, could mean that the tank was
empty throughout January, not at simply some part of January. Similarly, in
(2.139) the user could be referring to tanks that were empty throughout Jan-
uary. In that case, if a tank was empty only some days in January and the nl-
itdb included that tank in the answer, the user would be misled to believe that
the tank was empty throughout January. Similar comments can be made for
(2.140) and (2.141).

(2.138) Tank 4 was empty in January.
(2.139) Which tanks were empty in January?
(2.140) Was runway 2 open on 6/7/1999?
(2.141) Which flights departed (habitually) from gate 2 in 1999?

The same implication is possible in sentences with before or after adverbials.
(2.142), for example, could mean that the runway was open all the time from
some unspecified time up to 5:00 pm, and possibly longer.

(2.142) Runway 2 was open before 5:00 pm.

One way to deal with such implications is to treat sentences where period ad-
verbials combine with states as ambiguous. That is, to distinguish between a
reading where the situation holds throughout the adverbial’s period, and a
reading where the situation holds at simply some part of the adverbial’s pe-
riod. Vlach (1993:256) uses the terms durative and inclusive to refer to the two
readings. An nlitdb could paraphrase both readings and ask the user to select
one, or it could provide answers to both readings, indicating which answer cor-
responds to which reading. This approach has the disadvantage that it always
generates two readings, even when the durative reading is clearly impossible.
For example, when the state expression combines not only with a period ad-
verbial but also with a for duration adverbial, the meaning can never be that the
situation must necessarily hold throughout the period of the period adverbial;
(2.143) can never mean that the tank must have been empty throughout Jan-

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.30 (48)

 Chapter 2

uary (cf. (2.139)). Similarly, in time-asking questions like (2.144), the durative
reading is impossible.

(2.143) Which tank was empty for two days in January?
(2.144) When on 6/7/1999 was runway 2 open?

Formulating an account of exactly when the durative reading is possible is dif-
ficult. Although Chapter 3 discusses how the distinction between durative and
inclusive reading could be captured in top, for simplicity the rest of this book
considers only the inclusive reading, ignoring the durative one.

Period adverbials with points. When period adverbials combine with point
expressions, as in (2.145), the period of the adverbial must contain the time
where the instantaneous situation of the point expression occurs.

(2.145) Did BA737 enter sector 5 on Monday?

Period adverbials with culminating activities. Two readings will be allowed
when period adverbials combine with culminating activity expressions: (a) that
the situation of the culminating activity expression both starts and reaches
its completion within the adverbial’s period, and (b) that the situation sim-
ply reaches its completion within the adverbial’s period. In the second reading,
the culminating activity expression will be treated as referring only to the com-
pletion of the situation it would normally denote, and the aspectual class of the
overall expression will be shifted to point.

The first reading is the preferred one in (2.146), which is most naturally
understood as referring to a runner who both started and finished running the
forty miles on Wednesday. The verb to run with an object denoting a specific
distance is typically classified as culminating activity.

(2.146) Who ran 40 miles on Wednesday?

In the airport domain, the first reading is also the preferred one in (2.147), i.e.,
the inspection both started and was completed on Monday.

(2.147) J. Adams inspected BA737 on Monday.

The second reading, that the situation simply reaches its completion within
the adverbial’s period, is needed in questions like (2.148) and (2.149). In the
airport domain, to land and to take off are culminating activity verbs. If only
the first reading were available, in (2.148) the nlitdb would report only flights
that both started and finished landing on Monday. If a flight started the landing

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.31 (49)

Linguistic data and an informal account 

procedure at 23:55 on Sunday and finished it at 00:05 on Monday, that flight
would not be reported. This seems over-restrictive; in (2.148), the most natural
reading is that the flights must have simply touched down on Monday, and
similar comments apply to (2.149) and (2.150) in domains where to fix is a
culminating activity verb.

(2.148) Which flights landed on Monday?
(2.149) Which flights took off after 5:00 pm?
(2.150) Did J. Adams fix any faults yesterday?

The problem in these cases is that to land, to take off, and to fix need to be treated
as point verbs referring only to the time-points where the corresponding sit-
uations were completed, even though they have been classified as culminating
activity verbs. The second reading allows exactly this. The culminating activity
expression is taken to refer only to the completion point of the situation, its
aspectual class is changed to point, and the completion point is required to fall
within the adverbial’s period.

This arrangement may not always be entirely satisfactory. Let us assume,
for example, that J. Adams started inspecting a flight late on Monday, and fin-
ished the inspection early on Tuesday. None of the two readings would include
that flight in the answer to (2.151), because both require the completion point
to fall on Monday. While strictly speaking this seems correct, it would be bet-
ter if the nlitdb included in the answer inspections that partially overlap the
adverbial’s period, warning the user about the fact that these inspections are
not completely contained in the adverbial’s period. This is another case where
cooperative responses are needed.

(2.151) Which flights did J. Adams inspect on Monday?

It should also be noted that with before adverbials, as in (2.152), the two read-
ings are equivalent: requiring the situation to simply reach its completion be-
fore some time is equivalent to requiring the situation to both start and reach
its completion before that time. To avoid generating equivalent readings, only
the reading where the situation both starts and reaches its completion within
the adverbial’s period will be admitted in this case.

(2.152) Which flights took off before 5:00 pm?

Period adverbials with activities. When period adverbials combine with ac-
tivities, the situation of the verb must hold for at least some time within the
adverbial’s period; this is the same as with states. In (2.153), for example, the

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.32 (50)

 Chapter 2

Table 2.3 Period adverbials in this book

meanings of period adverbials

with state, activity The situation holds for at least part of the adverbial’s period.

with culm. activity The situation starts and is completed within the adverbial’s
period, or the situation is simply completed within the
adverbial’s period.*†

with point The situation occurs within the adverbial’s period.

*The second reading is not available with before adverbials.
†In the second reading, the resulting aspectual class is point.

In all other cases, the aspectual class remains the same.

flight must have circled for at least some time on Monday, and in (2.154) the
flights must have taxied for at least some time after 5:00 pm.

(2.153) Did BA737 circle on Monday?
(2.154) Which flights taxied after 5:00 pm?

Another stricter reading is sometimes possible, especially with before and after:
that the situation does not extend past the boundaries of the adverbial’s period.
For example, (2.154) would refer to flights that started to taxi after 5:00 pm; a
flight that started to taxi at 4:55 pm and continued to taxi until 5:05 pm would
not be reported. This reading may also be possible with states (cf. (2.142)),
though with activities it seems easier to accept. As a simplification, readings of
this kind will be ignored.

Elliptical forms of period adverbials. Before and after are sometimes followed
by noun phrases that do not denote entities of the temporal ontology, as
in (2.155).

(2.155) Did J. Adams inspect BA737 before UK160?
(2.156) Did J. Adams inspect BA737 before he inspected UK160?

Questions like (2.155) can be considered elliptical forms of (2.156), i.e., in
these cases before and after could be treated as when they introduce subor-
dinate clauses (see Section 2.10.2 below). Elliptical forms are not examined in
this book, and questions like (2.155) will not be discussed further. Table 2.3
summarises the main points of this section.

.. Duration adverbials introduced by ‘for’

We now move on to temporal adverbials that specify durations, starting with
duration adverbials introduced by for.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.33 (51)

Linguistic data and an informal account 

‘For’ adverbials with states and activities. When for adverbials combine with
states or activities, one reading is that there must be a period with the dura-
tion of the for adverbial, such that the situation of the state or activity holds
throughout that period. According to this reading, in (2.157) there must be a
five-year period throughout which the person was a manager, and in (2.158) a
twenty-minute period throughout which BA737 was circling. If J. Adams was
a manager for six consecutive years, for example from 1981 to 1986, he would
be reported in (2.157), because there is a five-year period, for example 1981 to
1985, throughout which he was a manager.

(2.157) Who was a manager for five years?
(2.158) Did BA737 circle for twenty minutes?

In some cases, however, for adverbials are used with a stricter meaning: they
specify the duration of a maximal period where a situation held. In that case,
if J. Adams started to be a manager at the beginning of 1981 and stopped be-
ing a manager at the end of 1986 (six consecutive years), he would not be in-
cluded in the answer to (2.157). For simplicity, this stricter reading is ignored
in this book.

In other cases, a for adverbial does not necessarily specify the duration of
a single period, but a total duration. According to this reading, if J. Adams was
a manager during several non-overlapping periods, and the total duration of
these periods is five years, he would be included in the answer to (2.157), even
if he was never a manager for a continuous five-year period. This reading of for
adverbials is also not considered in this book.

It should also be noted that in sentences like (2.159), the duration adverbial
can never be understood as specifying the duration of the consequent period
(Section 2.9.1).

(2.159) BA737 had circled for two hours.

This will be discussed further in Chapter 4 (Section 4.11.3), once some for-
mal apparatus has been established. For the moment, it suffices to say that for
adverbials will not be allowed to combine with consequent states.

‘For’ adverbials with points. Adverbials introduced by for sometimes specify
the duration of a situation that follows the situation of the verb. This is partic-
ularly common with point expressions. For instance, (2.160), which is based
on an example by Hwang and Schubert (1994), does not mean that J. Adams
was actually leaving his office for fifteen minutes. It means that he stayed, or
intended to stay, out of his office for fifteen minutes. It is assumed here that to

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.34 (52)

 Chapter 2

leave is a point verb, as in the airport domain. This use of for adverbials is not
considered in this book.

(2.160) J. Adams left his office for fifteen minutes.

For adverbials also give rise to iterative readings (Section 2.5.3). This is again
particularly common with point expressions, as illustrated by Hwang and
Schubert’s example in (2.161); the verb to win is typically classified as point.
The sentence has an iterative meaning, whereby Mary won several times. The
reader is reminded that iterative readings are not considered in this book.

(2.161) Mary won the competition for four years.

Excluding iterative readings and readings where for adverbials refer to conse-
quent situations, sentences in which for adverbials combine with point expres-
sions either sound odd or signal that the user is unaware that the situation
of the point expression is modelled as instantaneous. (Ideally, an explanatory
message would be produced; yet another case where cooperative responses are
needed.) Hence, for the purposes of this book it seems reasonable not to allow
for adverbials to combine with point expressions.

‘For’ adverbials with culminating activities. When for adverbials combine
with culminating activities, the sentences sometimes sound odd or even un-
acceptable. For example, to build is typically classified as culminating activ-
ity verb. (2.162) sounds odd or unacceptable to most native English speakers.
In contrast, (2.163), where the adverbial combines with a progressive state, is
easily acceptable.

(2.162) ?Housecorp built a shopping centre for two years.
(2.163) Housecorp was building a shopping centre for two years.

Based on similar examples, Vendler concludes that ‘accomplishments’ (culmi-
nating activities) do not combine with for adverbials (Section 2.2). This, how-
ever, seems over-restrictive. For example, (2.164) and (2.165) are acceptable.

(2.164) BA737 taxied to gate 2 for two minutes.
(2.165) Did J. Adams inspect BA737 for ten minutes?

Unlike (2.166), in (2.164) there is no requirement that the taxiing must have
been completed, i.e., that BA737 must have reached the gate. Similar comments
can be made for (2.165) and (2.167). For adverbials seem to cancel any require-
ment that the climax must have been reached. Similar observations are made
by Dowty (1986), Moens and Steedman (1988), and Kent (1993).

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.35 (53)

Linguistic data and an informal account 

Table 2.4 Duration adverbials introduced by ‘for’ in this book

meanings of duration adverbials introduced by for

with lexical state, The situation holds continuously for at least
progressive state, activity, that long.*

culminating activity

with consequent state, point (Not allowed in the framework of this book.)

*With culminating activities, there is no need for the climax to be reached.

(2.166) BA737 taxied to gate 2.
(2.167) Did J. Adams inspect BA737?

The framework of this book allows for adverbials to combine with culminat-
ing activities, with the same meaning as in the case of states and activities, but
with the proviso that any requirement that the climax must have been reached
should be cancelled. That is, in (2.165) there must be a ten-minute period
throughout which J. Adams was inspecting BA737; there is no requirement
that the inspection must have been completed. Table 2.4 summarises the main
points of this section.

.. Duration adverbials introduced by ‘in’

This section discusses duration adverbials introduced by in, as in (2.168) and
(2.169). Period in adverbials were discussed in Section 2.9.2.

(2.168) Airserve serviced BA737 in two hours.
(2.169) Which flight did J. Adams inspect in one hour?

‘In’ adverbials with culminating activities. With culminating activity expres-
sions, in adverbials usually specify the length of a period that ends at the time-
point where the situation of the culminating activity is completed. In (2.168),
for example, two hours is probably the length of a period that ends at the time-
point where the service was completed. (2.169) is similar. The period whose
length is specified by the in adverbial usually starts at the time-point where the
situation of the culminating activity begins. In (2.168), for example, the two
hours probably start at the time-point where the service began. Sometimes,
however, the period of the adverbial may not start at the beginning of the sit-
uation of the culminating activity, but at some other earlier time. In (2.168),
the start of the two hours could be the time-point where Airserve was asked
to service BA737, not the beginning of the actual service. In this book, we will

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.36 (54)

 Chapter 2

consider only the case where the period of the adverbial starts at the beginning
of the situation of the culminating activity.

‘In’ adverbials with points. With point expressions, the period of the in ad-
verbial starts before the instantaneous situation of the point expression, and
ends at the time-point where the situation of the point expression occurs. In
(2.170), the ten minutes end at the point where BA737 arrived at gate 2, and
start at some earlier time-point; for example, when BA737 started to taxi to
gate 2. (2.171) is similar.

(2.170) BA737 reached gate 2 in ten minutes.
(2.171) BA737 entered sector 2 in five minutes.

Determining exactly when the period of the adverbial starts, however, is often
difficult. It is not clear, for example, when the five minutes of (2.171) start.
As a simplification, the framework of this book does not allow duration in
adverbials to combine with point expressions.

‘In’ adverbials with states and activities. When in adverbials are used with
activity expressions, the speaker sometimes has a culminating activity view in
mind. For example, in (2.172) the speaker may have a particular destination,
say gate 2, in mind. In that case, (2.172) can be considered an elliptical form
of (2.173). Elliptical forms are not examined in this book, and sentences like
(2.172) will not be discussed further.

(2.172) BA737 taxied in ten minutes.
(2.173) BA737 taxied to gate 2 in ten minutes.

With state and activity expressions, in adverbials can also specify the duration
of a period that ends at the beginning of the situation of the state or activity
expression. In (2.174), for example, the two hours probably end at the time-
point where tank 5 started to be empty. The beginning of the two hours could
be, for example, a time-point where a pump started to empty the tank, or a
time-point where a decision to empty the tank was taken. A similar reading is
available in (2.172).

(2.174) Tank 5 was empty in two hours.

As with point expressions, determining exactly when the period of the ad-
verbial starts is often difficult. Again, as a simplification, the framework of
this book does not allow duration in adverbials to combine with states and
activities. Table 2.5 summarises the main points of this section.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.37 (55)

Linguistic data and an informal account 

Table 2.5 Duration adverbials introduced by ‘in’ in this book

meanings of duration adverbials introduced by in

with state, activity, point (Not allowed in the framework of this book.)

with culminating activity Distance from the start to the completion of the situation.

.. Other temporal adverbials

The linguistic coverage of this book does not include other kinds of temporal
adverbials. Among the temporal adverbials that are not covered are several ad-
verbials that specify boundaries, like until 1/5/1999, since 1997, by Monday, fre-
quency adverbials, like always, twice, every Monday, and adverbials of temporal
order, like for the second time and earlier.

. Temporal subordinate clauses

Three types of temporal subordinate clauses will be examined in this book:
clauses introduced by while, before, and after.

.. Clauses introduced by ‘while’

Each while clause can be thought of as contributing a time period. The analysis
below examines first how this period is established, and then how it relates to
the situation of the main clause.

The period of the ‘while’ clause. The period contributed by the while clause
must be a maximal period throughout which the situation of the clause holds.
If there are several periods of this kind, then the contributed period can gener-
ally be any of them. Let us assume, for example, that J. Adams was a manager
only from 1/1/1980 to 31/12/1983 and from 1/1/1987 to 31/12/1990. Then, in
(2.175) the period of the while clause can be any of the two periods. In practice,
the user may have in mind a particular period period among the two, in which
case a temporal anaphora resolution mechanism is needed to determine that
period. The framework of this book, however, provides no such mechanism,
and the answer to (2.175) will include anybody who was fired during any of
the two periods. Temporal anaphora is discussed further in Section 2.12 below.

(2.175) Who was fired while J. Adams was a manager?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.38 (56)

 Chapter 2

Sentences where the aspectual class of the while clause is point, like (2.176)
in the airport domain, typically signal that the user is unaware that the sit-
uation of the while clause is modelled as instantaneous. In the framework of
this book, the answer to (2.176) will include any flight that was circling at the
time-point where BA737 entered sector 2. Ideally, a message would also be gen-
erated to warn the user that entering a sector is modelled as instantaneous, but
no mechanism to generate such cooperative messages is currently in place.

(2.176) Which flights were circling while BA737 entered sector 2?

Sentences containing while clauses whose aspectual class is consequent state
usually sound unnatural or unacceptable. For example, (2.177)–(2.179) sound
at least unnatural, and their intended meanings are unclear. Instead of (2.177),
for example, one would normally use (2.180) or (2.181). Hence, while clauses
whose aspectual class is consequent state will not be allowed in the framework
of this book.

(2.177) ?Did any flight depart while BA737 had landed?
(2.178) ?Did ABM fire anybody while Adams had been the manager?
(2.179) ?Had any flight departed while Adams had inspected BA737?
(2.180) Did any flight depart while BA737 was landing?
(2.181) Did any flight depart after BA737 had landed?

When the aspectual class of the while clause is culminating activity, there is no
requirement that the climax of the situation of the while clause must have been
reached, even if the verb form of that clause normally requires this. In (2.183)
and (2.186), for example, there does not seem to be any requirement that the
service or the boarding must have been completed (cf. (2.182) and (2.185)).
(2.183) and (2.186) appear to have the same meanings as (2.184) and (2.187).
Table 2.6 summarises the main points about while clauses so far.

Table 2.6 Periods of ‘while’ clauses in this book

while clause period specified by the while clause

consequent state (not allowed in the framework of this book)

lexical state, progressive state, maximal period where the situation of the
activity, culminating activity while clause holds*

point instantaneous period where the situation of the
while clause occurs

*When the while clause is culminating activity, there is no need for the climax of its situation to be reached.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.39 (57)

Linguistic data and an informal account 

(2.182) Did Airserve service BA737?
(2.183) Which flights departed while Airserve serviced BA737?
(2.184) Which flights departed while Airserve was servicing BA737?
(2.185) Did BA737 board?
(2.186) Which flights departed while BA737 boarded?
(2.187) Which flights departed while BA737 was boarding?

Main clause modified by ‘while’ clause. Once the periods of the while clauses
have been established following Table 2.6, the behaviour of while clauses ap-
pears to be the same as that of period adverbials, i.e., it follows Table 2.3
on page 50. With main clauses whose aspectual class is point, the instanta-
neous situation of the main clause must occur within the period of the while
clause. For example, to depart is a point verb in the airport domain. In (2.188),
the departures must have occurred during a maximal period where runway 5
was closed.

(2.188) Did any flight depart from gate 2 while runway 5 was closed?

With activity main clauses, the situation of the main clause must be ongoing
some time during the period of the while clause. In (2.189), for example, the
flights must have taxied some time during a maximal period where BA737 was
circling (cf. Table 2.3). Stricter readings are sometimes possible with activity
main clauses, as in the case of period adverbials (Section 2.9.2). For example,
(2.189) could refer to flights that both started and stopped taxiing during a
maximal period where BA737 was circling. As with period adverbials, these
stricter readings will be ignored.

(2.189) Which flights taxied while BA737 circled?

As in the case of period adverbials, with culminating activity main clauses two
readings are allowed: (a) that the situation of the main clause both starts and
reaches its completion within the period of the while clause, or (b) that the sit-
uation of the main clause simply reaches its completion within the period of
the while clause. In the second reading, the main clause is taken to refer only
to the completion point of the situation it would normally denote, and its as-
pectual class is changed to point (cf. Table 2.3). In the airport domain, the first
reading is the preferred one in (2.190). The second reading allows the answer
to (2.191) to contain flights that simply touched down during the service, even
if their landing procedures did not start during the service.

(2.190) Adams inspected BA737 while Airserve was servicing UK52.
(2.191) Which flights landed while Airserve was servicing UK52?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.40 (58)

 Chapter 2

With state main clauses, the situation of the main clause is required to hold
some time during the period of the while clause; this corresponds to the inclu-
sive reading of Section 2.9.2. For example, the non-auxiliary to be is typically
classified as state verb. In (2.192), the answer must contain anybody who was
a lecturer some time during a maximal period where Adams was a professor.
As with period adverbials, there is often an implication that the situation of the
main clause holds throughout the period of the while clause; this corresponds to
the durative reading of Section 2.9.2. According to the durative reading, (2.192)
refers to people who were lecturers throughout the, presumably unique, max-
imal period where Adams was a professor; and (2.193), where the main clause
is a progressive state, refers to a flight that was circling throughout a maximal
period where runway 2 was closed.

(2.192) Who was a lecturer while Adams was a professor?
(2.193) Which flight was circling while runway 2 was closed?

As with period adverbials, Chapter 3 will demonstrate how durative readings
can be captured in top, but these readings will not be considered further in the
rest of this book.

It should be noted that the treatment of temporal subordinate clauses of
this book is in many ways similar to that of Ritchie (1979). Ritchie also views
temporal subordinate clauses as establishing periods. The exact relations be-
tween these periods and the situations of the main clauses depend on the
aspectual classes of the main clauses and the words introducing the subordi-
nate clauses.

.. Clauses introduced by ‘before’ and ‘after’

Like the before and after adverbials of Section 2.9.2, clauses introduced by before
and after are treated as establishing periods. In before clauses, the period starts
at some unspecified time-point; in the absence of other constraints, this is the
beginning of time. The end-point of the period is provided by the before clause.
In after clauses, the period starts at a time-point provided by the after clause,
and ends at some unspecified time-point, or the end of time. The terms before-
point and after-point will be used to refer to the time-points provided by before
and after clauses, respectively. Once the periods of the before and after clauses
have been established, the behaviour of the clauses appears to be the same as
that of period adverbials, i.e., it follows Table 2.3 on page 50.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.41 (59)

Linguistic data and an informal account 

State ‘before’ or ‘after’ clause. Let us first examine sentences where the aspec-
tual class of the before or after clause is state. With before clauses, the before-
point is a time-point where the situation of the before clause starts (Table 2.7).
In (2.194), for example, the before-point is a time-point where runway 2
started to be open. In the airport domain, the aspectual class of the main clause
is point. According to Table 2.3 on page 50, the departures must have occurred
within the period of the before clause, i.e., before the time-point where run-
way 2 started to be open. Similar comments apply to (2.195), (2.196), where
the before clause is a progressive state, and (2.197), where the before clause is
a consequent state. In (2.197), the before-point is the beginning of the conse-
quent period of the inspection (Section 2.9.1), i.e., the beginning of the period
that contains all the time after the completion of the inspection. Hence, the
departures must have happened before the inspection was completed.

(2.194) Which flights departed before runway 2 was open?
(2.195) Which flights departed before the emergency system was in operation?

(2.196) Which flights departed before BA737 was circling?
(2.197) Which flights departed before Adams had inspected BA737?

According to Table 2.3 on page 50, in (2.198) where the main clause is a state,
the flight must have been at gate 2 some time during the period of the before
clause, i.e., for some time before runway 2 started to be open. In (2.199), where
the main clause is an activity, the flight must have circled for some time before
runway 2 started to be open. In (2.200), which involves a culminating activity
main clause, the inspections must have both started and been completed before
runway 2 started to be open.

(2.198) Was any flight at gate 2 before runway 2 was open?
(2.199) Did any flight circle before runway 2 was open?
(2.200) Which flights did J. Adams inspect before runway 2 was open?

Table 2.7 Clauses introduced by ‘before’ in this book

aspectual class of before-point
before clause (end-point of period specified by before clause)

state, activity time-point where the situation of the before clause starts

culm. activity time-point where the situation of the before clause starts
or is completed

point time-point where the situation of the before clause occurs

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.42 (60)

 Chapter 2

As with the before adverbials of Section 2.9.2, in (2.200) it would be better if
the nlitdb could also report inspections that started but were not completed
before runway 2 opened, warning the user that those inspections were not com-
pleted before runway 2 opened. Again, a mechanism for cooperative responses
is needed to achieve this.

In the case of after clauses, if the aspectual class of the after clause is a lex-
ical or progressive state, the after-point is a time-point where the situation of
the after clause either starts or ends (Table 2.8). For example, (2.201) has two
readings: that the flights must have departed after runway 2 started to be open,
or that the flights must have departed after runway 2 stopped being open. Sim-
ilar comments apply to (2.202) and (2.203). In practice, additional temporal
verbs, like to start or to stop would typically be included to clarify the intended
meanings. Knowing the readings that are possible without these verbs, how-
ever, is still useful, as it allows the nlitdb to detect the possible ambiguities
when users omit them.

(2.201) Which flights departed after runway 2 was open?
(2.202) Which flights departed after the emergency system was in operation?
(2.203) Which flights departed after BA737 was circling?

In sentences like (2.204), where the aspectual class of the after clause is conse-
quent state, the after-point can only be the beginning of the consequent period,
i.e., the first time-point after the completion of the inspection. It cannot be the
end of the consequent period, because the end of the consequent period is the
end of time. This explains the distinction between consequent and lexical or
progressive states in Table 2.8.

(2.204) Which flights departed after Adams had inspected BA737?

Table 2.8 Clauses introduced by ‘after’ in this book

aspectual class of after-point
before clause (start-point of period specified by after clause)

lexical or time-point where the situation of the after clause starts or ends
progressive state

consequent state time-point where the consequent period of the after clause starts

activity time-point where the situation of the after clause ends

culm. activity time-point where the situation of the after clause is completed

point time-point where the situation of the before clause occurs

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.43 (61)

Linguistic data and an informal account 

Point ‘before’ or ‘after’ clause. If the aspectual class of the before or after clause
is point, the before- or after-point is the time-point where the instantaneous
situation of the subordinate clause occurs. In (2.205), for example, the before-
or after-point is the point where BA737 reached gate 2.

(2.205) Which flights departed before/after BA737 reached gate 2?

Activity ‘before’ or ‘after’ clause. With activity before clauses, the before-point
is a time-point where the situation of the before clause starts. In (2.206) and
(2.207), for example, the departures must have occurred before BA737 started
to taxi or circle.

(2.206) Which flights departed before BA737 taxied?
(2.207) Which flights departed before BA737 circled?

With activity after clauses, the after-point must be a point where the situation
of the after clause ends. In (2.208) and (2.209), for example, the departures
must have occurred after BA737 stopped taxiing or circling.

(2.208) Which flights departed after BA737 taxied?
(2.209) Which flights departed after BA737 circled?

Another reading may sometimes be possible with after clauses: that the after-
point is a time-point where the situation of the after clause starts. In this case,
(2.209) would refer to departures that occurred after BA737 started to circle.
This reading, however, seems less likely, and for simplicity it will be ignored.
Again, in practice people would probably use additional temporal verbs, like to
start or to stop, to clarify the intended meaning.

Culminating activity ‘before’ or ‘after’ clause. With after clauses whose as-
pectual class is culminating activity, the after-point is most likely a time-point
where the situation of the after clause reaches its completion. In (2.210), for ex-
ample, the most probably reading is that the departures must have occurred af-
ter the completion of the inspection, and in (2.211) after the time-point where
BA737 reached gate 2. These questions may sound slightly unnatural, prob-
ably because in practice additional temporal verbs would be used to clarify
their meanings. As commented above, however, there is value in attempting to
identify the most likely readings in the absence of such verbs.

(2.210) Which flights departed after J. Adams inspected BA737?
(2.211) Which flights departed after BA737 taxied to gate 2?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.44 (62)

 Chapter 2

With culminating activity before clauses, the before-point will be allowed to be
a time-point where the situation of the before clause either starts or reaches its
completion. In the airport domain, the first reading seems the preferred one in
(2.212). The flights must have departed before the beginning of the inspection.
The second reading seems the preferred one in (2.213). The flights must have
departed before the completion of the landing. Both readings seems possible
in (2.214).

(2.212) Which flights departed before J. Adams inspected BA737?
(2.213) Which flights departed before BA737 landed?
(2.214) Which flights departed before BA737 taxied to gate 2?

The simple past of culminating activity verbs normally requires the climax to
have been reached. However, if the first reading above is adopted, i.e., if the
situation of the before clause starts at the before-point, and the clause is in
the simple past, it is unclear if the situation of that clause must have neces-
sarily reached its climax. For example, let us assume that the first reading is
adopted in (2.212). Should the before-point be the beginning of an inspection
that was necessarily completed, or can it also be the beginning of an inspec-
tion that was never completed? The framework of this book currently adopts
the first approach, but this is probably over-restrictive. It would be better if the
nlitdb allowed the before-point to be the beginning of both inspections that
were and were not completed, warning the user about inspections that were
not completed. This is another case for cooperative responses.

Other uses. Before and after can be preceded by expressions specifying dura-
tions, as in (2.215). This use of before and after is not considered in this book.

(2.215) BA737 reached gate 2 five minutes after UK160 departed.

Before clauses also have counter-factual uses. For example, in (2.216), which
is borrowed from an earlier form of Crouch and Pulman (1993), the situation
where the car runs into the tree never takes place. This use of before is not
considered in this book.

(2.216) Smith stopped the car before it ran into the tree.

.. Other temporal subordinate clauses

Temporal subordinate clauses that are not examined in this book include, for
example, clauses introduced by since, until, and when. From these, when clauses

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.45 (63)

Linguistic data and an informal account 

seem the most challenging, as they often require large amounts of common
sense knowledge to interpret (Ritchie 1979; Yip 1985; Hinrichs 1986; Moens
1987; Moens & Steedman 1988; Lascarides & Oberlander 1993).

.. Tense coordination

Some combinations of tenses in the main and subordinate clauses are unac-
ceptable, as demonstrated in (2.217) and (2.218). This book makes no attempt
to account for the unacceptability of such combinations. The reader is referred
to Harper and Charniak (1986), and Brent (1990) for methods that could be
used to reject sentences of this kind.

(2.217) *BA737 left gate 2 before runway 2 is free.
(2.218) *Which runways are closed while runway 2 was circling?

. Noun phrases and temporal reference

A question like (2.219) can refer either to the present sales manager or to the
person who was the sales manager in 1999. Similarly, (2.220) may refer either
to present students or last year’s students. In (2.221), which closed runway prob-
ably refers to a runway that is currently closed, while in (2.222) a closed runway
probably refers to a runway that was closed at the time of the landing.

(2.219) What was the salary of the sales manager in 1999?
(2.220) Which students failed in physics last year?
(2.221) Which closed runway was open yesterday?
(2.222) Did BA737 ever land on a closed runway in 1999?

It seems that noun phrases like the sales manager, which students, a closed run-
way refer either to the present or to the time of the verb tense, if this time is
different than the present. In (2.219), the simple past refers to some time in
1999. Therefore, there are two options: the sales manager can refer either to
the present sales manager or to somebody who was the sales manager in 1999.
Similar comments apply to (2.220). In contrast, in (2.223) the verb tense refers
to the present. Hence, there is only one possibility: the sales manager refers to
the present sales manager.

(2.223) What is the salary of the sales manager?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.46 (64)

 Chapter 2

In (2.221), the verb tense refers to a time within the previous day where the
runway was open. There should be two readings: it should be possible for which
closed runway to refer either to a currently closed runway, or to a runway that
was closed at the time it was open. Since a runway cannot be closed and open
at the same time, the second reading is ruled out. This clash, however, cannot
be spotted easily by an nlitdb without some inferential capability.

Unfortunately, the hypothesis that noun phrases refer either to the present
or the time of the verb tense is not always adequate. For example, a person sub-
mitting (2.224) to the nlitdb of a university most probably refers to previous
students of the university. In contrast, the hypothesis predicts that the question
can refer only to current students. Enc (1986) provides similar examples.

(2.224) How many of our students are now professors?

The hypothesis also predicts that (2.225) can refer only to current Prime Min-
isters or to persons that were Prime Ministers at the time they were born, an
extremely unlikely reading. There is, however, a reading where the question
refers to all past and present Prime Ministers. This reading is incorrectly ruled
out by the hypothesis.

(2.225) Which Prime Ministers were born in Scotland?

Hinrichs (1988) argues that determining the times to which noun phrases re-
fer is part of a more general problem of determining the entities to which noun
phrases refer. According to Hinrichs, a noun phrase like every admiral generally
refers to anybody who was, is, or will be an admiral of any fleet in the world at
any time. If, however, (2.226) is uttered in a context where the current person-
nel of the U.S. fleet is being discussed, the temporal scope of every admiral is
restricted to current admirals, in the same way that the scope of every admiral
is restricted to admirals of the U.S. fleet.

(2.226) Every admiral graduated from Annapolis.

The fact that Hinrichs does not limit the times of the noun phrases to the
present and the time of the verb tense is in accordance with the fact that our
students in (2.224) is not limited to present students, and the fact that which
Prime Ministers in (2.225) may refer to all past and present Prime Ministers.
Hinrichs’ approach, however, requires some mechanism to restrict the scope
of noun phrases as the discourse evolves, and Hinrichs offers only a very lim-
ited sketch of how such a mechanism could be constructed. Also, in the ab-
sence of previous discourse, Hinrichs’ treatment suggests that (2.219) refers to
the sales managers of all times, an unlikely interpretation. The hypothesis that

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.47 (65)

Linguistic data and an informal account 

noun phrases refer either to the present or to the time of the verb tense per-
forms better in this case. Given these problems with Hinrichs’ approach, this
book adopts the initial hypothesis that noun phrases refer to the present or the
time of the verb tense. An alternative approach would be to attempt to merge
this hypothesis with Hinrichs’ method; Dalrymple (1988) goes towards that
direction.

A further improvement, however, can be made to the initial hypothesis.
When a noun phrase is the complement of the predicative to be, it seems that
the noun phrase can refer only to the time of the verb tense. For example,
(2.227) can only be a request to report the 1999 sales manager, not the current
sales manager. Similarly, (2.228) cannot mean that J. Adams is the current sales
manager. This also accounts for the fact that in (2.219) the salary of the sales
manager, i.e., the complement of was, can refer only to a 1999 salary, not to a
present salary, unlike the sales manager which can refer either to the present
or 1999. The restriction that the complement of the predicative to be must
refer to the time of the verb tense does not extend to noun phrases that are
subconstituents of that complement, like the sales manager in (2.219).

(2.227) Who was the sales manager in 1999?
(2.228) J. Adams was the sales manager in 1999.

The same restriction applies to bare adjectives used as complements of the
predicative to be. In (2.221), open can only refer to runways that were open
on the previous day. It cannot refer to currently open runways.

The hypothesis that noun phrases refer to the present or the time of the
verb tense does not apply when a temporal adjective, like current, specifies
explicitly the time of the noun phrase, as in (2.229).

(2.229) Which current students failed in Physics last year?

In Chapter 4, an additional mechanism will be introduced, which allows the
person configuring the nlitdb to force some noun phrases to be treated as
referring always to the time of the verb tense, or always to the present.

. Temporal anaphora

There are several English expressions, like that time, the following day, then,
later that refer implicitly to contextually salient times, in a way that is similar to
how pronouns, possessive determiners, etc. refer to contextually salient world
entities. The terms temporal and nominal anaphora are used to refer to these

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.48 (66)

 Chapter 2

two phenomena; Partee (1984) discusses the parallels between temporal and
nominal anaphora further. For example, the user of an nlitdb may submit
(2.230), followed by (2.231). In (2.231), at that time refers to the time when
John became manager, an instance of temporal anaphora. In a similar manner,
he refers to John, a case of nominal anaphora.

(2.230) When did John become manager?
(2.231) Was he married at that time?

Names of months, days, etc. often have a similar temporal anaphoric nature.
For example, in a context where several questions about the 1996 status of a
company have just been asked, (2.232) most probably refers to the January of
1996, not any other January. In the absence of previous questions, (2.232) most
probably refers to the January of the current year. Kamp and Reyle (1993:613–
634) provide related discussion.

(2.232) Who was the sales manager in January?

Verb tenses also seem to have a temporal anaphoric nature. The term tense
anaphora is often used in this case. For example, the user may ask (2.233). Let
us assume that the response is negative, and that the user then asks (2.234). In
that case, the simple past was of (2.234) does not refer to an arbitrary past time.
It refers to the past time of the previous question, i.e., 1998.

(2.233) Was Mary the personnel manager in 1998?
(2.234) Who was the personnel manager?

The anaphoric nature of verb tenses is clearer in multi-sentence text (Hinrichs
1986; Webber 1988; Kamp & Reyle 1993; Kameyama, Passonneau, & Poesio
1993). In (2.235), for example, the simple past landed refers to a landing that
happened immediately after the permission of the first sentence was given. It
does not refer to an arbitrary past time where BA737 landed on runway 2.
Similar comments apply to taxied. Text of this form will not be considered in
this book.

(2.235) BA737 was given permission to land at 5:00 pm. It landed
on runway 2, and taxied to gate 4.

In dialogues like those of (2.233) and (2.234), a simplistic treatment of tense
anaphora is to store the time of the adverbial of (2.233), and require the simple
past of (2.234) to refer to that time. A more elaborate version of this approach
will be sketched in Chapter 3, but it will not be considered any further. The be-
haviour of noun phrases like the sales manager of Section 2.11 can also be seen

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.49 (67)

Linguistic data and an informal account 

as a case of temporal anaphora. This is the only type of temporal anaphora that
will be supported by the theoretical framework of this book. Expressions like at
that time, the following day, etc. will not be examined, and verb forms referring
to the past will be taken to refer to any past time. For example, (2.234) will be
taken to refer to anybody who was the personnel manager at any past time.

. Phenomena that will not be considered

We will now touch upon some additional time-related linguistic phenomena
that will not be examined further in this book.

Cardinality and duration questions. Questions about the cardinality of a set
or the duration of a situation, as in (2.236) and (2.237), will not be examined.
This simplifies the definition of top in Chapter 3.

(2.236) How many flights have landed today?
(2.237) For how long was tank 2 empty?

Cardinality expressions and plurals. Although duration expressions like five
hours will be considered, expressions specifying cardinalities of sets, like eight
passengers or two airplanes, will be ignored. Expressions of the latter type give
rise to a distinction between distributive and collective readings (Stirling 1985;
Crouch & Pulman 1993). For example, (2.238) has a collective reading where
the eight passengers arrive at the same time, and a distributive one where there
are eight separate arrivals. To simplify top, cardinality expressions of this kind
will not be examined.

(2.238) Eight passengers arrived.

Furthermore, plural noun phrases introduced by some and which, like some
flights and which passengers, will be treated semantically as singular. For exam-
ple, (2.239) and (2.241) will be treated as having the same meanings as (2.240)
and (2.242), respectively.

(2.239) Which flights landed?
(2.240) Which flight landed?
(2.241) Some flights entered sector 2.
(2.242) A flight entered sector 2.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.50 (68)

 Chapter 2

Quantifiers. Expressions introducing universal quantifiers, like every and all,
will not be considered. This leaves only existential quantifiers at the logical
level, and an interrogative version of them, which will be discussed in Chap-
ter 3, avoiding issues related to quantifier scoping. More information about the
task of quantifier scoping will be provided in Chapter 6.

Conjunction, disjunction, and negation. Conjunctions of words or phrases
will not be considered. Among other things, this avoids phenomena related
to sequencing of events (Hinrichs 1986; Hinrichs 1988; Webber 1988; Kamp &
Reyle 1993; ter Meulen 1994; Hwang & Schubert 1994). For example, (2.243)
is understood as saying that the patient died after, and probably as a result of,
being given Qdrug (cf. (2.244)). In contrast, in (2.245) the patient was given
Qdrug while he had high fever.

(2.243) Which patient was given Qdrug and died?
(2.244) ?Which patient died and was given Qdrug?
(2.245) Which patient had high fever and was given Qdrug?

Expressions introducing disjunction or negation, like or, either, not, never, will
also not be considered. This simplifies top and the mapping to database lan-
guage. Not supporting negation also avoids various temporal phenomena re-
lated to negation (Kamp & Reyle 1993:546–555), and observations that nega-
tion causes aspectual shifts (Dowty 1986; Moens 1987).

Relative clauses. Relative clauses require special temporal treatment. For ex-
ample, (2.246) most probably does not refer to a runway that was closed at an
arbitrary past time. It probably refers to a runway that was closed at the time
of the landing. The relation between the time of the relative clause and that of
the main clause can vary. Dowty (1986) provides the example of (2.247), where
the woman may have seen John during, before, or even after the stealing.

(2.246) Which flight landed on a runway that was closed?
(2.247) The woman that stole the book saw John.

Relative clauses can also be used with nouns that refer to the temporal ontology,
like period in (2.248).

(2.248) Who was fired during the period that J. Adams was personnel manager?

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.51 (69)

Linguistic data and an informal account 

Kamp and Reyle (1993:663–664) provide additonal examples of temporal phe-
nomena that involve relative clauses. As a simplification, relative clauses will
not be considered in this book.

Passives. To simplify the hpsg grammar of Chapter 4, this book concentrates
on active voice verb forms. It should be easy to extend the mechanisms of this
book to cover passive forms as well.

. Summary

This book uses an aspectual taxonomy of four classes: states, points, activities,
and culminating activities. The taxonomy classifies verb forms, verb phrases,
clauses, and sentences. Whenever the nlitdb is configured for a new applica-
tion, the base form of each verb is assigned to one of the four aspectual classes.
All the other verb forms normally inherit the aspectual class of the base form.
Verb phrases, clauses, and sentences normally inherit the aspectual classes of
their main verb forms. However, some linguistic mechanisms, like the progres-
sive or some temporal adverbials, may cause the aspectual class of a verb form
to differ from that of its base form, or the aspectual class of a verb phrase,
clause, or sentence to differ from that of its main verb form. The aspectual
taxonomy plays an important role in most time-related linguistic phenomena.

Six verb forms are examined in this book: simple present, simple past,
present continuous, past continuous, present perfect, and past perfect; various
simplifications have been introduced in their meanings. Some special temporal
verbs were also identified; from these, to start, to begin, to stop, and to finish will
be considered. Among temporal nouns, this book considers nouns like year,
month, day, etc., and proper names like Monday, January, and 1/5/1999. Tem-
poral adjectives, are not considered, with the exception of current, which will
be used to demonstrate the anaphoric behaviour of some noun phrases.

Among temporal adverbials, this book focuses on punctual adverbials, like
at 5:00 pm, period adverbials introduced by on, in, before, or after, today and
yesterday, and duration adverbials introduced by for and in. Temporal subordi-
nate clauses are similar to temporal adverbials; this book considers subordinate
clauses introduced by while, before, and after. Temporal anaphora is not con-
sidered in any detail, with the exception of the temporal anaphoric nature of
noun phrases. Table 2.9 summarises in more detail the time-related linguistic
phenomena of this book.

NLP4[v.20020404] Prn:24/06/2002; 11:59 F: NLP602.tex / p.52 (70)

 Chapter 2

Table 2.9 Coverage of time-related linguistic phenomena in this book

verb forms
√

simple present (excluding scheduled meaning)√
simple past√
present continuous (excluding future meaning)√
past continuous (excluding future meaning)√
present perfect (treated as simple past)√
past perfect

× other forms

temporal verbs
√

to start, to begin, to stop, to finish
× other temporal verbs (e.g., to happen, to follow)

temporal nouns
√

year, month, day, etc.
× period, event, time, etc.
× nouns introducing situations (e.g., inspection)
× nouns of temporal order (e.g., predecessor)

temporal adjectives × (only current)

temporal adverbials
√

punctual adverbials (e.g., at 5:00 pm)√
period adverbials (only those introduced by on, in,
before, or after, and today, yesterday)√
for duration adverbials√
in duration adverbials (only with culm. act. verbs)

× frequency adverbials (e.g., twice)
× order adverbials (e.g., for the second time)
× other boundary adverbials (e.g., since 1997)

subordinate clauses
√

while clauses√
before and after clauses

× relative clauses
× other subordinate clauses (e.g., introduced by when)

anaphora
√

noun phrases and temporal reference
× January, August, etc. (taken to refer to any of them)
× tense anaphora
× that time, the following day, etc.

other phenomena × iterative meanings
× cardinality and duration queries (how many/long)
× cardinality expressions (e.g., five flights) and plurals
× conjunctions of words or phrases
× expressions introducing universal quantifiers,

disjunction, negation

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.1 (71)

Chapter 3

The TOP meaning representation language

“Time will tell.”

. Introduction

This chapter defines top, the intermediate meaning representation language
that will be used to represent the semantics of the English questions before
translating them into database language. As already mentioned in Chapter 1,
top employs temporal operators. For example, (3.1) is represented in top as
(3.2). Roughly speaking, the Past operator requires contain(tank2, water) to be
true at some past time ev, and the At operator requires that time to fall within
1/10/1999. The answer to (3.1) is affirmative iff (3.2) evaluates to true.

(3.1) Did tank 2 contain water (some time) on 1/10/1999?
(3.2) At[1/10/1999, Past[ev, contain(tank2, water)]]

An alternative operator-less approach is to introduce time as an extra argu-
ment of each predicate (Section 1.4). Temporal operators, however, lead to
more compact formulae, and make the semantic contribution of each linguistic
mechanism easier to see. In (3.2), for example, the simple past contributes the
Past operator, while the on adverbial contributes the At operator. It is, never-
theless, entirely possible to capture the semantics of temporal linguistic mecha-
nisms using operator-less representations, or to devise additional mappings to
translate from top to operator-less representations (Androutsopoulos 2000);
the latter will be discussed further in Chapter 7.

top is period-based, in the sense that the truth of a top formula is evalu-
ated with respect to a time-period, i.e., a segment of the time-axis, rather than
an individual time-point. A top formula may be true at a time-period without
being true at the subperiods of that period. More precisely, following the Re-
ichenbachian tradition (Reichenbach 1947), top formulae are evaluated with
respect to three times: speech time (st), which is the time when the question
is submitted, event time (et), which is a time when the situation described by

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.2 (72)

 Chapter 3

the formula holds, and localisation time (lt), a temporal window within which
et must be placed. top’s localisation time is different from Reichenbach’s ‘ref-
erence time’ (Section 2.5.5), but similar to the ‘location time’ of Kamp and
Reyle (1993). While st is always a time-point, et and lt are generally periods,
which is why top can be considered period-based, and in that sense similar to
formal languages employed by Dowty (1982), Allen (1984), Lascarides (1988),
Richards et al. (1989), Pratt and Bree (1995), and others. top was influenced by
the representation language of Crouch and Pulman (1993), which was used in
a natural language interface to a planner; see also Pirie et al. (1990). Compar-
isons between the two languages will be made at several points in this chapter,
to demonstrate alternatives.

Although the aspectual classes of linguistic expressions affect how these
expressions are represented in top, it is not always possible to tell the aspectual
class of a linguistic expression by examining the corresponding top formula.
The approach here is different from those of Dowty (1977; 1986), Lacarides
(1988), and Kent (1993), where aspectual class is a property of formulae or
denotations of formulae.

. The syntax of TOP

Let us first define top’s syntax. Informal comments about the semantics of top
will also be given, to make the syntax definition easier to follow. The semantics
of top, however, will be defined formally in later sections.

Terms. Two disjoint sets of strings, CONS and VARS, are assumed. CONS
contains all the top constants, and VARS all the top variables. The suffix ‘v’
distinguishes variables from constants. For example, runwayv, gatev ∈ VARS,
while ba737, 1/5/1999 ∈ CONS. TERMS is the set CONS ∪ VARS; it contains
top’s terms.

Predicate functors. PFUNS is a set containing all the strings that can be used
as predicate functors in top’s atomic formulae; this will be discussed further
below.

Complete partitioning names. CPARTS is a set containing all the strings that
can be used as names of complete partitionings of the time-axis. A complete
partitioning of the time-axis is a set of consecutive non-overlapping periods,
such that the union of all the periods covers the whole time-axis. A formal def-

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.3 (73)

The TOP meaning representation language 

inition will be given in later sections. For example, the word day corresponds
to the complete partitioning that contains the period which covers exactly the
day 13/10/1999, the period which covers exactly 14/10/1999, etc. No two day-
periods overlap, and together all the day-periods cover the whole time-axis.
Similarly, month corresponds to the partitioning that contains the period for
October 1999, the period for November 1999, etc. The suffix ‘c’ is used with
elements of CPARTS; for example, dayc, monthc.

Gappy partitioning names. GPARTS is a set containing all the strings that can
be used as names of gappy partitionings of the time-axis. A gappy partitioning
of the time-axis is a set of non-overlapping periods, such that the union of all
the periods does not cover the whole time-axis. For example, the word Monday
corresponds to the gappy partitioning that contains the period which covers
exactly the Monday 19/3/2001, the period which covers exactly the Monday
26/3/2001, etc. No Monday-period overlaps another Monday-period, and all
the Monday-periods together do not cover the whole time-axis. Similarly, the
English expression 5:00 pm can be taken to denote the gappy partitioning that
contains the period which covers exactly the 5:00 pm minute of 24/10/1999,
the period which covers the 5:00 pm minute of 25/10/1999, etc. The suffix ‘g ’ is
used with elements of GPARTS; for example, mondayg , 5:00pmg .

Partitioning names. PARTS is the set CPARTS ∪ GPARTS.

Atomic formulae. AFORMS contains all the atomic formulae of top. It is the
smallest possible set, such that:

– If π ∈ PFUNS, and τ1, τ2, . . . , τn ∈ TERMS, then π(τ1, τ2, . . . , τn) ∈
AFORMS. π(τ1, τ2, . . . , τn) is called a predicate. τ1, τ2, . . . , τn are the argu-
ments of the predicate.

– If σ ∈ PARTS, β ∈ VARS, and νord ∈ {. . . , –3, –2, –1, 0}, then
Part[σ, β, νord] ∈ AFORMS and Part[σ, β] ∈ AFORMS.

Greek letters are used as meta-variables, i.e., they stand for expressions of
top. Predicates, like be at(ba737, gatev), describe situations in the world.
Part[σ, β, νord] means that β is a period in the partitioning σ. The νord is used
to select a particular period from the partitioning. If νord = 0, then β is the
current period of the partitioning, i.e., the period that contains st. If νord < 0,
then β is the –νord-th period of the partitioning before the current one. When
there is no need to select a particular period from a partitioning, the Part[σ, β]
form is used.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.4 (74)

 Chapter 3

Yes/no formulae. Yes/no formulae represent questions that are to be answered
with a yes or no (e.g., ‘Is BA737 circling?’). YNFORMS is the set of all these
formulae. It is the smallest possible set, such that if π ∈ PFUNS, τ, τ1, . . . , τn ∈
TERMS, φ,φ1,φ2 ∈ YNFORMS, σc ∈ CPARTS, νqty ∈ {1, 2, 3, . . . }, and β ∈
VARS, then all the following hold:

– AFORMS ⊆ YNFORMS
– φ1 ∧ φ2 ∈ YNFORMS
– Pres[φ], Past[β,φ], Perf [β,φ] ∈ YNFORMS
– At[τ,φ], At[φ1,φ2] ∈ YNFORMS
– Before[τ,φ], Before[φ1,φ2], After[τ,φ], After[φ1,φ2] ∈ YNFORMS
– Ntense[β,φ], Ntense[now*,φ] ∈ YNFORMS
– For[σc, νqty,φ], Fills[φ] ∈ YNFORMS
– Begin[φ], End[φ] ∈ YNFORMS
– Culm[π(τ1, . . . , τn)] ∈ YNFORMS

In the expressions above, βmust not occur in φ. This restriction simplifies the
translation to database language of Chapter 5, without imposing any additional
restrictions to the linguistic coverage. No negation and disjunction connectives
are defined, because English expressions introducing these connectives are not
considered (Section 2.13). For the same reason, no universal quantifiers are
defined. All variables can be thought of as existentially quantified; hence, no
explicit existential quantifier is needed. An informal explanation of the opera-
tors above follows; their semantics will be defined formally, using st, et, and lt
in subsequent sections.

Pres[φ] means that φ is true at the present. For example, (3.3) is repre-
sented as (3.4). Past[β,φ] means that φ is true at some past time β. The Perf
operator is used along with the Past operator to express the past perfect. For ex-
ample, (3.5) and (3.7) are represented as (3.6) and (3.8), respectively. Roughly
speaking, ev and e2v act as pointers to the times where the runway was open,
while e1v points to the reference time of the past perfect (Section 2.5.5); the
role of these variables will become clearer in later sections.

(3.3) Runway 2 is open.
(3.4) Pres[open(runway2)]
(3.5) Runway 2 was open.
(3.6) Past[ev, open(runway2)]
(3.7) Runway 2 had been open.
(3.8) Past[e1v, Perf [e2v, open(runway2)]]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.5 (75)

The TOP meaning representation language 

At[τ,φ] means that φ holds some time within a period τ, and At[φ1,φ2] means
that φ2 holds at some time where φ1 holds. For example, (3.9) and (3.11) are
represented as (3.10) and (3.12), respectively.

(3.9) Runway 2 was open (some time) on 1/1/1999.
(3.10) At[1/1/1999, Past[ev, open(runway2)]]
(3.11) Runway 2 was open (some time) while BA737 was circling.
(3.12) At[Past[e1v, circling(ba737)], Past[e2v, open(runway2)]]

Before[τ,φ] means that φ is true at some time before a period τ, and
Before[φ1,φ2] means that φ2 is true at some time before a time where φ1 is
true. After[τ,φ] and After[φ1,φ2] have similar meanings. For example, (3.13)
and (3.15) are represented as (3.14) and (3.16), respectively.

(3.13) Tank 2 was empty (some time) after 1/1/1999.
(3.14) After[1/1/1999, Past[ev, empty(tank2)]]
(3.15) Tank 2 was empty (some time) before the bomb exploded.
(3.16) Before[Past[e1v, explode(bomb)], Past[e2v, empty(tank2)]]

Ntense is used to capture the anaphoric nature of noun phrases (Section 2.11).
Ntense[β,φ] means that φ holds at a time β, and Ntense[now*,φ] means that
φ holds at the present. The reading of (3.17) that refers to the person who was
the president during the visit is represented as (3.18); the reading that refers to
the current president is represented as (3.19).

(3.17) The president was visiting Edinburgh.
(3.18) Ntense[e1v, president(pv)] ∧ Past[e1v, visiting(pv, edinburgh)]
(3.19) Ntense[now*, president(pv)] ∧ Past[e1v, visiting(pv , edinburgh)]

For[σc, νqty,φ] means that φ holds throughout a period that is νqty σc-periods
long. For example, (3.20) is represented as (3.21).

(3.20) Runway 2 was open for two days.
(3.21) For[dayc, 2, Past[ev, open(runway2)]]

The Fills operator can be used to capture durative readings (Section 2.9.2). The
reading of (3.22) whereby the tank was empty throughout 1998 is captured by
(3.23). In contrast, (3.24) means that the tank was empty some time in 1998,
but not necessarily throughout that year.

(3.22) Tank 2 was empty in 1998.
(3.23) At[1998, Past[ev, Fills[empty(tank2)]]]
(3.24) At[1998, Past[ev, empty(tank2)]]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.6 (76)

 Chapter 3

Begin[φ] refers to a time-point where the situation denoted by φ starts, and
End[φ] to a point where it stops. For example, (3.25) and (3.27) can be repre-
sented as (3.26) and (3.28), respectively.

(3.25) BA737 started to land.
(3.26) Past[ev, Begin[landing(ba737)]]
(3.27) Tank 2 stopped being empty.
(3.28) Past[ev, End[empty(tank2)]]

Finally, Culm is used to represent sentences where culminating activity verbs
appear in forms that require the climax to have been reached. The Culm oper-
ator will be discussed further in subsequent sections.

Wh-formulae. Wh-formulae are used to represent questions that contain in-
terrogatives (e.g., ‘Which/Who/When . . . ?’). WHFORMS is the set of all wh-

formulae. WHFORMS
def
= WHFORMS1 ∪ WHFORMS2, where:

– WHFORMS1 is the set of the expressions ?β1 ?β2 . . . ?βn φ, where
β1, β2, . . . , βn ∈ VARS, φ ∈ YNFORMS, and each one of β1, β2, . . . , βn

occurs at least once within φ.
– WHFORMS2 is the set of all the expressions ?mxlβ1 ?β2 ?β3 . . . ?βn φ, where
β1, β2, β3, . . . , βn ∈ VARS, φ ∈ YNFORMS, each one of β2, . . . , βn occurs
at least once within φ, and β1 occurs at least once within φ as the first
argument of a Past, Perf , At, Before, After, or Ntense operator, or as the
second argument of a Part operator.

The ‘?’ is the interrogative quantifier, and ‘?mxl’ is the interrogative-maximal
quantifier. The interrogative quantifier is similar to an explicit existential quan-
tifier, but it has the additional effect of reporting the values of its variables that
satisfy its scope. Intuitively, ?β1 ?β2 . . . ?βn φ means “report all β1, β2, . . . , βn,
such that φ”. For example, (3.29) is represented as (3.30).

(3.29) Which runways are open?
(3.30) ?rv Ntense[now*, runway(rv)] ∧ Pres[open(rv)]

The constraint that each one of β1, . . . , βn must occur at least once within φ
rules out meaningless formulae like ?ov Past[manager(john)], where the ov does
not have any relation to the rest of the formula. This constraint is similar to the
notion of safety in datalog (Ullman 1988), and is needed in the translation
from top to database language; see also van Gelder and Topor (1991).

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.7 (77)

The TOP meaning representation language 

The interrogative-maximal quantifier is similar, except that it reports only
maximal periods. ?mxl is intended to be used only with variables that denote
periods, and this is why in the case of ?mxl the syntax of top requires β1 to
occur at certain positions that guarantee it will denote a period. Intuitively,
?mxlβ1 ?β2 . . . ?βn φmeans “report all the maximal periods β1, and all β2, . . . ,
βn, such that φ”. The interrogative-maximal quantifier is used in ‘When . . . ?’
questions, where we want the answer to contain only the maximal periods dur-
ing which a situation held, not all of these periods. If, for example, gate 2 was
open from 9:00 am to 11:00 am and from 3:00 pm to 5:00 pm, we want the
answer to (3.31) to contain only the two maximal periods 9:00 am to 11:00 am
and 3:00 pm to 5:00 pm, not any of their subperiods, like 9:30 am to 10:30 am.
To achieve this, the question is represented as (3.32).

(3.31) When was gate 2 open?
(3.32) ?mxlev Past[ev, open(gate2)]

Formulae. FORMS, the set of all top formulae, is the union YNFORMS ∪
WHFORMS.

. TOP’s temporal ontology

Before proceeding to the semantics of top, we will examine more closely the
temporal ontology on which top is based.

top assumes that time is discrete, linear, bounded, and consisting of time-
points. PTS is the set of all time-points. More formally, a binary precedence
relation ≺ over PTS × PTS is assumed, and time is taken to have the following
properties:

– If t1, t2, t3 ∈ PTS, t1 ≺ t2, and t2 ≺ t3, then t1 ≺ t3 (transitivity).
– If t ∈ PTS, then t ≺ t does not hold (irreflexivity).
– If t1, t2 ∈ PTS and t1
= t2, then exactly one of the following holds: t1 ≺ t2

or t2 ≺ t1 (linearity).
– There is a tfirst ∈ PTS, such that for all t ∈ PTS, tfirst � t (left boundedness).

Similarly, there is a tlast ∈ PTS, such that for all t ∈ PTS, t � tlast (right
boundedness).

– For every t1, t2 ∈ PTS, with t1
= t2, there is at most a finite number of
t3 ∈ PTS, such that t1 ≺ t3 ≺ t2 (discreteness).

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.8 (78)

 Chapter 3

Hereafter, next(t1) denotes the time-point immediately after t1. More formally,
if t1 ∈ PTS – {tlast}, then next(t1) = t2 iff t2 ∈ PTS, t1 ≺ t2, and for no t3 ∈ PTS
is it true that t1 ≺ t3 ≺ t2. In a similar manner, if t1 ∈ PTS – {tfirst}, then prev(t1)
denotes the time-point immediately before t1. Below, whenever next(t) is used,
it is assumed that t
= tlast . Similarly, when prev(t) is used, t
= tfirst.

A period p is a non-empty subset of PTS with the following property:

– If t1, t2 ∈ p, t3 ∈ PTS, and t1 ≺ t3 ≺ t2, then t3 ∈ p (convexity).

PERIODS is the set of all periods. PERIODS* is the set PERIODS ∪ {∅}, i.e.,
PERIODS* contains also the empty set, which is not a period. A period that
contains only one time-point is called an instantaneous period. INSTANTS is
the set of all instantaneous periods. Note that the term ‘interval’ is often used in
the literature instead of ‘period’. Unfortunately, the database language of Chap-
ter 5 assigns a different meaning to ‘interval’. Hence, this book uses ‘period’
instead of ‘interval’.

Iff p1, p2 ∈ PERIODS and p1 ⊆ p2, then p1 is a subperiod of p2. The notation
p1 � p2 is used in this case; p1 ⊆ p2 is weaker than p1 � p2, because it does not
guarantee that p1, p2 ∈ PERIODS. Iff p1, p2 ∈ PERIODS and p1 ⊂ p2, then p1

is a proper subperiod of p2, written p1 � p2. The definitions of superperiod and
proper superperiod are similar.

If S is a set of periods, then mxlpers(S) is the set of maximal periods of S.
A period of S is maximal iff it is not a proper subperiod of another period
in S. If S ⊆ PTS, minpt(S) and maxpt(S) denote the earliest and latest time-
points in S, respectively. Following standard conventions, [t1, t2] denotes the
set {t ∈ PTS | t1 � t � t2}, and (t1, t2] denotes the set {t ∈ PTS | t1 ≺ t � t2}.
[t1, t2) and (t1, t2) are defined similarly.

. TOP model

We now turn to the semantics of top, defining first top’s models. A top model
is a tuple M = 〈OBJS, fcons, fpfuns, fculms, fgparts, fcparts〉, such that PERIODS ⊆ OBJS,
and fcons, fpfuns, fculms, fgparts, and fcparts are as below.

OBJS is a set containing all the objects in the modelled world that can be
denoted by top terms. In the airport domain, for example, OBJS contains all
the gates and runways of the airport, the inspectors, the flights, etc. The con-
straint PERIODS ⊆ OBJS ensures that all the periods are treated as world
objects; this simplifies the semantics of top.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.9 (79)

The TOP meaning representation language 

fcons is a function CONS �→ OBJS. The notation D �→ R denotes a function
with domain D and range R. fcons specifies which world object each constant
denotes. In the airport domain, fcons would map the constant gate2 to a gate
object, and ba737 to a flight object.

fpfuns is a function that maps each pair 〈π, n〉, where π ∈ PFUNS and
n ∈ {1, 2, 3, . . . }, to another function (OBJS)n �→ pow(PERIODS). pow(S) de-
notes the powerset of S, i.e., the set of all subsets of S. (OBJS)n is the n-ary
cartesian product OBJS × OBJS × · · · × OBJS. That is, for every π ∈ PFUNS
and each n ∈ {1, 2, 3, . . . }, fpfuns(π, n) is a function that maps each n-tuple of
elements of OBJS to a set of periods (an element of pow(PERIODS)). Intu-
itively, if τ1, τ2, . . . , τn are top terms denoting the world objects o1, o2, . . . , on,
then fpfuns(π, n)(o1, o2, . . . , on) is the set of the maximal periods where the
situation represented by π(τ1, τ2, . . . , τn) is true. For example, if the con-
stant ba737 denotes a flight-object o1, gate2 denotes a gate object o2, and
be at(ba737, gate2) represents the situation whereby flight o1 is located at gate
o2, then fpfuns(be at, 2)(o1, o2) will be the set that contains all the maximal peri-
ods where flight o1 is located at gate o2.

For every π ∈ PFUNS, n ∈ {1, 2, 3, . . . }, and 〈o1, . . . , on〉 ∈ (OBJS)n, it must
be the case that:

if p1, p2 ∈ fpfuns(π, n)(o1, . . . , on) and p1 ∪ p2 ∈ PERIODS, then p1 = p2.

This ensures that no two different periods p1, p2 in fpfuns(π, n)(o1, . . . , on) over-
lap or are adjacent, because if they overlap or they are adjacent, then their
union is also a period, and then it must be true that p1 = p2. Intuitively, if p1

and p2 overlap or are adjacent, we want fpfuns(π, n)(o1, . . . , on) to contain their
union p1 ∪ p2 instead of p1 and p2.

fculms is a function that maps each pair 〈π, n〉, where π ∈ PFUNS and
n ∈ {1, 2, 3, . . . }, to another function (OBJS)n �→ {T, F}. T and F are the two
truth values. That is, for every π ∈ PFUNS and n ∈ {1, 2, 3, . . . }, fculms(π, n)
is a function that maps each n-tuple of OBJSn to T or F. fculms is consulted
only for predicates that represent actions or changes that have inherent cli-
maxes. If π(τ1, . . . , τn) represents such an action or change, and τ1, . . . , τn de-
note the world objects o1, . . . , on, then fpfuns(π, n)(o1, . . . , on) is the set of max-
imal periods where the action or change is ongoing. fculms(π, n)(o1, . . . , on)
shows whether or not the climax is reached at the end of the latest maximal pe-
riod. For example, if the constant j adams denotes a person o1, bridge2 denotes
an object o2, and building(j adams, ba737) represents the situation whereby o1

is building o2, then fpfuns(building, 2)(o1, o2) is the set of all maximal periods

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.10 (80)

 Chapter 3

where o1 is building o2. fculms(building, 2)(o1, o2) will be T if the building is com-
pleted at the end-point of the latest maximal period, and F otherwise. The role
of fculms will become clearer in subsequent sections.

fgparts is a function that maps each element of GPARTS to a gappy partition-
ing (Section 3.2). More formally, a gappy partitioning is a subset S of PERIODS,
such that for every p1, p2 ∈ S, p1 ∩ p2 = ∅ and

⋃
p∈S p
= PTS. Similarly, fcparts

is a function that maps each element of CPARTS to a complete partitioning. A
complete partitioning is a subset S of PERIODS, such that for every p1, p2 ∈ S,
p1∩p2 = ∅ and

⋃
p∈S p = PTS. For example, fgparts(mondayg) could be the gappy

partitioning of all Monday-periods, and fcparts(dayc) the complete partitioning
of all day-periods.

. Variable assignment

A variable assignment with respect to (w.r.t.) a top model M is a function
g : VARS �→ OBJS. That is, g assigns a world object to each variable. GM , or
simply G, is the set of all possible variable assignments w.r.t. M, i.e., the set of
all functions VARS �→ OBJS.

If g ∈ G, β ∈ VARS, and o ∈ OBJS, then g
β
o is the variable assign-

ment defined as follows: g
β
o (β) = o, and for every β′ ∈ VARS with β′
= β,

g
β
o (β′) = g(β′).

. Denotation of a TOP expression

As already mentioned, top formulae, and generally top expressions, are eval-
uated with respect to three times: speech time (st), event time (et), and locali-
sation time (lt). More formally, st ∈ PTS, et ∈ PERIODS, and lt ∈ PERIODS*.
Intuitively, st is the time-point where the English question is submitted to the
nlitdb; et is a period, not necessarily maximal, where the situation represented
by the top expression takes place; and lt can be thought of as a temporal win-
dow, within which et must be located. When computing the denotation of a
top expression, lt is initially set to PTS. That is, the temporal window covers
the whole time-axis, and et is allowed to be located anywhere. Various oper-
ators, however, may narrow down lt, imposing constraints on where et can
be placed.

The denotation of a top expression ξ w.r.t. a model M, st, et, lt, and a
variable assignment g is written ‖ξ‖M,st,et,lt,g or simply ‖ξ‖st,et,lt,g . When the de-

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.11 (81)

The TOP meaning representation language 

notation does not depend on st, et, and lt, the notation ‖ξ‖M,g , or simply ‖ξ‖g ,
will be used.

Denotation of terms and atomic formulae w.r.t. M, st, et, lt, g. The denotations
of top expressions w.r.t. M, st, et, lt, and g are defined recursively, starting with
the denotations of terms and atomic formulae, which are defined below.

– If κ ∈ CONS, then ‖κ‖g = fcons(κ).
– If β ∈ VARS, then ‖β‖g = g(β).
– If φ ∈ YNFORMS, then ‖φ‖st,et,lt,g ∈ {T, F}.
The general rule above means that with yes/no formulae, we only need to define
when the denotation is T; in all other cases the denotation is F.

– If φ1,φ2 ∈ YNFORMS, then ‖φ1 ∧ φ2‖st,et,lt,g = T iff ‖φ1‖st,et,lt,g = T and
‖φ2‖st,et,lt,g = T.

– If σ ∈ PARTS, β ∈ VARS, and νord ∈ {. . . , –3, –2, –1, 0}, then
‖Part[σ, β, νord]‖g is T iff all the following hold. Below f = fcparts if σ ∈
CPARTS, and f = fgparts if σ ∈ GPARTS:

– g(β) ∈ f (σ).
– If νord = 0, then st ∈ g(β).
– If νord ≤ –1, then there are exactly –νord – 1 elements in the set: {p ∈

f (σ) | maxpt(g(β)) ≺ minpt(p) and maxpt(p) ≺ st}
That is, if νord = 0, then β must denote the current period of the partitioning.
If νord ≤ –1, βmust denote the –νord-th period of the partitioning that is com-
pletely situated before the speech time. For example, if νord = –4, then β must
denote the 4th period which is completely situated before st; that is, there must
be –νord – 1 = 3 periods in the partitioning that fall completely between the end
of the period of β and st. If fcparts(dayc) is the partitioning of all day-periods,
then ‖Part[dayc, β, 0]‖g is T iff g(β) covers exactly the whole current day; this
captures the meaning of today. Similarly, ‖Part[dayc, β, –1]‖g is T iff g(β) cov-
ers exactly the whole previous day; the meaning of yesterday. The definition of
Part could be extended to allow positive values as its third argument, to express
tomorrow, next January, etc.

– If σ ∈ PARTS and β ∈ VARS, then ‖Part[σ, β]‖g = T iff g(β) ∈ f (σ), where
f as above.

– If π ∈ PFUNS and τ1, . . . , τn ∈ TERMS, then ‖π(τ1, . . . , τn)‖st,et,lt,g is T iff
et � lt and for some pmxl ∈ fpfuns(π, n)(‖τ1‖g , ‖τ2‖g , . . . , ‖τn‖g), et � pmxl.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.12 (82)

 Chapter 3

That is, for the denotation of a predicate to be T, et must fall within lt, and et
must be a subperiod of a maximal period where the situation described by the
predicate holds.

It is easy to prove that the definition above causes all top predicates to
be homogeneous. A top formula is homogeneous iff for every st ∈ PTS, et ∈
PERIODS, lt ∈ PERIODS*, and g ∈ G, the following implication holds:

if et ′ � et and ‖φ‖st,et,lt,g = T, then ‖φ‖st,et′ ,lt,g = T.

Intuitively, if a predicate is true at some et, then it is also true at any subperiod
et ′ of et. Although top predicates are homogeneous, more complex formu-
lae are not always homogeneous. Various versions of homogeneity have been
used by Allen (1984), Lascarides (1988), Richards et al. (1989), Kent (1993),
Pratt and Bree (1995), and others. The term ‘homogeneity’ is also used in
the temporal databases literature, but with a completely different meaning
(Jensen et al. 1998).

Denotation of wh-formula w.r.t. M, st, et, lt, g. The denotation of a wh-
formula w.r.t. M, st, et, lt, and g is defined below, where it is assumed that
β1, . . . , βn ∈ VARS and φ ∈ YNFORMS.

– ‖?β1 . . . ?βn φ‖st,et,lt,g = {〈g(β1), . . . , g(βn)〉 | ‖φ‖st,et,lt,g = T}
That is, if ‖φ‖st,et,lt,g = T, then ‖?β1 . . . ?βn φ‖st,et,lt,g is a one-element set:
it contains one tuple that holds the world-objects assigned to β1, . . . , βn by g.
Otherwise, ‖?β1 . . . ?βn φ‖st,et,lt,g is the empty set.

– ‖?mxlβ1 ?β2 . . . ?βn φ‖st,et,lt,g =
{〈g(β1), g(β2), . . . , g(βn)〉 | ‖φ‖st,et,lt,g = T and
for no et ′ ∈ PERIODS and g ′ ∈ G is it true that
‖φ‖st,et′ ,lt,g′ = T, g(β1) � g ′(β1), g(β2) = g ′(β2), . . . , g(βn) = g ′(βn)}

The denotation ‖?mxlβ1 ?β2 . . . ?βn φ‖st,et,lt,g is either a one-element set, that
contains a tuple holding the world-objects g(β1), g(β2), . . . , g(βn), or the empty
set. The tuple contains the values assigned to β1, β2, . . . , βn by g, if these values
satisfy φ, and there is no other et′ and variable assignment g ′ that assigns the
same values to β2, . . . , βn and a superperiod of g(β1) to β1, while still satisfying
φ. That is, it must not be possible to extend any further the period assigned
to β1 by g, preserving at the same time the values assigned to β2, . . . , βn, and
satisfying φ. Otherwise, the denotation of ?mxlβ1 ?β2 . . . ?βn φ is the empty set.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.13 (83)

The TOP meaning representation language 

The syntax of top (Section 3.2) requires β1 to appear at least once within
φ as the first argument of a Past, Perf , At, Before, After, or Ntense opera-
tor, or as the second argument of a Part operator. The semantics of these
operators require variables occurring at these positions to denote periods.
Hence, variable assignments g that do not assign a period to β1 will never
satisfy φ, and no tuples for these variable assignments will be included in
‖?mxlβ1 ?β2 . . . ?βn φ‖st,et,lt,g .

The denotations w.r.t. M, st, et, lt, and g of other top expressions will be
defined in later sections.

Denotation w.r.t. M, st. We have so far considered the denotations of top ex-
pressions with respect to M, st, et, lt, and g. We will now define the denotations
of top expressions with respect to only M and st. The denotation w.r.t. M and
st is similar to the denotation w.r.t. M, st, et, lt, g, except that there is an im-
plicit existential quantification over all g ∈ G and et ∈ PERIODS, and lt is
set to PTS, i.e., the whole time-axis. The denotation of φ w.r.t. M, st, written
‖φ‖M,st or simply ‖φ‖st , is defined only for top formulae:

– If φ ∈ YNFORMS, then ‖φ‖st =

– T, if for some g ∈ G and et ∈ PERIODS, ‖φ‖st,et,PTS,g = T,
– F, otherwise

– If φ ∈ WHFORMS, then ‖φ‖st =
⋃

g∈G, et∈PERIODS ‖φ‖st,et,PTS,g .

Each question will be mapped to a top formula φ. (If the question is ambigu-
ous, multiple formulae will be generated, one for each reading.) ‖φ‖st specifies
what the nlitdb’s answer should report. When φ ∈ YNFORMS, ‖φ‖st = T,
i.e., the answer should be affirmative, if for some assignment to the variables
of φ and for some event time, φ is satisfied; otherwise ‖φ‖st = F, and the an-
swer should be negative. The localisation time is set to PTS, the whole time-
axis, to reflect the fact that initially there is no restriction on where et may
be located. As already mentioned, however, when computing the denotations
of the subformulae of φ, temporal operators may narrow down lt, placing
restrictions on et.

In the case where φ ∈ WHFORMS, i.e., when φ =?β1 . . . ?βn φ
′ or

φ =?mxlβ1 . . . ?βn φ
′ with φ′ ∈ YNFORMS, ‖φ‖st is the union of all ‖φ‖st,et,PTS,g ,

for every g ∈ G and et ∈ PERIODS. For each g and et, ‖φ‖st,et,PTS,g is ei-
ther an empty set or a one-element set containing a tuple that holds values of
β1, . . . , βn that satisfy φ′; β1 must also be maximal if φ ∈ WHFORMS2. Hence,
‖φ‖st , the union of all ‖φ‖st,et,PTS,g , is the set of all the tuples that hold values of

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.14 (84)

 Chapter 3

β1, . . . , βn that satisfy φ′. The answer should report these tuples to the user, or
be a message like “No answer found” if ‖φ‖st = ∅.

. The Pres operator

The Pres operator is used to express the simple present and present continuous.
For φ ∈ YNFORMS:

– ‖Pres[φ]‖st,et,lt,g = T, iff st ∈ et and ‖φ‖st,et,lt,g = T.

For example, (3.33) is represented as (3.34). Let us assume that the only maxi-
mal periods where BA737 is at gate 2 are pmxl1 and pmxl2 , i.e., (3.35) holds (Sec-
tion 3.4). Let us also assume that (3.33) is submitted at a time-point st1, such
that (3.36) holds (Figure 3.1).

(3.33) Is BA737 at gate 2?
(3.34) Pres[be at(ba737, gate2)]
(3.35) fpfuns(be at, 2)(fcons(ba737), fcons(gate2)) = {pmxl1 , pmxl2}
(3.36) st1 ∈ pmxl2

The answer to (3.33) will be affirmative iff (3.37) is T; and (3.37) is T iff for
some g ∈ G and et ∈ PERIODS, (3.38) holds (Section 3.6).

(3.37) ‖Pres[be at(ba737, gate2)]‖st1

(3.38) ‖Pres[be at(ba737, gate2)]‖st1,et,PTS,g = T

By the definition of Pres, (3.38) holds iff both (3.39) and (3.40) hold.

(3.39) st1 ∈ et
(3.40) ‖be at(ba737, gate2)‖st1,et,PTS,g = T

By the definitions of ‖π(τ1, . . . , τn)‖st,et,lt,g and ‖κ‖g (Section 3.6), (3.40) holds
iff for some pmxl, (3.41)–(3.43) hold.

(3.41) et � PTS

pmxl1 pmxl2

et

st2 st1

Figure 3.1 The semantics of the Pres operator

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.15 (85)

The TOP meaning representation language 

(3.42) pmxl ∈ fpfuns(be at, 2)(fcons(ba737), fcons(gate2))
(3.43) et � pmxl

By (3.35), (3.42) is equivalent to (3.44).

(3.44) pmxl ∈ {pmxl1 , pmxl2}
The answer to (3.33), then, will be affirmative iff for some et ∈ PERIODS and
some pmxl, (3.39), (3.41), (3.43), and (3.44) hold. They all hold for pmxl = pmxl2

and et any subperiod of pmxl2 that contains st1 (Figure 3.1). Hence, the answer
to (3.33) will be affirmative, as one would expect. In contrast, if the question
is submitted at an st2 that falls outside pmxl1 and pmxl2 (Figure 3.1), then the
answer will be negative, because in that case there is no subperiod et of pmxl1 or
pmxl2 that contains st2.

The present continuous is expressed similarly. For example, the reading
of (3.45) where Airserve is actually servicing BA737 at the present moment
is expressed as (3.46). Unlike proposals by Dowty (1977), Lascarides (1988),
Crouch and Pulman (1993), and others, progressive forms do not introduce
any progressive operator in top expressions. This will be discussed further
when defining the semantics of the Culm operator.

(3.45) Airserve is (actually) servicing BA737.
(3.46) Pres[servicing(airserve, ba737)]

The habitual (3.47) is represented using a different predicate functor from that
of (3.46), as in (3.48). (3.45) is taken to involve the non-habitual homonym of
to service, while (3.47) is taken to involve the habitual one (Section 2.3). As will
be explained in Chapter 4, the two homonyms introduce different predicate
functors.

(3.47) Airserve (habitually) services BA737.
(3.48) Pres[hab server of (airserve, ba737)]

top’s Pres operator is similar to that of Pirie et al. (1990). The main difference is
that the Pres operator of Pirie et al. does not require st to fall within et. Instead,
it narrows lt to start at or after st. This, in combination with the requirement
et � lt, requires et to start at or after st. Using this version of Pres in (3.34)
causes the answer to be affirmative if (3.33) is submitted at st2 (Figure 3.1),
i.e., at a point where BA737 is not at gate 2, because there is an et at which
BA737 is at gate 2 (e.g., the et of Figure 3.1), and this et starts after st2. This
version of Pres was adopted by Pirie et al. to cope with sentences like ‘Who in-

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.16 (86)

 Chapter 3

spects BA737 tomorrow?’, where the simple present refers to a future inspection
(Section 2.5.1), and et must be allowed to start after st.

To restrict the semantics of their Pres operator when it is over-permissive,
Pirie et al. employ a post-processing mechanism, which is invoked after the
English sentence is translated into meaning representation language. If the Pres
is introduced by a state verb, excluding progressive states, and the verb is not
modified by a temporal adverbial, then et is set to {st}. For example, in J. Adams
is at site 2 where the verb is a lexical state, the mechanism causes et to be set
to {st}, which correctly requires J. Adams to be at site 2 at st. In J. Adams is at
site 2 tomorrow, where the state verb is modified by a temporal adverbial, the
post-processing has no effect, and et is allowed to start at or after st. In J. Adams
is inspecting site 2, where the verb is a progressive state, the post-processing has
again no effect, and et can start at or after st. The rationale in this case is that et
cannot be set to {st}, because there is a reading where the present continuous
refers to a future inspection (Section 2.5.3). For the purposes of this book,
where future readings are ignored, top’s Pres operator is adequate. If, however,
future readings were to be supported, a more permissive Pres operator, like that
of Pirie et al., might have to be adopted.

. The Past operator

The Past operator is used when expressing the simple past, the past continuous,
the past perfect, and the present perfect. top’s Past operator is essentially the
same as that of Pirie et al. (1990). For φ ∈ YNFORMS and β ∈ VARS:

– ‖Past[β,φ]‖st,et,lt,g = T, iff g(β) = et and ‖φ‖st,et,lt∩[tfirst ,st),g = T.

The Past operator narrows the localisation time, forcing it to end before st.
When computing the denotation of φ, et will be required to be a subperiod of
the localisation time. Hence, et will be required to end before st. β is used as
a pointer to et: its value is required to be et. β is useful in formulae that con-
tain Ntense operators, to be discussed in subsequent sections. It is also useful in
time-asking questions, where et has to be reported. For example, (3.49) is rep-
resented as (3.50). The latter reports the maximal ets that end before st, such
that gate 2 is open throughout et.

(3.49) When was gate 2 open?
(3.50) ?mxlev Past[ev, open(gate2)]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.17 (87)

The TOP meaning representation language 

. Progressives, non-progressives and the Culm operator

We now examine in more detail how top represents the simple past and the
past continuous. We start from verbs whose base forms are culminating ac-
tivities, like to inspect in the airport domain. The past continuous (3.51) is
represented as (3.52).

(3.51) Was J. Adams inspecting BA737?
(3.52) Past[ev, inspecting(ja, ba737)]

Let us assume that the inspection of BA737 by J. Adams started at the beginning
of pmxl1 (Figure 3.2), that it stopped temporarily at the end of pmxl1 , that it was
resumed at the beginning of pmxl2 , and that it was completed at the end of pmxl2 .
Let us also assume that there is no other time where J. Adams is inspecting
BA737. Then, (3.53) and (3.54) hold.

(3.53) fpfuns(inspecting , 2)(fcons(ja), fcons(ba737)) = {pmxl1 , pmxl2}
(3.54) fculms(inspecting , 2)(fcons(ja), fcons(ba737)) = T

From the top definitions so far, it follows that (3.55) is T iff there is an et that
is a subperiod of pmxl1 or pmxl2 and that ends before st.

(3.55) ‖Past[ev, inspecting(ja, ba737)]‖st

If (3.51) is submitted at the st1 or st2 of Figure 3.2, then (3.55) is T, because in
both cases there is an et, for example the et1 of Figure 3.2, that ends before st1

and st2, and that is a subperiod of pmxl1 . In contrast, if the question is submitted
at st3, (3.55) is F, because in this case there is no subperiod of pmxl1 or pmxl2 that
ends before st3. This is correct: at st1 or st2 the answer to (3.51) is affirmative,
because J. Adams has already spent some time inspecting BA737; in contrast,
at st3 J. Adams has not yet spent any time inspecting BA737, and the answer
is negative.

Let us now consider the simple past (3.56). We want the answer to be affir-
mative if (3.56) is submitted at st1 or any other time-point after the end of pmxl2 ,

pmxl1 pmxl2

et2

et1 st2st3 st1

inspecting inspecting
inspection completed

Figure 3.2 The semantics of the Past operator

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.18 (88)

 Chapter 3

but not if it is submitted at st2 or any other time-point before the end of pmxl2 ,
because at st2 J. Adams has not yet completed the inspection. (3.56) cannot be
represented as (3.52), because this would cause the answer to be affirmative if
the question is submitted at st2. Instead, (3.56) is represented as (3.57). The
same predicate inspecting(ja, ba737) of (3.52) is used, but an additional Culm
operator is inserted.

(3.56) Did J. Adams inspect BA737?
(3.57) Past[ev, Culm[inspecting(ja, ba737)]]

Intuitively, the Culm operator requires the event time to be the et2 of Figure 3.2,
i.e., to cover the whole time from the point where the inspection starts to the
point where the inspection is completed. If the inspection is never completed,
the Culm operator causes the denotation of (3.57) to be F. Combined with the
Past operator, the Culm operator causes the answer to be affirmative if (3.56)
is submitted at st1, because et2 ends before st1, and negative if the question is
submitted at st2, because et2 does not end before st2. More formally, for π ∈
PFUNS and τ1, . . . , τn ∈ TERMS:

– ‖Culm[π(τ1, . . . , τn)]‖st,et,lt,g = T, iff
et � lt, fculms(π, n)(‖τ1‖g , . . . , ‖τn‖g) = T, S
= ∅, and
et = [minpt(S), maxpt(S)], where S =

⋃
p∈fpfuns(π,n)(‖τ1‖g ,...,‖τn‖g) p.

The fculms(π)(‖τ1‖g , . . . , ‖τn‖g) = T means that the change or action of
π(τ1, . . . , τn) must reach its climax at the latest time-point where it is ongo-
ing. The et = [minpt(S), maxpt(S)] requires et to start at the first time-point
where the change or action is ongoing, and to end at the latest point.

Let us now check formally that the denotation (3.58) of (3.57) is in order.
(3.58) is T iff for some g ∈ G and et ∈ PERIODS, (3.59) holds.

(3.58) ‖Past[ev, Culm[inspecting(ja, ba737)]]‖st

(3.59) ‖Past[ev, Culm[inspecting(ja, ba737)]]‖st,et,PTS,g = T

By the definition of Past, (3.59) holds iff (3.60) and (3.61) hold.

(3.60) g(ev) = et
(3.61) ‖Culm[inspecting(ja, ba737)]‖st,et,[tfirst ,st),g = T

By the definition of Culm, (3.61) holds iff (3.62)–(3.66) hold.

(3.62) et � [tfirst, st)
(3.63) fculms(inspecting , 2)(fcons(ja), fcons(ba737)) = T
(3.64) S
= ∅

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.19 (89)

The TOP meaning representation language 

(3.65) et = [minpt(S), maxpt(S)]
(3.66) S =

⋃
p∈fpfuns(inspecting,2)(fcons(ja),fcons(ba737)) p

By (3.53), and assuming that maxpt(pmxl1) ≺ minpt(pmxl2) as in Figure 3.2,
(3.64)–(3.66) are equivalent to (3.67)–(3.68). (3.67) holds, because the union
of two periods is never the empty set.

(3.67) pmxl1 ∪ pmxl2
= ∅
(3.68) et = [minpt(pmxl1), maxpt(pmxl2)]

(3.63) is the same as (3.54), which was assumed to hold. Hence, (3.58) is T iff
for some g ∈ G and et ∈ PTS, (3.60), (3.62), and (3.68) hold.

Let et2 = [minpt(pmxl1), maxpt(pmxl2)], as in Figure 3.2, and let us assume
that (3.56) is submitted at an st that follows the end of et2; for example, st1 in
Figure 3.2. For et = et2, (3.62) and (3.68) are satisfied. (3.60) is also satisfied
by choosing g = g1, where g1 as below. Hence, the answer to (3.56) will be
affirmative, as required.

g1(β) =

{
et2 if β = ev

o otherwise, where o is an arbitrary element of OBJS

In contrast, if (3.56) is submitted before the end of et2, for example at st2 or
st3 in Figure 3.2, then the answer will be negative, because there is no et that
satisfies both (3.62) and (3.68).

In the case of verbs whose base forms are processes, states, or points, the
simple past does not introduce a Culm operator. In this case, when both the
simple past and the past continuous are possible, they are represented using
the same top formula. For example, in the airport domain where to circle is a
process, both (3.69) and (3.70) are represented as (3.71).

(3.69) Was BA737 circling?
(3.70) Did BA737 circle?
(3.71) Past[ev, circling(ba737)]

The top definitions above imply that the denotation of (3.71) w.r.t. st is T,
i.e., the answer to (3.69) and (3.70) is affirmative, iff there is an et which is a
subperiod of a maximal period where BA737 was circling, and et ends before
st. That is, the answer is affirmative iff BA737 was circling at some time before
st. There is no requirement for the climax to have been reached.

The reader will have noticed that in the case of verbs whose base forms are
culminating activities, the non-progressive form, in this case the simple past,

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.20 (90)

 Chapter 3

is represented by adding a Culm operator to the top expression that represents
the corresponding progressive form, here the past continuous. For example,
assuming that to build is a culminating activity, (3.72) is represented as (3.73),
and (3.74) as (3.75).

(3.72) Housecorp was building bridge 2.
(3.73) Past[ev, building(housecorp, bridge2)]
(3.74) Housecorp built bridge 2.
(3.75) Past[ev, Culm[building(housecorp, bridge2)]]

A similar approach is adopted by Parsons (1989). In contrast, Dotwy (1977),
Lascarides (1988), Pirie et al. (1990), Kamp and Reyle (1993), and others rep-
resent progressive forms by adding a ‘progressive’ operator to the expressions
that represent the non-progressive forms. For example, ignoring some details,
Pirie et al. represent (3.72) and (3.74) as (3.76) and (3.77), respectively.

(3.76) Past[ev, Prog[build(housecorp, bridge2)]]
(3.77) Past[ev, build(housecorp, bridge2)]

In (3.77), the semantics that Pirie et al. assign to build(housecorp, bridge2) re-
quire et to cover the whole building of the bridge, from its beginning to the
point where the building is complete. (In contrast, the semantics of top require
et to be simply a period throughout which Housecorp was building bridge 2.)
The Past operator of (3.77) requires et to end before st. Hence, the answer to
(3.74) is affirmative iff the building was completed before st.

In (3.76), the semantics that Pirie et al. assign to Prog require et to be a
subperiod of another period et′ that covers the entire building, from start to
completion, as in Figure 3.3. The Past operator of (3.76) requires et to end
before st. If, for example, (3.72) is submitted at an st that falls between the
end of et and the end of et ′ (Figure 3.3), the answer will be affirmative. This is
correct, because at that st Housecorp has already been building the bridge for
some time, although the bridge is not yet complete.

et

et�

st

building complete

building started

Figure 3.3 A flawed Prog operator

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.21 (91)

The TOP meaning representation language 

The Prog of Pirie et al., however, has a flaw (Crouch & Pulman 1993): (3.76)
implies that there is a period et′, such that the building is completed at the end
of et ′; i.e., according to (3.76) the building was or will be necessarily completed
at some time-point. This does not capture correctly the semantics of (3.72),
which carries no implication that the building was or will ever be completed.
top’s representation of (3.72), i.e., (3.73), does not suffer from this problem,
because it does not assume that the building is ever completed.

To overcome similar problems with Prog operators, ‘branching’ models of
time or ‘possible worlds’ have been employed (Dowty 1977; McDermott 1982;
Mays 1986; Kent 1993); see also Lascarides (1988) for criticism of possible-
worlds approaches. Branching time and possible worlds, however, seem un-
necessarily complex for the purposes of this book.

. The At, Before and After operators

The At, Before, and After operators are used to express punctual adverbials, pe-
riod adverbials, and subordinate clauses introduced by while, before, and after
(Sections 2.9 and 2.10). For φ,φ1,φ2 ∈ YNFORMS and τ ∈ TERMS:

– ‖At[τ,φ]‖st,et,lt,g = T, iff ‖τ‖g ∈ PERIODS and ‖φ‖st,et,lt∩‖τ‖g ,g = T.
– ‖At[φ1,φ2]‖st,et,lt,g = T, iff for some et ′

et ′ ∈ mxlpers({e ∈ PERIODS | ‖φ1‖st,e,PTS,g = T}) and
‖φ2‖st,et,lt∩et′ ,g = T.

In the first form of the At operator, τ must denote a period. The localisation
time is narrowed to the intersection of the original lt with the period of τ. In
the second form of the At operator, the localisation time of φ2 is narrowed to
the intersection of the original lt with a maximal event time period et ′ where
φ1 holds.

For example, (3.78) is represented as (3.79). In (3.79), lt initially covers
the whole time-axis. Assuming that the constant 25/9/1999 denotes the obvi-
ous period, the At operator causes lt to become the period that covers exactly
25/9/1999. The Past operator then forces lt to end before st. If 25/9/1999 is
entirely in the past, the Past operator has no effect. The answer to (3.78) is af-
firmative iff it is possible to find an et that is a subperiod of the resulting lt,
such that tank 2 was empty during et.

(3.78) Was tank 2 empty (some time) on 25/9/1999?
(3.79) At[25/9/1999, Past[ev, empty(tank2)]]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.22 (92)

 Chapter 3

If (3.78) is submitted before 25/9/1999, the nlitdb’s answer will be negative,
because the At and Past operators cause lt to become the empty set, and hence
it is impossible to find a subperiod et of lt where tank 2 is empty. This is not
entirely satisfactory. (3.78) is unacceptable, if uttered before 25/9/95, and the
system should warn the user about this. The unacceptability of (3.78) in this
case seems related to the unacceptability of (3.80), which would be represented
as (3.81). (The definition of Part would have to be extended to allow positive
values of its third argument.)

(3.80) *Was tank 2 empty tomorrow?
(3.81) Part[dayc, tomv, 1] ∧ At[tomv, Past[ev, empty(tank2)]]

In both cases, the combination of the simple past and the adverbial causes lt to
become the empty set. In (3.81), for example, tomv denotes the period that cov-
ers exactly the day after st. The At and Past operators set lt to the intersection
of that period with [tfirst , st). The two periods do not overlap, i.e., lt = ∅; hence,
it is impossible to find a subperiod et of lt. This causes the answer to be always
negative, regardless of what happens in the world, i.e., regardless of when tank
2 is empty. It may be the case that the questions sound unacceptable, because
people, using a concept similar to top’s lt, realise that the answers can never
be affirmative. This suggests that the nlitdb should generate a cooperative re-
sponse when lt = ∅, explaining that the question is problematic. This would be
similar to the ‘overlap rule’ of Harper (1986) and the ‘non-triviality constraint’
of Kamp and Reyle (1993:653). As this book does not consider cooperative
responses (Section 1.2), mechanisms of this type will not be explored further.

Moving to further examples, (3.82) and (3.84) are represented as (3.83)
and (3.85), respectively. Unlike the on 25/9/1999 of (3.78), which is represented
using a constant (25/9/1999), the on Monday of (3.82) is represented using a
variable (monv) that ranges over the periods of the partitioning of Monday-
periods. Similarly, the at 5:00 pm of (3.84) is represented using a variable (fvv)
that ranges over the 5:00 pm minute-periods.

(3.82) Was tank 2 empty on Monday?
(3.83) Part[mondayg , monv] ∧ At[monv, Past[ev, empty(tank2)]]
(3.84) Was tank 2 empty on Monday at 5:00 pm?
(3.85) Part[mondayg , monv] ∧ Part[5:00pmg , fvv] ∧

At[monv, At[fvv, Past[ev, empty(tank2)]]]

(3.83) requires tank 2 to have been empty at some past et that falls within some
Monday. No attempt is made to determine exactly which Monday the user has
in mind (Section 2.12). Similarly, (3.85) requires tank 2 to have been empty at

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.23 (93)

The TOP meaning representation language 

some past et that falls within the intersection of some 5:00 pm minute-period
with some Monday-period.

Assuming that to inspect is a culminating activity, as in the airport domain,
the reading of (3.86) that requires the inspection to have both started and been
completed within the previous day (Section 2.9.2) is represented as (3.87). The
Culm requires et to cover exactly the whole inspection, from its beginning to
its completion. The Past requires et to end before st, and the At requires et to
fall within the day before st.

(3.86) Did J. Adams inspect BA737 yesterday?
(3.87) Part[dayc, yv, –1] ∧ At[yv, Past[ev, Culm[inspecting(ja, ba737)]]]

In contrast, (3.88) is represented as (3.89). In this case, et must be simply a
subperiod of a maximal period where J. Adams was inspecting BA737, and it
must be located within the previous day.

(3.88) Was J. Adams inspecting BA737 yesterday?
(3.89) Part[dayc, yv, –1] ∧ At[yv, Past[ev, inspecting(ja, ba737)]]

Finally, (3.90) is represented as (3.91), which requires BA737 to have been cir-
cling at some past period e2v, that falls within some past maximal period e1v

where gate 2 was open.

(3.90) Did BA737 circle while gate 2 was open?
(3.91) At[Past[e1v, open(gate2)], Past[e2v, circling(ba737)]]

The Before and After operators are similar. They are used to express adver-
bials and subordinate clauses introduced by before and after. For φ,φ1,φ2 ∈
YNFORMS and τ ∈ TERMS:

– ‖Before[τ,φ]‖st,et,lt,g = T, iff ‖τ‖g ∈ PERIODS and
‖φ‖st,et,lt∩[tfirst ,minpt(‖τ‖g)),g = T.

– ‖Before[φ1,φ2]‖st,et,lt,g = T, iff for some et ′

et ′ ∈ mxlpers({e ∈ PERIODS | ‖φ1‖st,e,PTS,g = T}) and
‖φ2‖st,et,lt∩[tfirst ,minpt(et′)),g = T.

– ‖After[τ,φ]‖st,et,lt,g = T, iff ‖τ‖g ∈ PERIODS and
‖φ‖st,et,lt∩(maxpt(‖τ‖g),tlast],g = T.

– ‖After[φ1,φ2]‖st,et,lt,g = T, iff for some et ′

et ′ ∈ mxlpers({e ∈ PERIODS | ‖φ1‖st,e,PTS,g = T}) and
‖φ2‖st,et,lt∩(maxpt(et′),tlast],g = T.

In the first form of the Before operator, τmust denote a period, and the locali-
sation time is required to end before the beginning of τ’s period. In the second

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.24 (94)

 Chapter 3

form of the Before operator, the localisation time of φ2 is required to end be-
fore the beginning of a maximal event time period et ′ where φ1 holds. The After
operator is similar.

For example, (3.92) is expressed as (3.93). The reading of (3.94) that re-
quires BA737 to have departed after the end of a maximal period where the
emergency system was in operation is expressed as (3.95). It is assumed here
that to depart is a point, as in the airport domain.

(3.92) Was tank 2 empty before 25/9/1999?
(3.93) Before[25/9/1999, Past[ev, empty(tank2)]]
(3.94) BA737 departed after the emergency system was in operation.
(3.95) After[Past[e1v, in oper(emerg sys)], Past[e2v, depart(ba737)]]

(3.94) also has a reading where BA737 must have departed after the emergency
system started to be in operation (Section 2.10.2). To express this reading,
an additional Begin operator is needed. We will return to this reading when
defining the semantics of the Begin operator.

top’s At, Before, and After operators are similar to those of Pirie et al.
(1990). The operators of Pirie et al., however, do not narrow lt as in top. In-
stead, they place directly restrictions on et. For example, ignoring some details,
the After[φ1,φ2] operator of Pirie et al. requires φ2 to hold at an event time et2

that follows an et1 where φ1 holds; both et1 and et2 must fall within lt. Instead,
top’s After[φ1,φ2] requires et1 to be a maximal period where φ1 holds, not
necessarily within the original lt, and evaluates φ2 with respect to a narrowed
lt, which is the intersection of the original lt with et1. In most cases, both ap-
proaches lead to similar results. However, top’s approach, i.e., narrowing lt,
is advantageous in sentences like (3.96) when expressing the durative reading,
whereby the tank was empty throughout 26/9/1999 (Section 2.9.2).

(3.96) Tank 2 was empty on 26/9/1999.

In these cases et must cover all the available time, i.e., all the time where the
tense and the adverbial allow et to be placed. top’s lt captures this notion of
available time. Hence, in top the durative reading can be expressed easily using
an additional Fills operator that forces et to cover the whole lt; this will be
discussed further in Section 3.11 below. This method cannot be used in the
language of Pirie et al. Their Past operator narrows lt to the time-axis up to st,
but their At operator does not narrow lt any further. Instead, it imposes a direct
restriction on et. Hence, lt is left to be the time-axis up to st, and the durative
reading cannot be captured by requiring et to be equal to lt.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.25 (95)

The TOP meaning representation language 

. The Fills operator

Let us now define the Fills operator, that allows the durative reading of (3.96)
to be captured. For φ ∈ YNFORMS:

– ‖Fills[φ]‖st,et,lt,g = T, iff et = lt and ‖φ‖st,et,lt,g = T.

The Fills operator requires et to cover the entire lt, i.e., all the time where et
is allowed to be placed. The durative reading of (3.96) can now be expressed
as (3.97). In contrast, (3.98) captures the inclusive reading; the tank must have
been empty simply at some part of 26/9/1999.

(3.97) At[26/9/1999, Past[ev, Fills[empty(tank2)]]]
(3.98) At[26/9/1999, Past[ev, empty(tank2)]]

Similarly, the reading of (3.99) whereby BA737 was at gate 2 throughout the
entire inspection is captured by (3.100). In (3.101), the durative reading is that
tank 2 was empty throughout the previous August; this is captured by (3.102).

(3.99) BA737 was at gate 2 while J. Adams was inspecting UK160.
(3.100) At[Past[e1v, inspecting(ja, uk160)],

Past[e2v, Fills[be at(ba737, gate2)]]]
(3.101) Tank 2 was empty in August last summer.
(3.102) Part[augustg , augv] ∧ Part[summerg , sumv, –1] ∧

At[augv, At[sumv, Past[ev, Fills[empty(tank2)]]]]

When both the durative and the inclusive readings are possible, an nlitdb
could paraphrase both and ask the user to select one of them, or it could pro-
vide answers to both readings, indicating which answer corresponds to which
reading. As discussed in Section 2.9.2, however, determining exactly when the
durative readings are possible is a difficult task. For simplicity, only inclusive
readings will be considered in the rest of this book.

. The Begin and End operators

The Begin and End operators are used to refer to the time-points where a
situation starts or ends. For φ ∈ YNFORMS:

– ‖Begin[φ]‖st,et,lt,g = T, iff
et ′ ∈ mxlpers({e ∈ PERIODS | ‖φ‖st,e,PTS,g = T}),
et = {minpt(et ′)}, and et � lt.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.26 (96)

 Chapter 3

– ‖End[φ]‖st,et,lt,g = T, iff
et ′ ∈ mxlpers({e ∈ PERIODS | ‖φ‖st,e,PTS,g = T}),
et = {maxpt(et ′)}, and et � lt.

Begin[φ] is true only at instantaneous event times et that are beginnings of
maximal event times et ′ where φ holds. The End operator is similar.

The Begin and End operators can express to start, to stop, to begin, and to
finish (Section 2.6). For example, (3.103) is expressed as (3.104).

(3.103) Did T. Smith start to inspect BA737 before J. Adams
finished inspecting UK160?

(3.104) Before[Past[e1v, End[Culm[inspecting(ja, uk160)]]],
Past[e2v, Begin[inspecting(ts, ba737)]]]

Intuitively, Culm[inspecting(ja, uk160)] refers to an event-time period that cov-
ers exactly an entire inspection of UK160 by J. Adams, from start to comple-
tion. End[Culm[inspecting(ja, uk160)]] refers to the completion point of the
inspection. Begin[inspecting(ts, ba737)] refers to the beginning of an inspec-
tion of BA737 by T. Smith. (3.104) requires the beginning of T. Smith’s inspec-
tion to precede the completion point of J. Adams’ inspection, and both points
to fall in the past.

The reading of (3.94) (Section 3.10) that requires BA737 to have departed
after the emergency system started to be in operation can now be expressed
as (3.105).

(3.105) After[Past[e1v, Begin[in operation(emerg sys)]],
Past[e2v, depart(ba737)]]

. The Ntense operator

The framework of this book allows noun phrases to refer either to the present
or to the time of the verb tense (Section 2.11). In (3.106), for example, the
sales manager can refer either to the current sales manager or to the 1991 sales
manager. The two readings are represented using the Ntense operator, as in
(3.107) and (3.108), respectively.

(3.106) What was the salary of the sales manager in 1991?
(3.107) ?slrv Ntense[now*, manager of (mgrv, sales)] ∧

At[1991, Past[ev, salary of (mgrv, slrv)]]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.27 (97)

The TOP meaning representation language 

(3.108) ?slrv Ntense[ev, manager of (mgrv, sales)] ∧
At[1991, Past[ev, salary of (mgrv, slrv)]]

Intuitively, (3.107) reports any slrv, such that slrv was the salary of mgrv at some
past time ev that falls within 1991, and mgrv is the current manager of the sales
department. In contrast, in (3.108) mgrv must be the manager of the sales de-
partment at ev. Notice that in (3.108) the first argument of the Ntense is the
same as the first argument of the Past, which is a pointer to the past event time
where salary of (mgrv, slrv) is true (Section 3.8).

top’s Ntense operator is borrowed from Crouch and Pulman (1993). For
φ ∈ YNFORMS and β ∈ VARS :

– ‖Ntense[β,φ]‖st,et,lt,g = T, iff for some et ′ ∈ PERIODS, it is true that g(β) =
et ′ and ‖φ‖st,et′ ,PTS,g = T.

– ‖Ntense[now*,φ]‖st,et,lt,g = T, iff ‖φ‖st,{st},PTS,g = T.

Ntense evaluates φ with respect to a new event time et ′, which may be different
from the original event time et that is used to evaluate the part of the formula
outside the Ntense. Within the Ntense, the localisation time is reset to PTS, i.e.,
the whole time-axis, freeing et ′ from restrictions imposed on the original et. If
the first argument of Ntense is now*, the new event time is the instantaneous
period that contains only st, i.e., the object to which the noun phrase refers
must have at st the property described by φ. If the first argument of Ntense is
a variable β, the new event time et ′ can generally be any period, and β denotes
et ′. In (3.108), however, β is the same as the first argument of the Past opera-
tor, which denotes the original et that the Past operator requires to be placed
before st. This means that manager of (mgrv, sales) must hold at the same event
time where salary of (mgrv, slrv) holds, i.e., the person mgrv must be the sales
manager at the same time where the salary of mgrv is slrv.

If the first argument of the Ntense in (3.108) and the first argument of
the Past were different variables, the answer would contain any 1991 salary of
anybody who was, is, or will be the sales manager at any time. Using differ-
ent variables in the two arguments would be useful in (3.109), where the pre-
ferred reading is that Prime Minister refers to the Prime Ministers of all times,
a reading captured by (3.110).

(3.109) Which Prime Ministers were born in Scotland?
(3.110) ?pmv Ntense[e1v, pminister(pmv)] ∧ Past[e2v, birth in(pmv, scotland)]

The framework of this book, however, does not currently generate (3.110).
(3.109) receives only two formulae, one for current Prime Ministers, and one

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.28 (98)

 Chapter 3

for persons that were Prime Ministers at the time they were born. The latter
reading is unlikely in this case.

Questions like (3.111) and (3.113), where temporal adjectives specify ex-
plicitly the times of the noun phrases, can be represented as (3.112) and
(3.114), respectively. In the rest of this book, however, we will not consider
temporal adjectives other than current (Section 2.8).

(3.111) What was the salary of the current sales manager in 1991?
(3.112) ?slrv Ntense[now*, manager of (mgrv, sales)] ∧

At[1991, Past[ev, salary of (mgrv, slrv)]]
(3.113) What was the salary of the 1988 sales manager in 1991?
(3.114) ?slrv Ntense[e1v, At[1988, manager of (mgrv, sales)]] ∧

At[1991, Past[e2v, salary of (mgrv, slrv)]]

. The For operator

The For operator will be used to express duration adverbials introduced by for
and in (Sections 2.9.3 and 2.9.4). For σc ∈ CPARTS, νqty ∈ {1, 2, 3, . . . }, and
φ ∈ YNFORMS:

– ‖For[σc, νqty,φ]‖st,et,lt,g = T, iff ‖φ‖st,et,lt,g = T and
for some p1, p2, . . . , pνqty ∈ fcparts(σc),
minpt(p1) = minpt(et), next(maxpt(p1)) = minpt(p2),
next(maxpt(p2)) = minpt(p3), . . . ,
next(maxpt(pνqty –1)) = minpt(pνqty), and maxpt(pνqty) = maxpt(et).

For[σc, νqty,φ] requires φ to be true at an event time period that is νqty σc-
periods long. For example, assuming that monthc denotes the partitioning of
month-periods, i.e., the period that covers exactly the August of 1995, the
period for September of 1995, etc., (3.115) can be expressed as (3.116).

(3.115) Was tank 2 empty for three months?
(3.116) For[monthc, 3, Past[ev, empty(tank2)]]

(3.116) requires an event time et to exist, such that et covers exactly three con-
secutive months, and tank 2 was empty throughout et. As noted in Section
2.9.3, for adverbials are sometimes used to specify the duration of a maxi-
mal period where a situation holds, or to refer to the total duration of possi-
bly non-overlapping periods where some situation holds. These readings are

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.29 (99)

The TOP meaning representation language 

not considered in this book, and hence we will not define top mechanisms to
capture them.

Expressions like one week, three months, two years, two hours, etc., are often
used to specify durations of seven days, 3 × 30 days, 2 × 365 days, 2 × 60
minutes, etc., respectively. (3.116) expresses (3.115) if three months refers to
calendar months; for example, from the beginning of a June to the end of the
following August. If three months means 3 × 30 days, (3.117) has to be used
instead. It is assumed here that dayc denotes the partitioning of day-periods,
i.e., the period that covers exactly 26/9/1999, the period for 27/9/1999, etc.

(3.117) For[dayc, 90, Past[ev, empty(tank2)]]

Assuming that to inspect is a culminating activity, as in the airport domain,
(3.119) represents the reading of (3.118) where 42 minutes is the duration from
the beginning of the inspection to the inspection’s completion (Section 2.9.4).

(3.118) J. Adams inspected BA737 in 42 minutes.
(3.119) For[minutec, 42, Past[ev, Culm[inspecting(ja, ba737)]]]

Unlike (3.118), (3.120) does not require the inspection to have been com-
pleted (Section 2.9.3). (3.120) is represented as (3.121), i.e., without the Culm
operator.

(3.120) J. Adams inspected BA737 for 42 minutes.
(3.121) For[minutec, 42, Past[ev, inspecting(ja, ba737)]]

. The Perf operator

The Perf operator is used when expressing the past perfect. For example,
(3.122) is expressed as (3.123). The Perf operator could also be used in present
perfect sentences; e.g., (3.124) would be represented as (3.125). In this book,
however, the present perfect is taken to have the same meaning as the sim-
ple past (Section 2.5.4). Hence, (3.124) will be mapped to (3.127), the same
formula that expresses (3.126).

(3.122) BA737 had departed.
(3.123) Past[e1v, Perf [e2v, depart(ba737)]]
(3.124) BA737 has departed.
(3.125) Pres[Perf [ev, depart(ba737)]]
(3.126) BA737 departed.
(3.127) Past[ev, depart(ba737)]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.30 (100)

 Chapter 3

top’s Perf operator has been influenced by similar operators proposed by
Dowty (1982), Richards et al. (1989), Pirie et al. (1990), and Crouch et al.
(1993). For φ ∈ YNFORMS and β ∈ VARS:

– ‖Perf [β,φ]‖st,et,lt,g = T, iff et � lt and for some et ′ ∈ PERIODS, it is true
that g(β) = et ′, maxpt(et ′) ≺ minpt(et), and ‖φ‖st,et′ ,PTS,g = T.

Perf [β,φ] holds at the event time et, only if et is preceded by a new event time
et ′ where φ holds (Figure 3.4). The original et must be a subperiod of lt. In
contrast, et ′ does not need to be a subperiod of lt, because the localisation time
in ‖φ‖st,et′ ,PTS,g above is reset to PTS, the whole time-axis. The β argument is a
pointer to et ′, as in Past[β,φ] (Section 3.8). Ignoring constraints imposed by
lt, the et where Perf [β,φ] is true can be placed anywhere within the period
that starts immediately after the end of et ′ and extends up to tlast . The term
consequent period was used in Section 2.9.1 to refer to this period.

Using the Perf operator, the reading of (3.128) where the inspection hap-
pens at some time before, or possibly on, 27/9/1995 is expressed as (3.129). In
this case, on 27/9/1995 provides a reference time; see Section 2.5.5. In con-
trast, the reading of (3.128) where the inspection happens on 27/9/1995 is
expressed as (3.130).

(3.128) J. Adams had inspected gate 2 on 27/9/1995.
(3.129) At[27/9/1995, Past[e1v, Perf [e2v, Culm[inspecting(ja, g2)]]]]
(3.130) Past[e1v, Perf [e2v, At[27/9/1995, Culm[inspecting(ja, g2)]]]]

Let us explore formally the denotations of (3.129) and (3.130). The denotation
of (3.129) w.r.t. st is T iff for some et ∈ PERIODS and g ∈ G, (3.131) holds.

(3.131) ‖At[27/9/1995, Past[e1v,

Perf [e2v, Culm[inspecting(ja, g2)]]]]‖st,et,PTS,g = T

Assuming that 27/9/1995 denotes the obvious period, by the definition of At,
(3.131) holds iff (3.132) is true.

(3.132) ‖Past[e1v, Perf [e2v,

Culm[inspecting(ja, g2)]]]‖st,et,fcons(27/9/1995),g = T

etet�

lt

� Perf[e ,v �]

Figure 3.4 The semantics of the Perf operator

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.31 (101)

The TOP meaning representation language 

By the definition of Past, ignoring e1v which does not play any interesting role
here, and assuming that st follows 27/9/1995, (3.132) becomes (3.133).

(3.133) ‖Perf [e2v, Culm[inspecting(ja, g2)]]‖st,et,fcons(27/9/1995),g = T

By the definition of Perf , ignoring e2v, (3.133) holds iff for some et ′ ∈
PERIODS, (3.134)–(3.136) hold.

(3.134) et � fcons(27/9/1995)
(3.135) maxpt(et′) ≺ minpt(et)
(3.136) ‖Culm[inspecting(ja, g2)]‖st,et′ ,PTS,g = T

By the definition of Culm, (3.136) holds iff (3.137)–(3.141) hold.

(3.137) et′ � PTS
(3.138) fculms(inspecting , 2)(fcons(ja), fcons(g2)) = T
(3.139) S =

⋃
p∈fpfuns(inspecting,2)(fcons(ja),fcons(g2)) p

(3.140) S
= ∅
(3.141) et′ = [minpt(S), maxpt(S)]

Let us assume that there is only one maximal period where J. Adams is in-
specting BA737, and that the inspection is completed at the end of that period.
Then, the S of (3.139) is that maximal period, and (3.138) and (3.140) hold.
(3.141) requires et ′ to be the same period as S, and (3.137) is satisfied. The
denotation of (3.129) w.r.t. st, then, is T iff for some et, (3.134) and (3.135)
hold, i.e., iff there is an et within 27/9/1995, such that et follows the period
S = et ′ that covers the entire inspection. The situation is depicted in Figure 3.5.
In other words, 27/9/1995 must contain an et where the inspection has already
been completed.

Let us now consider (3.130). Its denotation w.r.t. st will be true iff for some
et ∈ PERIODS and g ∈ G, (3.142) holds.

(3.142) ‖Past[e1v, Perf [e2v,
At[27/9/1995, Culm[inspecting(ja, g2)]]]]‖st,et,PTS,g = T

By the definition of Past, ignoring again e1v and e2v which do not play any
interesting role here, (3.142) holds iff (3.143) is T.

etS = et� st

27/9/1995

Figure 3.5 First reading of “J. Adams had inspected gate 2 on 27/9/1995”

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.32 (102)

 Chapter 3

(3.143) ‖Perf [e2v, At[27/9/1995,

Culm[inspecting(ja, g2)]]]‖st,et,[tfirst ,st),g = T

By the definition of Perf , (3.143) is true iff for some et ′ ∈ PERIODS, (3.144)–
(3.146) hold.

(3.144) et � [tfirst, st)
(3.145) maxpt(et′) ≺ minpt(et)
(3.146) ‖At[27/9/1995, Culm[inspecting(ja, g2)]]‖st,et′,PTS,g = T

By the definition of the At operator, (3.146) holds iff (3.147) holds.

(3.147) ‖Culm[inspecting(ja, g2)]‖st,et′ ,fcons(27/9/1995),g = T

By the definition of Culm, (3.147) holds iff (3.148)–(3.152) are true.

(3.148) et′ � fcons(27/9/1995)
(3.149) fculms(inspecting , 2)(fcons(ja), fcons(g2)) = T
(3.150) S =

⋃
p∈fpfuns(inspecting,2)(fcons(ja),fcons(g2)) p

(3.151) S
= ∅
(3.152) et′ = [minpt(S), maxpt(S)]

Assuming again that there is only one maximal period where J. Adams is in-
specting BA737, and that the inspection is completed at the end of the period,
the S of (3.150) is that maximal period, and (3.149) and (3.151) hold. (3.152)
sets et ′ to S. The denotation of (3.130) w.r.t. st, then, is T iff for some et, (3.144),
(3.145), and (3.148) hold. That is, there must be some past et that follows the
period S = et ′ of the entire inspection, and S = et ′ must be located within
27/9/1995 (Figure 3.6). In other words, in this case the inspection must have
been completed within 27/9/1995.

In (3.153), where there are no temporal adverbials, the corresponding for-
mula (3.154) requires some past et (pointed to by e1v) to exist, such that et fol-
lows an et ′ (pointed to by e2v) that covers exactly the whole inspection of gate
2 by J. Adams, from start to completion. The net effect is that the inspection
must have been completed in the past.

etS = et� st

27/9/1995

Figure 3.6 Second reading of “J. Adams had inspected gate 2 on 27/9/1995”

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.33 (103)

The TOP meaning representation language 

(3.153) J. Adams had inspected gate 2
(3.154) Past[e1v, Perf [e2v, Culm[inspecting(ja, g2)]]]

. Occurrence identifiers

In this book, predicates introduced by culminating activity verbs will often
have an extra argument that acts as an occurrence identifier. Let us consider,
for example, a scenario involving an engineer, John, who worked on engine
2 repairing faults of the engine at several past times. John started to repair a
fault of engine 2 on 1/6/1998 at 9:00 am (Figure 3.7). He continued to work on
that fault up to 1:00 pm, at which point he temporarily abandoned the repair
without completing it. He resumed the repair at 3:00 pm on 25/6/1998, and
completed it at 5:00 pm on the same day.

In 1999, John was asked to repair another fault of engine 2. He started the
repair on 1/7/1999 at 9:00 am, and continued to work on that fault up to 1:00
pm on the same day without completing the repair. He then abandoned the
repair for ever, because he was not qualified to fix that fault, and the repair was
assigned to another engineer. Finally, in 2000 John was asked to repair a third
fault of engine 2. He started to repair the fault on 1/6/2000 at 9:00 am, and
continued to work on that fault up to 1:00 pm, without completing the repair.
He resumed the repair at 3:00 pm, and completed it at 5:00 pm on the same day.

Representing (3.155) as (3.156) is problematic. (Here j denotes John, and
e2 denotes engine 2.) Let us assume that the question is submitted after
1/6/2000. One would expect the answer to be affirmative, since a complete past
repair of engine 2 by John falls within 1/6/2000. In contrast, (3.156) causes
the answer to be negative. The semantics of the Culm operator (Section 3.9)

1/6/1998 25/6/1998 1/7/1999 1/6/2000

p1 p2 p3 p4 p5

9:00 am 3:00 pm 9:00 am 9:00 am 3:00 am1:00 pm 5:00 pm 1:00 pm 1:00 pm 5:00 pm
repairing(o1,j,e2) repairing(o1,j,e2) repairing(o2,j,e2) repairing(o3,j,e2) repairing(o3,j,e2)

p6

p8

p7

Culm[repairing(o1,j,e2)]

Culm[repairing(j,e2)]

Culm[repairing(o3,j,e2)]

Figure 3.7 Occurrence identifiers

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.34 (104)

 Chapter 3

requires et to start at the beginning of the earliest maximal period where
repairing(j, e2) holds, i.e., at the beginning of p1 in Figure 3.7, and to end at
the end-point of the latest maximal period where repairing(j, e2) holds, i.e., at
the end of p5 in Figure 3.7. In other words, et must be p8 of Figure 3.7. The At
operator requires et, i.e., p8, to be also a subperiod of 1/6/2000. This is not the
case, and the answer is negative.

(3.155) Did John repair engine 2 on 1/6/2000?
(3.156) At[1/6/2000, Past[ev, Culm[repairing(j, e2)]]]

The problem is that although John was repairing engine 2 during all five pe-
riods (p1, p2, p3, p4, p5), the five periods intuitively belong to different occur-
rences of the situation where John is repairing engine 2. The first two periods
have to do with the repair of the first fault (occurrence 1), the third period has
to do with the repair of the second fault (occurrence 2), and the last two periods
relate to the repair of the third fault (occurrence 3). The Culm[repairing(j, e2)]
of (3.156), however, does not distinguish between the three occurrences, and
forces et to start at the beginning of p1 and end at the end-point of p5. Instead,
we would like Culm[repairing(j, e2)] to distinguish between the three occur-
rences: to require et to start at the beginning of p1 (beginning of the first repair)
and to end at the end-point of p2 (completion of the first repair), or to require
et to start at the beginning of p4 (beginning of the third repair) and to end at the
end-point of p5 (completion of the third repair). Culm[repairing(j, e2)] should
not allow et to be p3, because the second repair does not reach its completion
at the end-point of p3.

To achieve this, an occurrence-identifying argument is employed. Assum-
ing that o1, o2, and o3 denote the three occurrences, repairing(o1, j, e2) is true
only at ets that are subperiods of p1 or p2, repairing(o2, j, e2) only at ets that
are subperiods of p3, and repairing(o3, j, e2) only at ets that are subperiods of
p4 or p5. In practice, the occurrence-identifying argument is always a variable.
For example, (3.155) is now represented as (3.157) instead of (3.156).

(3.157) At[1/6/2000, Past[ev, Culm[repairing(ov , j, e2)]]]

According to (3.157), the answer should be affirmative if there is an et and a
particular occurrence ov of the situation where John is repairing engine 2, such
that et starts at the beginning of the first period where ov is ongoing, et ends at
the end-point of the last period where ov is ongoing, ov reaches its completion
at the end-point of et, and et falls within the past and within 1/6/2000. Now, if
(3.155) is submitted after 1/6/2000, the answer is affirmative.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.35 (105)

The TOP meaning representation language 

Occurrence identifiers are a step towards formalisms that treat occurrences
of situations, sometimes called ‘events’, as objects in the modelled world (Par-
sons 1990; Kamp & Reyle 1993; Blackburn, Gardent, & de Rijke 1994; Hwang
& Schubert 1994). In top all terms, i.e., all constants and variables, denote ob-
jects of the modelled world. Thus, allowing occurrence-identifying terms, like
ov in (3.157), implies that occurrences of situations are also world objects. Un-
like other formalisms, however, top does not treat these occurrence-identifying
terms in any special way, and there is nothing in the definition of top to dis-
tinguish objects denoted by occurrence-identifiers from objects denoted by
other terms.

. Tense anaphora and localisation time

Although tense anaphora is not examined in any detail in this book (Section
2.12), it should be pointed out that top’s localisation time could be used to
handle some cases of tense anaphora. In some cases, the anaphoric nature of
tenses can be handled by storing the temporal window established by adver-
bials and verb forms of previous questions, and by requiring the situations
of follow-up questions to fall within that window. top’s localisation time can
capture this notion of previous window. Assuming, for example, that (3.158) is
submitted after 1999, the At and Past operators of the corresponding formula
(3.159) narrow lt to the period that covers exactly 1999. This period could be
stored and used as the initial value of lt in (3.161), that expresses the follow-up
question (3.160). In effect, (3.160) would be taken to mean (3.162).

(3.158) Was Mary the personnel manager in 1999?
(3.159) At[1999, Past[ev, manager of (mary, personnel)]]
(3.160) Who was the personnel manager?
(3.161) ?whv Past[ev, manager of (whv, personnel)]
(3.162) Who was the personnel manager in 1999?

This is only a rough sketch of the necessary mechanisms; improvements would
be needed. For example, if (3.158) and (3.160) are followed by (3.163), which
is represented as (3.164), lt must be reset to the whole time axis.

(3.163) Who is (now) the personnel manager?
(3.164) ?whv Pres[manager of (whv, personnel)]

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.36 (106)

 Chapter 3

. Generic representatives of partitionings

As noted in Section 3.7, habitual readings are taken to involve habitual
homonyms of verbs, which introduce different predicates than the correspond-
ing non-habitual homonyms. A remaining issue is how to represent habitual
readings that involve times, as in (3.165). (3.165) cannot be represented as
(3.166), because (3.166) says that at 5:00 pm on some day during the previous
month BA737 had the habit of departing. In contrast, the reading that we wish
to capture is that during the previous month BA737 had the habit of departing
at 5:00 pm.

(3.165) Last month BA737 (habitually) departed at 5:00 pm.
(3.166) Part[monthc, monv, –1] ∧ Part[5:00pmg , fvv] ∧

At[monv, At[fvv, Past[ev, hab depart(ba737)]]

To capture such habitual readings one would have to allow gappy partition-
ing names, like 5:00pmg , to appear as predicate arguments, or add universal
quantification to top, to allow statements to be made about all the elements
of a gappy partitioning. To avoid complicating the definition of top, we will
instead assume that for each gappy partitioning, there is a pseudo-entity in the
world that can be used as a generic representative of all the elements of the par-
titioning. (3.165) will, then, be represented as (3.167), where 5:00pm denotes
the generic representative of the gappy partitioning 5:00pmg . Constants denot-
ing generic representatives will be the same as the corresponding partitioning
names, but without the ‘g ’ suffix.

(3.167) Part[monthc, monv, –1] ∧
At[monv, Past[ev, hab depart time(ba737, 5:00pm)]]

. Summary

top is a formal language, used to represent the meanings of the English ques-
tions that are submitted to the nlitdb. The denotation of a top formula with
respect to st, the time point where the question is submitted, specifies what the
answer to the corresponding English question should report. The denotations
of formulae with respect to st are defined in terms of their denotations with
respect to st, et, and lt. The event time et is a time period where the situa-
tion described by the formula holds, and lt, the localisation time, is a temporal
window within which et must be placed.

NLP4[v.20020404] Prn:21/06/2002; 11:42 F: NLP603.tex / p.37 (107)

The TOP meaning representation language 

Temporal linguistic mechanisms are expressed in top using temporal op-
erators that manipulate st, et, and lt. Several operators were defined. The Part
operator picks a period from a partitioning of the time-axis. Pres and Past are
used when expressing present and past verb forms. Perf is used in combination
with Past to express the past perfect. Culm is used to represent non-progressive
forms of culminating activity verbs. At, Before, and After are employed when
expressing punctual and period adverbials, and when expressing subordinate
clauses introduced by while, before, and after. Duration adverbials introduced
by in and for are expressed using For. Fills can be used to represent durative
readings, where the situation of the verb covers the whole localisation time.
Begin and End are used to refer to time-points where situations start or stop.
Finally, Ntense is employed to allow noun phrases to refer either to st or to the
time of the verb’s tense.

The next chapter shows how English questions can be mapped systemati-
cally to appropriate top formulae.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.1 (109)

Chapter 4

From English to TOP

“One step at a time.”

. Introduction

This chapter shows how English questions submitted to an nlitdb can be
mapped systematically to appropriate top formulae. The mapping is based on
a slightly modified version of hpsg, which remains close to the theory of Pol-
lard and Sag (1994). The hpsg version of this book contains additional mecha-
nisms to handle temporal phenomena, and replaces Pollard and Sag’s semantic
constructs by feature structures that represent top expressions. For the sake of
brevity, hpsg mechanisms for phenomena not considered in this book will be
ignored or presented in a simplified manner.

Readers familiar with the main concepts of unification-based grammars
(Shieber 1986) should be able to follow most of the discussion in this chapter.
To grasp the full details, however, readers not acquainted with hpsg may wish
to consult Pollard and Sag (1994) first. The hpsg version of this book was im-
plemented as a grammar of the ale system (Carpenter 1992; Carpenter & Penn
2001); this will be discussed further in Chapter 6.

. HPSG basics

In hpsg, each word and syntactic constituent is mapped to a sign, a feature
structure of a particular form that provides information about the word or
syntactic constituent. An hpsg grammar consists of signs for words, here-
after called lexical signs, as well as lexical rules, schemata, principles, and a sort
hierarchy, all discussed below.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.2 (110)

 Chapter 4

.. Lexical signs, lexical rules and sort hierarchy

Lexical signs provide information about individual words. For example, the
lexical sign of (4.1) provides information about the base form of to land in the
airport domain (Section 2.4.5).

(4.1)



phon 〈land 〉

synsem




loc




cat

cat




head

verb

[
vform bse

aux –

]

aspect culmact

spr 〈〉
subj 〈 np

[
-prd

]
1 〉

comps 〈 pp
[

-prd, pform on
]

2 〉




cont

landing_on




arg1 occr_var

arg2 1

arg3 2













The ‘<’ and ‘>’ delimiters denote lists. Roughly speaking, the phon feature
shows the sequence of words the sign corresponds to. (4.1) corresponds to the
single word land. Apart from phon, every sign has a synsem feature, as well
as other features that are not shown in (4.1). (Features not relevant to the dis-
cussion will often be omitted.) The value of synsem in (4.1) is itself a feature
structure that has a feature loc. The value of loc is in turn a feature structure
that has the features cat and cont; these correspond roughly to the syntactic
category and the semantic content, respectively.

Each hpsg feature structure belongs to a particular sort. The sort hierarchy
of hpsg shows the available sorts, and the subsorts of each sort. It also specifies
which features the members of each sort have, and the sorts the values of these
features must belong to. In (4.1), for example, the value of head is a feature
structure of sort verb; the sort name appears near the bottom left corner of
the feature structure. The value of head signals that the word is the base form
(vform bse) of a non-auxiliary (aux –) verb. The sort hierarchy of Pollard and
Sag (1994) specifies that the value of head must be of sort head, and that verb
is a subsort of head. This allows feature structures of sort verb to be used as
values of head. The value of vform in (4.1) is an atomic feature structure, i.e.,
a feature structure with no features, of sort bse. For simplicity, when showing

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.3 (111)

From English to TOP 

feature structures, uninteresting sort names are ommitted; for example, (4.1)
does not show the sort of loc’s value.

aspect is the only new hpsg feature of this book. This feature will be
present in feature structures of sort cat, which comprises all feature structures
that can be used as values of the feature cat. The values of aspect are fea-
ture structures of sort aspect. The aspect sort, which is an addition of this book,
contains only atomic feature structures, and has the subsorts: state, activity, cul-
mact (culminating activity), and point. The state sort is in turn partitioned into:
lex_state (lexical state), progressive (progressive state), and cnsq_state (conse-
quent state). These sorts reflect the aspectual taxonomy of Chapter 2. Follow-
ing Table 2.1 on page 29, (4.1) classifies the base form of to land as culminating
activity.

The spr, subj, and comps features of (4.1) provide information about the
specifier, subject, and complements, respectively, that the verb has to combine
with. Specifiers are determiners, like the, or words like much in much more and
too in too late. Verbs do not admit specifiers, and hence the value of spr in (4.1)
is the empty list.

The subj value of (4.1) means that the verb requires a noun phrase as
its subject. The np[-prd] 1 in (4.1) has the same meaning as in Pollard and
Sag’s book (1994). Roughly speaking, it is an abbreviation for a sign that cor-
responds to a noun phrase. The -prd means that the noun phrase must be
non-predicative; this will be discussed further in later sections. The 1 is in-
tuitively a pointer to the world entity that the noun phrase denotes. Similarly,
the comps value of (4.1) means that the verb requires as its complement a non-
predicative prepositional phrase introduced by on. The 2 is intuitively a pointer
to the world entity of the prepositional phrase; for example, if the prepositional
phrase is on a runway, the 2 is a pointer to the runway.

The value of cont in (4.1) stands for the top predicate landing on(β, τ1,
τ2), where τ1 and τ2 are top terms corresponding to 1 and 2 , and β is a top
variable acting as an occurrence identifier (Section 3.16).1 The exact relation
between hpsg feature structures and top expressions will be discussed in later
sections.

To reduce the number of lexical signs that need to be provided manually,
lexical rules can be used. These generate new lexical signs from existing ones.
For example, lexical rules can be used to generate automatically the lexical
signs of non-base verb forms from the corresponding base-form lexical signs.
There will be several opportunities in this chapter to introduce and discuss
lexical rules.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.4 (112)

 Chapter 4

.. Schemata and principles

hpsg schemata specify basic combination patterns that are used when words
or syntactic constituents combine to form larger constituents. For example,
the head-complement schema is the pattern that is used, among other cases,
when a verb combines with its complements. This is the schema that is used
when landed combines with a complement like on runway 2; the verb is said to
be the head daughter of the constituent landed on runway 2. The head-subject
schema is used, among other cases, when a verb phrase combines with its sub-
ject. It is used, for example, when landed on runway 2 combines with its subject
BA737; in this case, the verb phrase is the head daughter of BA737 landed on
runway 2. No modifications to the schemata of Pollard and Sag (1994) will be
introduced in the hpsg version of this book, and hence schemata will not be
discussed further.

hpsg principles control the propagation of feature values from the signs
of words or syntactic constituents to the signs of their super-constituents.
The head-feature principle, for example, specifies that the sign of the super-
constituent inherits the head value of the head daughter’s sign. This causes the
sign of landed on runway 2 to inherit the head value of the sign of landed, and
the same value to be inherited by the sign of BA737 landed on runway 2. This
book uses simplified versions of Pollard and Sag’s semantics principle and con-
stituent ordering principle, and introduces one new principle, the aspect princi-
ple; all three principles will be discussed in later sections. All other principles
follow Pollard and Sag (1994).

. Representing TOP yes/no formulae in HPSG

According to Pollard and Sag (1994), the cont value of (4.1) would actually be
(4.2).

(4.2)

psoa




quants 〈〉

nucleus

landing_on




arg1 occr_var

arg2 1

arg3 2







The sort name ‘psoa’ stands for ‘parameterised state of affairs’, a term from
situation theory (Cooper, Mukai, & Perry 1990). The semantic analysis of this
book is not situation-theoretic, but the term ‘psoa’ is still used for compatibility

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.5 (113)

From English to TOP 

circling

[
arg1 ind

]

landing_on




arg1 occr_var

arg2 ind

arg3 ind




. . .

predicate

pres

[
main_psoa psoa

]
. . .

operator

psoa

Figure 4.1 Subsorts of psoa in this book

with Pollard and Sag. In Pollard and Sag’s treatment, feature structures of sort
psoa have two features: quants and nucleus. The quants feature, which is
part of hpsg’s quantifier scoping mechanisms, is not used in this book. This
leaves only one feature, nucleus, in psoas. For simplicity, nucleus will also be
ignored, and the psoa sort will be taken to contain the feature structures that
would be values of nucleus in Pollard and Sag’s treatment.

More precisely, in this book psoa has two subsorts: predicate and operator
(Figure 4.1). Feature structures of sort psoa are used to represent top yes/no
formulae. The predicate sort contains feature structures that represent top
predicates, while operator contains feature structures that represent all other
yes/no formulae. The predicate sort has domain-specific subsorts, correspond-
ing to domain-specific predicate functors. In the airport domain, for example,
landing_on is a subsort of predicate. The feature structures in the subsorts of
predicate carry features named arg1, arg2, arg3, etc., which represent the ar-
guments of the predicates. The values of arg1, arg2, etc. are of sort ind. In
(4.1) and (4.2), occr_var is a subsort of ind that is used to represent occur-
rence identifiers (Section 3.16). The ind sort and its subsorts will be discussed
further below.

The operator sort has the subsorts shown in Figure 4.2, which correspond
to the top operators of Chapter 3. There is no subsort for Fills, as this op-
erator is ignored in the remainder of this book. There is also no subsort for
the Part[σ, β, νord] version of the Part operator; to save space, this operator
is not used in the rest of this book, and the periods of words like yester-
day are represented using top constants, rather than expressions of the form
Part[dayc, β, –1]. An additional subsort, and, is present in Figure 4.2; this
stands for top’s conjunction. The order of the features in Figure 4.2 corre-
sponds to the order of the arguments of the top operators. For example, the

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.6 (114)

 Chapter 4

pres

[
main_psoa psoa

]
culm

[
main_psoa predicate

]

past


et_handle

temp_ent

[
tvar +

]
main_psoa psoa




and

[
conj1 psoa

conj2 psoa

]

perf


et_handle

temp_ent

[
tvar +

]
main_psoa psoa


 begin

[
main_psoa psoa

]

at_op

[
time_spec temp_ent ∨ psoa

main_psoa psoa

]
end

[
main_psoa psoa

]

before_op

[
time_spec temp_ent ∨ psoa

main_psoa psoa

]

for_op




dur_unit compl_partng

duration
sem_num

[
tvar –

]
main_psoa psoa




after_op

[
time_spec temp_ent ∨ psoa

main_psoa psoa

]

ntense


et_handle now ∨

temp_ent

[
tvar +

]
main_psoa psoa




part




partng compl_partng ∨
gappy_partng

[
tvar –

]
part_var

temp_ent

[
tvar +

]



Figure 4.2 Subsorts of operator

et_handle and main_psoa features of the past sort correspond to the first
and second arguments of top’s Past[β,φ], respectively.

In Pollard and Sag’s theory (1994), feature structures of sort ind, called in-
dices, have the features person, number, and gender, which are used to enforce
person, number, and gender agreement, respectively. For simplicity, these fea-
tures are ignored in the hpsg version of this book, and no agreement checks
are made. Pollard and Sag’s subsorts of ind (ref, there, it), which are used in
hpsg’s binding theory, are also ignored. In this book, indices stand for top
terms, i.e, constants or variables. The situation is roughly speaking as in Fig-
ure 4.3. For each top constant, for example, ba737 or gate2, there is a subsort
of ind that represents that constant. There is also a subsort var of ind, whose
indices represent top variables. A tvar feature is used to distinguish indices
that represent constants from indices that represent variables. All indices of

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.7 (115)

From English to TOP 

ba737

[
tvar –

]
uk160

[
tvar –

]
gate2

[
tvar –

]
. . .

var

[
tvar +

]
ind

Figure 4.3 Subsorts of ind in this book – simplified version

constant-representing sorts have their tvar set to –. Indices of var have their
tvar set to +.

The fact that there is only one subsort for top variables in Figure 4.3, var,
does not mean that only one top variable can be represented: var is a sort of
feature structures, containing infinitely many feature-structure members. Un-
less unified, any two of these members are taken to represent different top
variables. Each subsort of ind that represents a top constant also contains in-
finitely many different feature-structure members. In this case, however, all
members of the subsort are taken to represent the same constant. For example,
any feature structure of sort gate2 represents the top constant gate2.

. More on the subsorts of ind

The subsorts of ind are actually more complicated than in Figure 4.3. As dis-
cussed in Section 1.2, natural language interfaces often employ a domain-
dependent hierarchy of entity types, as part of their ontology. Here, a hierarchy
of this kind is mounted under the ind sort (Androutsopoulos & Dale 2000), as
explained below.

In the airport domain, there are temporal entities, like the year 2000, the
Monday 27/8/2001, etc., and non-temporal entities, such as flight BA737 and
gate 2. Indices representing temporal entities are classified into a subsort of ind
called temp_ent, while indices representing non-temporal entities are classi-
fied into non_temp_ent; see Figure 4.4, ignoring partng and its subsorts for the
moment. The non_temp_ent sort has in turn subsorts like mass, which com-
prises indices representing mass entities, such as foam or water, and flight_ent,
which includes indices representing flights. The flight_ent sort has one subsort
for each top constant that denotes a flight (e.g., ba737, uk160), plus one sort,
called flight_ent_var, whose indices represent top variables that denote flights;
this is similar to the var sort in the simplified version of Figure 4.3. The other
subsorts of non_temp_ent are organised in a similar manner.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.8 (116)

 Chapter 4

ga
te

_e
n

t

in
d

te
m

p_
en

t

da
y_

en
t ...

1/
5/

92
...

9:
00

am
1/

5/
92

m
in

u
te

_e
n

t m
in

u
te

_e
n

t_
va

r
1/

1/
91

da
y_

en
t_

va
r

Ju
n

93
m

on
th

_e
n

t_
va

r
...

Ja
n

91

m
on

th
_e

n
t

...

...
u

k1
60

ba
73

7
...

fl
ig

h
t_

en
t_

va
r

n
on

_t
em

p_
en

t

fl
ig

h
t_

en
t

...

oc
cr

_v
ar

co
m

pl
_p

ar
tn

g
ga

pp
y_

pa
rt

n
g

m
on

da
y

tu
es

da
y

da
y_

ga
pp

y
m

in
u

te
_g

ap
py

da
y_

ga
pp

y_
va

r
...

m
in

u
te

_g
ap

py
_v

ar

ot
h

er
_t

em
p_

en
t_

va
r

...
m

on
th

da
y

m
in

u
te

...
9:

00
am

5:
00

pm

pa
rt

n
g

fo
am

w
at

er
...

m
as

s_
en

t_
va

r

m
as

s

ga
te

2
...

ga
te

_e
n

t_
va

r
ga

te
1

5:
00

pm
1/

1/
91

Fi
gu

re
4.

4
T

h
e

so
rt

s
pa

rt
ng

an
d

in
d

w
it

h
th

ei
r

su
bs

or
ts

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.9 (117)

From English to TOP 

The temp_ent sort has subsorts like minute_ent, which comprises indices
representing particular minutes, such as the 5:00 pm minute of 1/1/2001,
day_ent, which comprises indices representing particular days, etc. The minute_
ent sort has one subsort for each top constant that denotes a particular minute,
plus the sort minute_ent_var, whose indices represent top variables that denote
particular minutes; this is again similar to the var sort of Figure 4.3. The other
subsorts of temp_ent are similar.

As in Section 4.3, indices of sorts that represent top constants have their
tvar set to –, while indices of sorts that represent top variables have their tvar
set to +. The occr_var sort of Figure 4.4 contains indices that represent top
variables used as occurrence identifiers (Section 3.16). There is also a special
sort now, not shown in Figure 4.4, which is used to represent the top expres-
sion now* (Section 3.13). Going back to Figure 4.2, it should now be easy to
see that its sorts mirror the definitions of top’s operators. For example, the
ntense sort reflects the fact that the first argument of an Ntense operator must
be now* or a variable (tvar +) denoting a period (temp_ent), while the second
argument must be a yes/no formula (psoa). The sem_num sort in for_op is a
child of non_temp_ent, not shown in Figure 4.4, with subsorts that represent
the numbers 1, 2, 3, etc.

Let us now examine the partng sort of Figure 4.4 and its subsorts
compl_partng and gappy_partng, which do not exist in Pollard and Sag’s
(1994) treatment. For each top complete or gappy partitioning name, such as
minutec, dayc, 5:00pmg , or mondayg, there is a leaf-subsort of compl_partng or
gappy_partng, respectively, which represents that name. In Figure 4.4, the sorts
5:00pm, 9:00am, etc. are grouped under minute_gappy to reflect the fact that
the corresponding partitionings contain minute-periods. Similarly, monday,
tuesday, etc. are grouped under day_gappy as the partitionings contain day-
periods. Section 4.12 below provides examples where sorts like minute_gappy
and day_gappy prove useful.

Apart from gappy partitioning names, the subsorts of gappy_partng are
also used to represent top terms that denote generic representatives of gappy
partitionings (Section 3.18). This is why gappy_partng is a subsort of both
partng and ind in Figure 4.4. For example, (4.4), which expresses the habit-
ual reading of (4.3), is represented as (4.5). In this case, the subsort 5:00pm of
gappy_partng represents the top constant 5:00pm, which in turn denotes the
generic representative of the gappy partitioning 5:00pmg .

(4.3) BA737 departs (habitually) at 5:00 pm
(4.4) Pres[hab departs at(ba737, 5:00pm)]

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.10 (118)

 Chapter 4

(4.5)

pres


main_psoa

hab_departs_at




arg1
ba737

[
tvar –

]
arg2

5:00pm

[
tvar –

]





In contrast, (4.7), which expresses the non-habitual reading of (4.6), is repre-
sented as (4.8). In this case, the subsort 5:00pm of gappy_partng stands for top’s
partitioning name 5:00pmg . (It cannot represent a top term, because top terms
cannot be used as first arguments of Part operators.) The two 1 s in (4.8) force
the values of part_var and time_spec to be unified, i.e., they must represent
the same top variable.

(4.6) BA737 departed (actually) at 5:00 pm.
(4.7) Part[5:00pmg , fvv] ∧ At[fvv, Past[ev, depart(ba737)]]
(4.8)

and




conj1

part




partng
5:00pm

[
tvar –

]
part_var

temp_ent

[
tvar +

]
1




conj2

at_op




time_spec 1

main_psoa

past




et_handle
temp_ent

[
tvar +

]

main_psoa
depart

[
arg1

ba737

[
tvar –

]]









Sorts like minute_gappy_var and day_gappy_var in Figure 4.4 are used to rep-
resent top variables that denote generic representatives of gappy partitionings.
The indices of these sorts have their tvar set to +, while the indices of all other
leaf-subsorts of gappy_partng have their tvar set to –.

The hierarchy under ind is domain-dependent. For example, in an applica-
tion where the database contains information about a company, the subsorts of
non_temp_ent would correspond to departments, managers, etc. It is assumed,
however, that in all application domains, ind would have at least the imme-
diate subsorts temp_ent, non_temp_ent, occr_var, and gappy_partng. It is also
assumed that the subsorts of partng and temp_ent would have the general form
of Figure 4.4, though they would have to be adjusted to reflect the partitionings
and temporal entities used in the particular application.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.11 (119)

From English to TOP 

. Representing TOP quantifiers in HPSG

We have so far examined how top yes/no formulae are represented in the
hpsg version of this book using feature-structures of sort psoa (Figure 4.1). To
represent top wh-formulae, i.e., formulae with interrogative or interrogative-
maximal quantifiers, additional feature-structure sorts are needed, as dis-
cussed below.

In hpsg (Pollard & Sag 1994), feature structures of sort quant represent un-
resolved quantifiers, i.e., quantifiers whose scope is not known. They have two
features: det and restind (restricted index), as shown in (4.9). The det fea-
ture shows the type of the quantifier; in this book, det can have the values exists
(existential quantifier), interrog (interrogative quantifier), and interrog_mxl
(interrogative-maximal quantifier).

(4.9)

quant




det exists ∨ interrog ∨ interrog_mxl

restind

nom_obj


index

ind

[
tvar +

]
restr set(psoa)







The values of restind are feature structures of sort nom_obj (nominal ob-
ject).2 These have the features index, whose values are of sort ind, and re-
str, whose values are sets of psoas. When a nom_obj feature structure is the
value of restind, the index corresponds to the top variable being quantified,
and the restr corresponds to the range of the quantifier. If the restr set con-
tains more than one psoas, the psoa-elements of the set are treated as forming
a conjunction. For example, (4.10) represents (4.11).

(4.10)

quant




det interrog

restind

nom_obj




index
ind

[
tvar +

]
1

restr

{
flight

[
arg1 1

]}






(4.11) ?f v flight(f v)

Although top does not use explicit existential quantifiers, the hpsg version of
this book represents existential quantifiers explicitly, using quants whose det
is exists, for compatibility with Pollard and Sag (1994). As will be explained
in Section 4.6 below, these explicit existential quantifiers are removed when
extracting top formulae from hpsg signs.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.12 (120)

 Chapter 4

. Extracting TOP formulae from HPSG signs

During the parsing, each question is mapped to one or more signs, with each
sign corresponding to a possible reading of the question. An example of a re-
sulting sign is shown in (4.12). We ignore in this section Ntense operators,
which will be discussed further in Section 4.9. It is also assumed that multi-
token names, like gate 2, have been concatenated during the preprocessing
stage; we will return to this point in later sections.

(4.12)




phon 〈which, inspector, was, at, gate2〉

synsem | loc




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈〉
comps 〈〉




cont

past




et_handle
temp_ent

[
tvar +

]

main_psoa

located_at

[
arg1 1

arg2 gate2

]






qstore




quant




det interrog

restind

nom_obj




index
person_ent

[
tvar +

]
1

restr

{
inspector

[
arg1 1

]}












Apart from the features that were discussed in Section 4.2, signs also have the
feature qstore (quantifier store), whose values are sets of quants (Section 4.5).
In the hpsg version of this book, the cont value of signs that correspond to
questions is of sort psoa, i.e., it represents a top yes/no formula. The qstore
value represents quantifiers that must be inserted in front of the formula of
cont. In the prototype nlitdb that will be presented in Chapter 6, there is an
extractor of top formulae that examines the cont and qstore features of the
question’s sign, and generates the corresponding top formula. The extractor
first examines recursively the features of cont, rewriting them in term nota-
tion; in (4.12), this generates (4.13). For each element of qstore, the extractor

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.13 (121)

From English to TOP 

then adds a suitable quantifier in front of the formula of cont; in (4.12), this
transforms (4.13) into (4.14).

(4.13) Past[ev, located at(pv, gate2)]
(4.14) ?pv inspector(pv) ∧ Past[ev, located at(pv, gate2)]

Since free top variables are implicitly existentially quantified, with elements of
qstore that correspond to existential quantifiers, no explicit existential quan-
tifier is added to the formula of cont; only the expression that corresponds to
the restr of the quant-element is added. For example, if the det of (4.12) were
exists, (4.14) would be (4.15).

(4.15) inspector(pv) ∧ Past[ev, located at(pv, gate2)]

. Verb forms

Let us now examine in more detail how the various linguistic constructs are
treated in the hpsg grammar of this book, focusing on the temporal mecha-
nisms of Chapter 2; these are not addressed by Pollar and Sag (1994).

.. Single-word verb forms

Single-word non-base verb forms are generated automatically from the signs
of the corresponding base forms using lexical rules. The signs for simple
present forms are generated by (4.16).

(4.16) Simple Present Lexical Rule:


phon 〈λ〉

synsem | loc




cat


head

verb

[
vform bse

aux –

]

aspect lex_state




cont 1







⇓


phon 〈morph(λ, simple_present)〉

synsem | loc




cat


head

verb

[
vform fin

aux –

]

aspect lex_state




cont
pres

[
main_psoa 1

]







NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.14 (122)

 Chapter 4

For each lexical sign that matches the first feature structure, the left-hand side
of the rule, a new lexical sign is generated as shown in the second feature
structure, the right hand side of the rule. Following standard hpsg notation,
synsem|loc refers to the loc feature of the value of synsem. The head value
of the left-hand side requires the original sign to correspond to the base form
of a non-auxiliary verb; auxiliary verbs are treated separately. The head value
of the right-hand side signals that the resulting sign corresponds to a finite
verb form, i.e., a form that does not need to combine with an auxiliary verb.
The cont of the new sign is the same as the cont of the original one, except
that it contains an additional Pres operator. Features of the original sign not
shown in the left-hand side, for example subj and comps, have the same values
in the generated sign. The original sign is required to correspond to a lexical
state base form. No simple present signs are generated for verbs whose base
forms are not states, in accordance with the assumption of Section 2.5.1 that
the simple present can be used only with state verbs.

The notation morph(λ, simple present) in the rule denotes a morphological
transformation that generates the simple present form (e.g., contains) from the
base form (e.g., contain). The prototype nlitdb of Chapter 6 actually employs
two different simple present lexical rules. These generate signs for singular and
plural simple present forms, respectively. As mentioned in Sections 2.13 and
4.3, plurals are treated semantically as singulars, and no number agreement
checks are made. Hence, the two lexical rules differ only in the phon values of
the generated signs.

(4.17) shows the base form sign of to contain in the airport domain. From
(4.17), (4.16) generates (4.18). The tank_ent and mass_ent in (4.17) and (4.18)
require the indices introduced by the subject and object to be of sort tank_ent
and mass_ent, respectively; tank_ent is a sister of flight_ent in Figure 4.4. Hence,
the semantically anomalous gate 2 contains water, where the subject introduces
an index of sort gate2, which is not a subsort of tank_ent, would be rejected.
All lexical signs of verb forms have their qstore set to {}. To save space, the
qstore features are not shown here.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.15 (123)

From English to TOP 

(4.17)



phon 〈contain〉

synsem | loc




cat




head

verb

[
vform bse

aux –

]

aspect lex_state

spr 〈〉
subj 〈np

[
-prd

]
tank ent 1 〉

comps 〈np
[

-prd
]
mass ent 2 〉




cont

contains

[
arg1 1

arg2 2

]







(4.18)



phon 〈contains〉

synsem | loc




cat




head

verb

[
vform fin

aux –

]

aspect lex_state

spr 〈〉
subj 〈np

[
-prd

]
tank ent 1 〉

comps 〈np
[

-prd
]
mass ent 2 〉




cont

pres


main_psoa

contains

[
arg1 1

arg2 2

]








The simple past signs of culminating activity verbs are generated by the lexical
rule of (4.19). The simple past signs of non-culminating activity verbs are gen-
erated by a lexical rule that is similar to (4.19), except that it does not introduce
a Culm operator in the resulting sign.

(4.19) Simple Past Lexical Rule (Culm. Activity Base Form):


phon 〈λ〉

synsem | loc




cat


head

verb

[
vform bse

aux –

]

aspect culmact




cont 1







⇓

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.16 (124)

 Chapter 4




phon 〈morph(λ, simple_past)〉

synsem | loc




cat


head

verb

[
vform fin

aux –

]

aspect culmact




cont

past




et_handle
temp_ent

[
tvar +

]
main_psoa

culm

[
main_psoa 1

]









The signs of past participles (e.g., inspected in ‘Who had inspected BA737?’) are
generated by two lexical rules that are similar to the simple past ones. There is
a rule for culminating activity verbs, which introduces a Culm operator in the
past participle sign, and a rule for non-culminating activity verbs, which does
not introduce a Culm operator. The generated signs have their vform set to
psp (past participle), and the same aspect as the base signs, i.e., their aspect
is not changed to cnsq_state (consequent state). The shift to consequent state
takes place when the auxiliary had combines with the past participle; this will
be discussed in Section 4.7.2.

The signs for present participles (e.g., servicing in ‘Which company is servic-
ing BA737?’) are generated by (4.20). The present participle signs are the same
as the base ones, except that their vform is prp (present participle), and their
aspect is progressive (progressive state).

In English, there is no morphological distinction between gerunds and
present participles. hpsg and most traditional grammars, however, distinguish
between the two (Thomson & Martinet 1986). In (4.21), the inspecting is the
gerund of to inspect, while in (4.22), it is the present participle. Gerund signs
are generated by a lexical rule that is similar to (4.20), except that the generated
signs retain the aspect of the original ones, and have their vform set to ger.

(4.20) Present Participle Lexical Rule:


phon 〈λ〉

synsem | loc




cat


head

verb

[
vform bse

aux –

]

aspect aspect




cont 1







⇓

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.17 (125)

From English to TOP 




phon 〈morph(λ, present_participle)〉

synsem | loc




cat


head

verb

[
vform prp

aux –

]

aspect progressive




cont 1







(4.21) J. Adams finished inspecting BA737.
(4.22) J. Adams was inspecting BA737.

The fact that gerund signs retain the aspect of the base signs is used in the
treatment of verbs like to finish (Section 2.6). The simple past finished receives
multiple signs, which are generated from corresponding base form signs by the
simple past lexical rules. (4.23) is used when finished combines with a culmi-
nating activity verb phrase, and (4.24) when it combines with a state or activity
verb phrase (‘ss|l’ is an abbreviation of ‘synsem|loc’).

(4.23)



phon 〈finished〉

ss | l




cat




head

verb

[
vform fin

aux –

]

aspect point

spr 〈〉
subj 〈 1 〉

comps 〈vp

[
subj 〈 1 〉, vform ger,

aspect culmact

]
: 2 〉




cont

past




et_handle
temp_ent

[
tvar +

]

main_psoa
end

[
main_psoa

culm

[
main_psoa 2

]]









NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.18 (126)

 Chapter 4

(4.24)



phon 〈finished〉

ss | l




cat




head

verb

[
vform fin

aux –

]

aspect point

spr 〈〉
subj 〈 1 〉

comps 〈vp

[
subj 〈 1 〉, vform ger,

aspect state ∨ activity

]
: 2 〉




cont

past




et_handle
temp_ent

[
tvar +

]
main_psoa

end

[
main_psoa 2

]









In (4.23), the comps value means that finished requires as its complement a
gerund verb phrase, i.e., a gerund that has combined with its complements but
not its subject, whose aspect must be culminating activity. The 1 of comps
points to a description of the required subject of the gerund verb phrase, and
the 2 is a pointer to the cont value of the sign of the gerund verb phrase. The
two 1 s in (4.23) have the effect that finished requires as its subject whatever
the gerund verb phrase requires as its subject. The two 2 s cause the sign of
finished to inherit the cont value of the sign of the gerund verb phrase, but with
additional Past, End, and Culm operators. (4.24) is similar, but it introduces no
Culm operator.

In (4.21), the sign of the gerund inspecting retains the aspect of the base
sign, which in the airport domain is culmact. The sign of the gerund verb
phrase inspecting BA737 inherits the culmact aspect of the gerund sign; this
follows from the aspect principle, which will be discussed in Section 4.11.1.
Hence, (4.23) is used, causing (4.21) to receive a sign whose cont represents
(4.25), i.e., the inspection must have been completed.

(4.25) Past[ev, End[Culm[inspecting(occrv , ja, ba737)]]]

In contrast, in (4.26) the sign of circling inherits the activity aspect of the base
sign, causing (4.24) to be used. This leads to (4.27), which does not require any
completion point to have been reached.

(4.26) BA737 finished circling.
(4.27) Past[ev, End[circling(ba737)]]

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.19 (127)

From English to TOP 

There is also a sign of the simple past finished for the case where the gerund verb
phrase is a point. In that case, the cont of the sign of finished is identical to the
the cont of the sign of the gerund verb phrase, i.e., finished has no seman-
tic contribution, in accordance with Section 2.6. The signs of started, stopped,
and began are similar, except that they introduce Begin operators instead of
End ones. Unlike finished, the signs of stopped do not introduce Culm opera-
tors when stopped combines with culminating activities, reflecting the fact that
there is no need for a completion point to have been reached.

.. Auxiliary verbs and multi-word verb forms

We now move on to auxiliary verbs and multi-word verb forms, such as had
departed and is inspecting. The sign of the simple past auxiliary had is shown
in (4.28). The sign requires a past participle verb phrase to be used as a com-
plement of had. The effect of the 1 s is that had requires as its subject what-
ever the past participle verb phrase requires as its subject. The 2 s cause the
main_psoa value of the perf to be the same as the cont value of the sign of the
past participle verb phrase.

(4.28)



phon 〈had〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect cnsq_state

spr 〈〉
subj 〈 1 〉
comps 〈vp

[
subj 〈 1 〉, vform psp

]
: 2 〉




cont

past




et_handle
temp_ent

[
tvar +

]

main_psoa

perf


et_handle

temp_ent

[
tvar +

]
main_psoa 2













In the airport domain, the past participle departed receives multiple signs, cor-
responding to various habitual and non-habitual uses of the verb; these are
generated from the corresponding base form signs by the lexical rules of Sec-
tion 4.7.1. In (4.29), the sign of (4.30) is used. According to (4.30), departed
requires no complements, i.e., it counts as a verb phrase and can be used as the

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.20 (128)

 Chapter 4

complement of had. When had combines with departed, the subj of (4.28) be-
comes the same as the subj of (4.30), and the main_psoa of the perf in (4.28)
becomes the same as the cont of (4.30), because of the 1 s and 2 s in (4.28),
respectively. The resulting constituent had departed receives (4.31).

(4.29) BA737 had departed.
(4.30)




phon 〈departed〉

ss | l




cat




head

verb

[
vform psp

aux –

]

aspect point

spr 〈〉
subj 〈np

[
-prd

]
flight ent 3 〉

comps 〈〉




cont
actl_depart

[
arg1 3

]







(4.31)



phon 〈had, departed〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect cnsq_state

spr 〈〉
subj 〈np

[
-prd

]
flight ent 3 〉

comps 〈〉




cont

past




et_handle
temp_ent

[
tvar +

]

main_psoa

perf




et_handle
temp_ent

[
tvar +

]
main_psoa

actl_depart

[
arg1 3

]












The hpsg principles, including the semantics and aspect principles that will be
discussed in later sections, cause (4.31) to inherit the head, aspect, spr, subj,
and cont values of (4.28). Consequently, the aspect of had departed becomes
consequent state, whereas departed was a point; this is in accordance with the
aspectual shift of Section 2.5.5.

As will be explained further in Section 4.9, the proper name BA737 con-
tributes an index that represents the flight BA737. When had departed com-

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.21 (129)

From English to TOP 

bines with its subject BA737, the index of BA737 becomes the arg1 value of
(4.31), because of the 3 s of (4.31). This causes (4.29) to receive a sign whose
cont corresponds to (4.32).

(4.32) Past[e1v, Perf [e2v, actl depart(ba737)]]

As discussed in Sections 2.5.4 and 3.15, present perfect forms are treated se-
mantically as simple past forms. This is why the sign of has, shown in (4.33),
does not introduce a Perf operator, and preserves the aspect of the past partici-
ple, unlike the sign of had. This causes BA737 has departed to receive the same
top formula as BA737 departed.

(4.33)



phon 〈has〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect 1

spr 〈〉
subj 〈 2 〉
comps 〈vp

[
subj 〈 2 〉, vform psp, aspect 1

]
: 3 〉




cont

past


et_handle

temp_ent

[
tvar +

]
main_psoa 3










The auxiliary does is given the sign of (4.34), which indicates that a base verb
phrase is required as a complement. In accordance with the assumption of Sec-
tion 2.5.1 that the simple present can be used only with state verbs, the verb
phrase complement of does is required to be a lexical state. (4.34) and the ha-
bitual base sign of (4.35) cause (4.36) to receive (4.37); in this case, Airserve is
the subject of both does and service.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.22 (130)

 Chapter 4

(4.34)



phon 〈does〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state 1

spr 〈〉
subj 〈 2 〉
comps 〈vp

[
subj 〈 2 〉, vform bse, aspect 1

]
: 3 〉




cont
pres

[
main_psoa 3

]







(4.35)



phon 〈service〉

ss | l




cat




head

verb

[
vform bse

aux –

]

aspect lex_state

spr 〈〉
subj 〈np

[
-prd

]
company ent 4 〉

comps 〈np
[

-prd
]
flight ent 5 〉




cont

hab_servicer_of

[
arg1 4

arg2 5

]







(4.36) Does Airserve service BA737?

(4.37)



phon 〈does, Airserve, service, BA737〉

ss | l




cat




head

verb

[
vform bse

aux +

]

aspect lex_state

spr 〈〉
subj 〈〉
comps 〈〉




cont

pres


main_psoa

hab_servicer_of

[
arg1 airserve

arg2 ba737

]








In the airport domain, there is an additional sign for the base form of to service,
which corresponds to the non-habitual homonym. This is similar to (4.35), but

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.23 (131)

From English to TOP 

it introduces the predicate functor actl servicing and its aspect is culmact. This
sign cannot be used in (4.36), because (4.34) requires the verb phrase comple-
ment to be a state, not a culminating activity. This correctly predicts that (4.36)
cannot be asking if Airserve is actually servicing BA737 at the present moment.

The auxiliary did receives two signs. The first one, shown in (4.38), is for
culminating activity verb phrase complements. The second one is used with
state, activity, and point verb phrase complements; it is similar to (4.38), but
does not introduce a Culm. In both cases, a Past is added.

(4.38)



phon 〈did〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect culmact 1

spr 〈〉
subj 〈 2 〉
comps 〈vp

[
subj 〈 2 〉, vform bse, aspect 1

]
: 3 〉




cont

past




et_handle
temp_ent

[
tvar +

]
main_psoa

culm

[
main_psoa 3

]









The non-habitual sign of service and (4.38) cause (4.39) to be mapped to (4.40),
which requires Airserve to have actually serviced BA737 in the past. The habit-
ual sign of (4.35) and the did sign for non-culminating activity complements
cause (4.39) to be mapped to (4.41), which requires Airserve to have been a
past habitual servicer of BA737.

(4.39) Did Airserve service BA737?
(4.40) Past[ev, Culm[actl servicing(occrv, airserve, ba737)]]
(4.41) Past[ev, hab servicer of (airserve, ba737)]

The sign for the is auxiliary is shown in (4.42). Its functionality can be illus-
trated by considering the present participle servicing, which receives two signs
in the airport domain: a non-habitual one, shown in (4.43), and a habitual one.
The latter is similar to (4.43), but it introduces the functor hab servicer of , and
its aspect is lex_state.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.24 (132)

 Chapter 4

(4.42)



phon 〈is〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect progressive

spr 〈〉
subj 〈 1 〉
comps 〈vp

[
subj 〈 1 〉, vform prp

]
: 2 〉




cont
pres

[
main_psoa 2

]







(4.43)



phon 〈servicing〉

ss | l




cat




head

verb

[
vform prp

aux –

]

aspect culmact

spr 〈〉
subj 〈np

[
-prd

]
company ent 1 〉

comps 〈np
[

-prd
]
flight ent 2 〉




cont

actl_servicing




arg1 occr_var

arg2 1

arg3 2










(4.42) and (4.43) cause (4.44) to be mapped to (4.45), which requires Airserve
to be actually servicing BA737 at the present. In contrast, (4.42) and the ha-
bitual present participle sign of servicing cause (4.44) to be mapped to (4.46),
which requires Airserve to be the current habitual servicer of BA737. The latter
reading follows from the arrangements of Section 2.5.3, which allow state verbs
to be used in progressive forms with the same meanings as the corresponding
non-progressive forms.

(4.44) Airserve is servicing BA737.
(4.45) Pres[actl servicing(occrv, airserve, ba737)]
(4.46) Pres[hab servicer of (airserve, ba737)]

The sign for the auxiliary was is similar to (4.42), except that it introduces a
Past operator instead of a Pres one.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.25 (133)

From English to TOP 

. Predicative and non-predicative prepositions

Following Pollard and Sag (1987:65), prepositions receive separate signs for
their predicative and non-predicative uses. In sentences like (4.47) and (4.48),
where the prepositions introduce complements of to be, the prepositions are
said to be predicative. In (4.49) and (4.50), where they introduce complements
of other verbs, the prepositions are non-predicative.

(4.47) BA737 is at gate 2.
(4.48) BA737 was on runway 3.
(4.49) BA737 (habitually) arrives at gate 2.
(4.50) BA737 landed on runway 3.

Predicative prepositions introduce their own top predicates, while non-
predicative prepositions have no semantic contribution; this is discussed fur-
ther in the following paragraphs.

.. Predicative prepositions

The predicative sign of at is shown in (4.51); the predicative signs of other
prepositions are similar. The ‘prd +’ shows that the sign is predicative. The
pform feature reflects the preposition the sign corresponds to. Signs for prepo-
sitional phrases inherit the pform of the preposition’s sign, which is useful with
verbs that require prepositional phrases introduced by particular prepositions.

(4.51)



phon 〈at〉

ss | l




cat




head

prep

[
pform at

prd +

]

spr 〈〉
subj 〈np

[
-prd

]
1 〉

comps 〈np
[

-prd
]

2 〉




cont

located_at

[
arg1 1

arg2 non_temp_ent 2

]







The prd feature is also used to distinguish predicative from non-predicative
uses of adjectives and nouns; this will be discussed in Sections 4.9 and 4.10.
According to (4.51), at requires a non-predicative noun phrase as its subject,
and another one as its complement; in (4.47), the noun phrases are BA737 and

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.26 (134)

 Chapter 4

gate 2, respectively. The 1 and 2 of (4.51) correspond to the indices that denote
the entities of BA737 and gate 2, respectively. (4.52) shows the resulting sign for
the prepositional phrase at gate 2.

(4.52)



phon 〈at, gate2〉

ss | l




cat




head

prep

[
pform at

prd +

]

spr 〈〉
subj 〈np

[
-prd

]
1 〉

comps 〈〉




cont

located_at

[
arg1 1

arg2 gate2

]







Apart from (4.42), which is used when is combines with a present-participle
complement, the is auxiliary is also given the lexical sign of (4.53), which is
used when is combines with predicative prepositional phrases.

(4.53)



phon 〈is〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈 3 〉
comps 〈pp

[
subj 〈 3 〉, prd +

]
: 4 〉




cont
pres

[
main_psoa 4

]







According to (4.53), is requires as its complement a predicative prepositional
phrase, i.e., a predicative preposition that has combined with its complements
but not its subject, like the at gate 2 of (4.52). (4.52) and (4.53) cause (4.47) to
receive (4.54).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.27 (135)

From English to TOP 

(4.54)



phon 〈BA737, is, at, gate2〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈〉
comps 〈〉




cont

pres


main_psoa

located_at

[
arg1 ba737

arg2 gate2

]








Like is, the was auxiliary receives two signs: one for present participle comple-
ments, as in BA737 was circling, and one for predicative prepositional phrase
complements, as in (4.48). These are similar to the signs of is, but they intro-
duce Past operators rather than Pres ones.

.. Non-predicative prepositions

The non-predicative sign of at is shown in (4.55); the non-predicative signs
of other prepositions are similar. The effect of the 1 s is that the cont value
of the sign of at is the same as the cont value of the sign of the noun phrase
complement of at; i.e., the at has no additional semantic contribution.

(4.55)



phon 〈at〉

ss | l




cat




head

prep

[
pform at

prd –

]

spr 〈〉
subj 〈〉
comps 〈np

[
-prd

]
: 1 〉




cont 1







(4.55) and the habitual sign of arrives of (4.56) cause (4.49) to receive (4.57).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.28 (136)

 Chapter 4

(4.56)



phon 〈arrives〉

ss | l




cat




head

verb

[
vform fin

aux –

]

aspect lex_state

spr 〈〉
subj 〈np

[
-prd

]
flight ent 1 〉

comps 〈pp
[

-prd, pform at
]
gate ent 2 〉




cont

pres


main_psoa

hab_arrive_at

[
arg1 1

arg2 2

]








(4.57)



phon 〈BA737, arrives, at, gate2〉

ss | l




cat




head

verb

[
vform fin

aux –

]

aspect lex_state

spr 〈〉
subj 〈〉
comps 〈〉




cont

pres


main_psoa

hab_arrive_at

[
arg1 ba737

arg2 gate2

]








The predicative and non-predicative prepositional signs of this section are not
used when prepositions introduce temporal adverbials, as in BA737 departed
(actually) at 5:00 pm. There are additional prepositional signs for these cases,
which will be discussed in Section 4.11.

. Nouns

Like prepositions, nouns receive different signs for their predicative and non-
predicative uses. Nouns used as heads (main nouns) in noun phrase comple-
ments of to be, like the president in (4.58), are predicative. The noun phrase
complements are also said to be predicative. In all other cases, like the president
in (4.59), the nouns and noun phrases are non-predicative.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.29 (137)

From English to TOP 

(4.58) J. Adams is the president.
(4.59) The president was at gate 2.

.. Non-predicative nouns

Let us first examine non-predicative nouns. (4.60) shows the sign of president
that would be used in (4.59). The prd value signals that the sign corresponds
to a non-predicative use of the noun. The spr value declares that the noun
requires as its specifier a determiner (e.g., a, the).

(4.60)




phon 〈president〉

ss | l




cat




head
noun

[
prd –

]
spr 〈

[
loc | cat |head det

]
〉

subj 〈〉
comps 〈〉




cont

nom_obj




index person_ent 1

restr




ntense




et_handle
temp_ent

[
tvar +

]
∨ now

main_psoa
president

[
arg1 1

]











qstore {}




The cont values of signs that correspond to non-predicative nouns are of
sort nom_obj (Section 4.5). The index value stands for the world entity de-
scribed by the noun, and the restr value represents top expressions that are
introduced by the noun.

For simplicity, the determiner the will be treated as equivalent to the deter-
miner a. The sign of the that is used in (4.59) is shown in (4.61), where ‘spec|l’
is an abbreviation of ‘spec|loc’.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.30 (138)

 Chapter 4

(4.61)




phon 〈the〉

ss | l




cat




head

det




spec | l




cat




head
noun

[
prd –

]
spr 〈 _ 〉
subj 〈〉
comps 〈〉




cont 2







spr 〈〉
subj 〈〉
comps 〈〉




cont

quant


det exists

restind

[
index

[
tvar +

]]
2


3




qstore
{

3

}




The spec feature of (4.61) declares that the must be used as the specifier of
a non-predicative N̄, i.e., as the specifier of a non-predicative noun that has
combined with its complements and requires a specifier (spr < >). The 3 s
of (4.61) cause an existential quantifier to be inserted into the quantifier store
(Section 4.6), and the 2 s cause the restind of that quantifier to be unified with
the cont of the N̄’s sign.

According to (4.60), president is non-predicative, it does not need to com-
bine with any complements, and requires a specifier. Hence, it satisfies the spec
restrictions of (4.61), and the can be used as the specifier of president. When
the combines with president, the restind of (4.61) is unified with the cont of
(4.60), and the qstore of (4.61) becomes a set containing (4.62). The resulting
noun phrase receives (4.63), where 2 and 3 are as in (4.62).

(4.62)

quant




det exists

restind

nom_obj




index
person_ent

[
tvar +

]
1

restr




ntense




et_handle
temp_ent

[
tvar +

]
∨ now

main_psoa
president

[
arg1 1

]








2




3

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.31 (139)

From English to TOP 

(4.63)




phon 〈the, president〉

ss | l




cat




head
noun

[
prd –

]
spr 〈〉
subj 〈〉
comps 〈〉




cont 2




qstore
{

3

}




By the head feature principle (Section 4.2.2), (4.63) inherits the head of (4.60),
which is the sign of the head daughter in this case. The propagation of cont
and qstore is controlled by the semantics principle, which in this book has
the simplified form of (4.64). (4.64) uses the terminology of Pollard and Sag
(1994); it is explained further directly below.

(4.64) Semantics Principle (simplified version of this book):

In a headed phrase, (a) the qstore value is the union of the qstore values
of the daughters, and (b) the synsem|loc|cont value is token-identical
with that of the semantic head. (In a headed phrase, the semantic head is
the adjunct-daughter if any, and the head-daughter otherwise.)

Part (a) of the semantics principle means that the qstore of each syntactic
constituent is the union of the qstores of its subconstituents. Part (b) means
that each syntactic constituent inherits the cont of its head daughter (this is the
main noun in noun phrases, the main verb in verb phrases, and the preposition
in prepositional phrases), except for cases where the head daughter combines
with an adjunct daughter (a modifier), where the mother syntactic constituent
inherits the cont of the adjunct daughter (this case will be discussed further
in Section 4.11). Readers familiar with Pollard and Sag’s book (1994) will have
noticed that the semantics principle of this book does not allow quantifiers to
be unstored from qstore. Apart from this, the principle remains as in Pollard
and Sag’s book.

The semantics principle causes the qstore of (4.63) to become the union
of the qstores of (4.60) and (4.61), i.e., the union of the empty set with a
set that contains (4.62). Since the president involves no adjuncts, the ‘semantic
head’ is the head daughter i.e., president, and (4.63) inherits the cont of (4.60),
which is now the restind of (4.62).

The gate 2 of (4.59) is treated as a one-word proper name. In the prototype
nlitdb of Chapter 6, the user types multi-word names, like gate 2 and J. Adams,

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.32 (140)

 Chapter 4

as single words. In real-life applications, the words of such names would be
concatenated during a preprocessing stage (Section 1.2). Proper names are
mapped to signs whose cont is a nom_obj with an empty restr.3 For example,
(4.65) shows the lexical sign of gate 2.

(4.65)



phon 〈gate2〉

ss | l




cat




head
noun

[
prd –

]
spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj

[
index gate2

restr {}

]




qstore {}




The predicative sign of at of (4.51), (4.65), and the predicative sign of was,
which is similar to (4.53), except that it introduces a Past operator, cause was
at gate 2 in (4.59) to receive (4.66). When was at gate 2 combines with the
president, (4.59) receives (4.67), where qstore contains the feature structure of
(4.62). According to the semantics principle, the qstore of (4.67) is the union
of the qstores of (4.66) and (4.63), and the cont of (4.67) is the same as the
cont of (4.66).

(4.66)



phon 〈was, at, gate2〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈np

[
-prd

]
1 〉

comps 〈〉




cont

past




et_handle
temp_ent

[
tvar +

]

main_psoa

located_at

[
arg1 1

arg2 gate2

]






qstore {}




NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.33 (141)

From English to TOP 

(4.67)



phon 〈the, president, was, at, gate2〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈〉
comps 〈〉




cont

past




et_handle
temp_ent

[
tvar +

]

main_psoa

located_at

[
arg1 1

arg2 gate2

]






qstore
{

3

}




The top formula (4.68) is then extracted from (4.67), as discussed in Section
4.6. Whenever an Ntense operator is encountered during the extraction of the
top formulae, if there is no definite information showing that the first argu-
ment of the Ntense should be now*, the first argument is taken to be a variable.
For example, the qstore value of (4.67), shown in (4.62), specifies that the first
argument of the Ntense can be either a top variable or now*. Hence, in (4.68)
the first argument of the Ntense has become a variable (tv). During a post-
processing phase, to be discussed in Section 4.17, the Ntense of (4.68) would
give rise to two separate formulae: one where the first argument of the Ntense
is replaced by now* (current president), and one where the first argument of
the Ntense is replaced by the ev of the Past operator (president when at gate 2).
In contrast, if the sign shows that the first argument of the Ntense is definitely
now*, the first argument of the Ntense in the extracted formula is now*, and
the post-processing has no effect on this argument.

(4.68) Ntense[tv, president(pv)] ∧ Past[ev, located at(pv, gate2)]

It is possible to force a (non-predicative) noun to be interpreted as refer-
ring always to the speech time, or always to the time of the verb tense. (The
same mechanism applies to non-predicative adjectives, to be discussed in Sec-
tion 4.10.) To force a noun to refer always to the speech time, one sets the
et_handle of the ntense in the noun’s sign to simply now, instead of al-
lowing it to be either now or a variable-representing index as in (4.60). This
way, the et_handle of the ntense in the qstore of (4.67), shown in (4.62),

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.34 (142)

 Chapter 4

would be now. (4.68) would contain now* instead of tv, and the post-processing
mechanism would have no effect.

To force a noun to refer always to the time of the verb tense, one simply
omits the Ntense from the noun’s sign. This would cause the formula extracted
from the sign of (4.59) to be (4.69).

(4.69) president(pv) ∧ Past[ev, located at(pv, gate2)]

The semantics of top’s conjunction and Past operator (Sections 3.6 and 3.8,
respectively) require president(pv) and located at(pv, gate2) to be true at the
same (past) event time. Hence, (4.69) expresses the reading where the person
at gate 2 was the president of that time.

There are however, two complications when (non-predicative) noun signs
do not introduce Ntense operators. (These also apply to adjective signs.) First,
a past perfect sentence like (4.70) receives only (4.71) in the case where the ad-
verbial specifies the reference time. This requires president(pv) to be true at the
time of e1v, i.e., at the reference time, which is required to fall within 1/1/1995.
That is, the president is taken to refer to somebody who was the president on
1/1/1995, and who may not have been the president during the visit.

(4.70) The president had visited Rome on 1/1/1995.
(4.71) president(pv) ∧

At[1/1/1995, Past[e1v, Perf [e2v, visiting(pv , rome)]]]

In contrast, if the sign of president introduces an Ntense, the formula extracted
from the sign of (4.70) is (4.72). The post-processing, then, generates three
formulae, corresponding to readings where president refers to the time of the
visit (tv replaced by e2v), the reference time (tv replaced by e1v, equivalent to
(4.71)), or the speech time (tv replaced by now*).

(4.72) Ntense[tv, president(pv)] ∧
At[1/1/1995, Past[e1v, Perf [e2v, visiting(pv , rome)]]]

The second complication is that (non-predicative) nouns that do not intro-
duce Ntense operators are taken to refer to the time of the main clause’s tense,
even if the nouns appear in subordinate clauses. For example, if president does
not introduce an Ntense, (4.73) is mapped to (4.74). The semantics of (4.74)
requires the visitor to have been president during the building of terminal 2.

(4.73) Housecorp built terminal 2 before the president visited terminal 3.
(4.74) president(pv) ∧ Before[Past[e1v, visiting(pv, term3)],

Past[e2v, Culm[building(hcorp, term2)]]]

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.35 (143)

From English to TOP 

In contrast, if president introduces an Ntense, the post-processing generates
three readings, where president refers to the speech time, the time of the build-
ing, or the time of the visit. The treatment of subordinate clauses will be
discussed in Section 4.14.

Before moving on to predicative nouns, let us also examine the non-
predicative signs of nouns like day or summer, which refer to members of
partitionings (Section 3.4). The signs of these nouns are similar to the non-
predicative signs of ordinary nouns, like president, except that they introduce
Part operators and do not introduce Ntense operators. (4.75), for example,
shows the non-predicative sign of day. (The day and day_ent_var sorts are as
in Figure 4.4 on page 116.)

(4.75)




phon 〈day〉

ss | l




cat




head
noun

[
prd –

]
spr 〈

[
loc | cat |head det

]
〉

subj 〈〉
comps 〈〉




cont

nom_obj




index day_ent_var 1

restr




part

[
partng day

part_var 1

]








qstore {}




Names of months and days (e.g., Monday, January) that can be used both with
and without determiners (e.g., on a Monday, on Monday) receive two non-
predicative signs each: one that requires a determiner, and one that does not.
Finally, proper names that refer to particular time-periods (e.g., the year-name
1991 or the date 25/10/1995) receive non-predicative signs that are similar to
those of common proper names (e.g., gate 2), except that their index values
are subsorts of temp_ent rather than non_temp_ent. Later sections will demon-
strate how the signs of temporal nouns and proper names are used to form the
signs of temporal adverbials, like for two days, or before 25/10/1995.

.. Predicative nouns

Let us now examine predicative nouns, like the president of (4.58). (4.76) shows
the predicative sign of president. Unlike the signs of non-predicative nouns,

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.36 (144)

 Chapter 4

whose cont values are of sort nom_obj, the cont values of the signs of pred-
icative nouns are of sort psoa (Section 4.3). The president in (4.76) is a subsort
of psoa.

(4.76)



phon 〈president〉

ss | l




cat




head
noun

[
prd +

]
spr 〈

[
loc | cat |head det

]
〉

subj 〈np
[

-prd
]

1 〉
comps 〈〉




cont
president

[
arg1 person_ent 1

]




qstore {}




Also, unlike non-predicative nouns that do not require subjects (e.g., (4.60)),
predicative nouns do require subjects. In (4.76), president requires a non-
predicative noun phrase as its subject; the 1 stands for the index of that noun
phrase.

In the hpsg version of this book, the predicative signs of nouns are gener-
ated automatically from the non-predicative ones by (4.77); for example, (4.76)
is generated from (4.60).4 As with previous lexical rules, features not shown in
(4.77) (e.g., spr, comps) have the same values in both the original and the
generated signs. The remove ntense(2) in (4.77) means that if 2 , i.e., the el-
ement of the restr set in the non-predicative sign is of sort ntense, then the
cont of the predicative sign should be the main_psoa of 2 (cf. (4.60)); oth-
erwise, the cont of the predicative sign should be 2 . In other words, if the
non-predicative sign introduces an Ntense operator, the operator is removed
in the predicative sign. This is in accordance with the observation in Section
2.11 that noun phrases that are complements of to be always refer to the time
of the verb tense. For example, (4.78) means that J. Adams was the president
in 1992, not at the speech time. (4.78) is represented correctly by (4.79), which
does not contain an Ntense operator.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.37 (145)

From English to TOP 

(4.77) Predicative Nouns Lexical Rule:


ss | l




cat


head

noun

[
prd –

]
subj 〈〉




cont

nom_obj


index 1

restr
{

2

}









⇓
ss | l




cat


head

noun

[
prd +

]
subj 〈np

[
-prd

]
1 〉




cont remove_ntense(2)







(4.78) J. Adams was the president in 1992.
(4.79) At[1992, Past[ev, president(ja)]]

top predicates introduced by predicative nouns end up within the operators of
the tenses of to be; for example, the president(ja) in (4.79) ends up within the
Past. This requires the predicates to hold at the times of the tenses.

In this book, determiners are also given different signs for their uses
in predicative and non-predicative noun phrases.5 For example, apart from
(4.61), the determiner the is also given (4.80), where ‘spec|l’ is again an ab-
breviation of ‘spec|loc’. The spec of (4.80) shows that the sign can only be
used with predicative nouns (cf. (4.61)). Unlike determiners of non-predicative
noun phrases, determiners of predicative noun phrases have no additional se-
mantic contribution. For example, the ss|l|cont of (4.80) is simply a copy of
the cont of the noun, and no quantifier is introduced in qstore (cf. (4.61)).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.38 (146)

 Chapter 4

(4.80)




phon 〈the〉

ss | l




cat




head

det




spec | l




cat




head
noun

[
prd +

]
spr 〈 _〉
subj 〈 _ 〉
comps 〈〉




cont 2







spr 〈〉
subj 〈〉
comps 〈〉




cont 2




qstore {}




Going back to (4.58), when the combines with president, the resulting noun
phrase receives (4.81). hpsg’s principles, including the semantics principle of
(4.64), cause (4.81) to inherit the head, subj, and cont values of (4.76).

(4.81)



phon 〈the, president〉

ss | l




cat




head
noun

[
prd +

]
spr 〈〉
subj 〈np

[
-prd

]
1 〉

comps 〈〉




cont
president

[
arg1 person_ent 1

]




qstore {}




Apart from (4.42) and (4.53), the is auxiliary is also given (4.82), which al-
lows the complement of is to be a predicative noun phrase. (There are similar
signs for was.) The 4 s in (4.82) stand for the cont value of the predicative
noun phrase.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.39 (147)

From English to TOP 

(4.82)



phon 〈is〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈 3 〉
comps 〈np

[
subj 〈 3 〉, prd +

]
: 4 〉




cont
pres

[
main_psoa 4

]




qstore {}




(4.82) and (4.81) cause the is the president of (4.58) to receive (4.83). Finally,
when is the president combines with J. Adams, (4.58) receives a sign with an
empty qstore, whose cont represents (4.84).

(4.83)



phon 〈is, the, president〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈np

[
-prd

]
1 〉

comps 〈〉




cont
pres

[
main_psoa

president

[
arg1 person_ent 1

]]




qstore {}




(4.84) Pres[president(ja)]

There are two additional complications with predicative noun phrases. The
first one is that in the non-predicative signs of proper names (e.g., (4.65)),
the value of restr is the empty set. Hence, (4.77) does not generate the cor-
responding predicative signs, because the non-predicative signs do not match
the restr description of the left-hand side of (4.77), which requires the restr
value to be a one-element set. This causes (4.85) to be rejected, because there
is no predicative sign for J. Adams. To solve this problem, the additional lexical
rule of (4.86) can be used.

(4.85) The inspector is J. Adams.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.40 (148)

 Chapter 4

(4.86) Additional Predicative Nouns Lexical Rule:


ss | l




cat


head

noun

[
prd –

]
subj 〈〉




cont

nom_obj

[
index 1

restr {}

]







⇓


ss | l




cat


head

noun

[
prd +

]
subj 〈np

[
-prd

]
2 〉




cont

identity

[
arg1 1

arg2 2

]







This would generate (4.87) from the non-predicative sign of J. Adams; the latter
is similar to (4.65). (4.82) and (4.87) would then cause (4.85) to be mapped to
(4.88). For simplicity, it is assumed here that the non-predicative inspector does
not introduce an Ntense operator (Section 4.9.1).

(4.87)



phon 〈J.Adams〉

ss | l




cat




head
noun

[
prd +

]
spr 〈〉
subj 〈np

[
-prd

]
2 〉

comps 〈〉




cont

identity

[
arg1 ja

arg2 2

]




qstore {}




(4.88) inspector(inspv) ∧ Pres[identity(ja, inspv)]

The identity(τ1, τ2) is intended to be true at event times where its two argu-
ments denote the same entity. This calls for a special domain-independent
semantics for identity(τ1, τ2), an issue that will not be explored further.

The second complication is that the non-predicative sign of Monday, which
is similar to (4.75), and the treatment of predicative noun phrases above lead
to an attempt to map (4.89) to (4.90).

(4.89) 23/10/1995 was a Monday.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.41 (149)

From English to TOP 

(4.90) Past[ev, Part[mondayg , 23/10/1995]]

(4.90) is problematic for two reasons. First, the past tense of (4.89) is in effect
ignored, because the denotation of Part[σ, β] does not depend on lt, which is
what the Past operator affects (Sections 3.6 and 3.8). Hence, the implication
of (4.89) that 23/10/1995 is a past day is not captured. This problem could be
solved by adding the constraint g(β) � lt in the semantics of Part[σ, β]. Sec-
ond, (4.90) violates the syntax of top, which does not allow the second argu-
ment of a Part operator to be a constant; this could be solved by enhancing the
definition of Part accordingly. Since, sentences like (4.89) are rare in database
querying, however, these issues will not be investigated further.

. Adjectives

Following Pollard and Sag (1987:64–65), adjectives are also given different
signs for their predicative and non-predicative uses. When used as comple-
ments of to be, as with closed in (4.91), adjectives are said to be predicative. In
all other cases, for example (4.92), adjectives are non-predicative.

(4.91) Runway 2 was closed.
(4.92) BA737 landed on a closed runway.

Sentence (4.91) is actually ambiguous. The closed may be a predicative adjec-
tive or the passive of to close. However, since passives are ignored in this book
(Section 2.13), the passive reading of (4.91) will be ignored.

In the airport domain, the predicative adjectival sign of closed is (4.93).

(4.93)



phon 〈closed〉

ss | l




cat




head
adj

[
prd +

]
spr 〈〉
subj 〈np

[
-prd

]
1 〉

comps 〈〉




cont
closed

[
arg1 (gate_ent ∨ runway_ent) 1

]




qstore {}




The is and was auxiliaries receive four signs each. One for progressive forms
(see (4.42)), one for prepositional phrase complements (see (4.53)), one for

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.42 (150)

 Chapter 4

noun phrase complements (see (4.82)), and one for adjectival complements
((4.94) below). (4.94) and (4.93) cause (4.91) to be mapped to (4.95).

(4.94)




phon 〈was〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈 3 〉

comps 〈




loc




cat




head
adj

[
prd +

]
subj 〈 3 〉
comps 〈〉




cont 2






〉




cont

past


et_handle

temp_ent

[
tvar +

]
main_psoa 2







qstore {}




(4.95) Past[ev, closed(runway2)]

The non-predicative sign of closed in the airport domain is shown in (4.96).
The closed in (4.92) is a modifier (adjunct) of runway. The mod|l in (4.96)
refers to the synsem|loc (abbreviated as ss|l) of the modified noun. The
ss|l|cont of (4.96) is the same as the one of the noun, except that an Ntense
is added to the restr of the noun-sign, which requires the entity described by
the noun to be closed at some unspecified time. The index of the noun’s sign
is also required to represent a gate or runway.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.43 (151)

From English to TOP 

(4.96)




phon 〈closed〉

ss | l




cat




head

adj




prd –

mod | l




cat




head noun

spr 〈_〉
comps 〈〉




cont

nom_obj

[
index 1

restr 2

]







spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj




index (gate_ent ∨ runway_ent) 1

restr 2 ∪


ntense




et_handle
temp_ent

[
tvar +

]
∨ now

main_psoa
closed

[
arg1 1

]











qstore {}




The non-predicative sign of runway in the airport domain is shown in (4.97).
It is assumed here that runway does not introduce an Ntense operator (Sec-
tion 4.9.1). In (4.92), closed combines with runway according to hpsg’s head-
adjunct schema (Pollard & Sag 1994), leading to (4.98), where 3 is the set
of (4.99). (Sets of psoas correspond to conjunctions.) The principles of hpsg
cause (4.98) to inherit the head and spr of (4.97). (4.98) also inherits the cont
of (4.96), according to the semantics principle of (4.64); in this case, the ‘se-
mantic head’ is the adjunct closed. Then, (4.98), along with the sign of landed,
which is the same as (4.1), except that it also introduces Past and Culm opera-
tors, and the non-predicative sign of on, which is similar to (4.55), cause (4.92)
to be mapped to (4.100). During the post-processing, to be discussed in Sec-
tion 4.17, (4.100) gives rise to two different formulae, one where tv is replaced
by now* (currently closed runway), and one where tv is replaced by ev (closed
during the landing).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.44 (152)

 Chapter 4

(4.97)




phon 〈runway〉

ss | l




cat




head
noun

[
prd –

]
spr 〈

[
loc | cat |head det

]
〉

subj 〈〉
comps 〈〉




cont

nom_obj


index runway_ent 1

restr

{
runway

[
arg1 1

]}






qstore {}




(4.98)



phon 〈closed, runway〉

ss | l




cat




head
noun

[
prd –

]
spr 〈

[
loc | cat |head det

]
〉

subj 〈〉
comps 〈〉




cont

nom_obj

[
index runway_ent 1

restr 3

]




qstore {}




(4.99)

runway

[
arg1 1

]
,

ntense




et_handle
temp_ent

[
tvar +

]
∨ now

main_psoa
closed

[
arg1 1

]





3

(4.100) runway(rv) ∧ Ntense[tv, closed(rv)] ∧
Past[ev, Culm[landing on(occrv, ba737, rv)]]

An additional sign is needed for each non-predicative adjective to allow sen-
tences like (4.101), where a non-predicative adjective (closed) combines with a
predicative noun (runway).

(4.101) Runway 2 is a closed runway.

The sign of (4.96) cannot be used in (4.101), because here runway is pred-
icative, and hence the cont value of its sign is a psoa (the predicative sign of
runway is similar to (4.76)); in contrast, (4.96) assumes that the cont of the
noun is a nom_obj. One has to use the additional sign of (4.102). Then, (4.101)
is mapped to (4.103), which requires runway 2 to be closed at the speech time.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.45 (153)

From English to TOP 

(4.102)




phon 〈closed〉

ss | l




cat




head

adj




prd –

mod | l




cat




head
noun

[
prd +

]
spr 〈 _ 〉
subj 〈np

[
-prd

]
1 〉

comps 〈〉




cont 2







spr 〈〉
subj 〈〉
comps 〈〉




cont

and


conj1 2

conj2
closed

[
arg1 1

]






qstore {}




(4.103) Pres[runway(runway2) ∧ closed(runway2)]

As discussed in Section 2.8, temporal adjectives such as former or annual are
not considered in this book. The prototype nlitdb of Chapter 6 allows only
non-predicative uses of the temporal adjective current, as in (4.104), to allow
its users to force noun phrases to refer to the present. The sign of current sets
the first argument of the noun’s Ntense to now*.

(4.104) The current president was at terminal 2.

. Temporal adverbials

We now turn to the treatment of temporal adverbials, starting from punctual
adverbials (Section 2.9.1).

.. Punctual adverbials

Apart from (4.51) and (4.55), which are used in sentences like (4.47) and
(4.49), at is also given signs that are used when it introduces punctual adver-
bials, as in (4.105). (4.106) shows one of these signs. The mod feature refers to
the synsem (abbreviated as ss) of the constituent that is modified by at. The
s[vform fin]: 2 is an abbreviation for a finite sentence, i.e., a finite verb form

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.46 (154)

 Chapter 4

that has combined with its subject and complements; the 2 refers to the cont
of the finite sentence. Similarly, vp[vform psp]: 2 stands for a past participle
verb phrase, i.e., a past participle that has combined with its complements, but
not its subject. (4.106) can be used when at modifies finite sentences or past
participle verb phrases, whose aspect is state, activity, or point. Generally, in
this book temporal adverbials and temporal subordinate clauses are allowed to
modify only finite sentences and past participle verb phrases.

(4.105) Tank 2 was empty at 5:00 pm.
(4.106)




phon 〈at〉

ss | l




cat




head

prep




prd –

mod s
[

vform fin
]
: 2 ∨

vp
[

vform psp
]
: 2

mod | l | cat |aspect state ∨ activity

∨ point




spr 〈〉
subj 〈〉
comps 〈np

[
-prd

]
minute ent 1 〉

aspect point




cont

at_op

[
time_spec 1

main_psoa 2

]




qstore {}




As with multi-word proper names (Section 4.9), time expressions like 5:00 pm
are treated as single words, assuming that in real-life applications their tokens
would be concatenated during a preprocessing stage. The sign of 5:00 pm is
shown in (4.107). Along with (4.106), it causes at 5:00 pm to receive (4.108).
The 5:00 pm acts as the noun phrase complement of at.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.47 (155)

From English to TOP 

(4.107)




phon 〈5:00pm〉

ss | l




cat




head
noun

[
prd –

]
spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj




index minute_ent_var 1

restr




part

[
partng 5:00pm

part_var 1

]



3




qstore



[

det exists

restind 3

]





(4.108)




phon 〈at, 5:00pm〉

ss | l




cat




head

prep




prd –

mod s
[

vform fin
]
: 2 ∨

vp
[

vform psp
]
: 2

mod | l | cat |aspect state ∨ activity

∨ point




spr 〈〉
subj 〈〉
comps 〈〉
aspect point




cont

at_op

[
time_spec 1

main_psoa 2

]




qstore







det exists

restind




index minute_ent_var 1

restr




part

[
partng 5:00pm

part_var 1

]














According to hpsg’s head feature principle (Section 4.2.2), (4.108) inherits the
head of (4.106); here at is the ‘head daughter’ of at 5:00 pm, and 5:00 pm is
the ‘complement daughter’. Following the semantics principle of (4.64), the
qstore of (4.108) is the union of the qstores of (4.106) and (4.107), and the

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.48 (156)

 Chapter 4

cont of (4.108) is the same as the cont of (4.106); in this case, the ‘semantic
head’ is the head daughter, i.e., at.

The propagation of aspect is controlled by (4.109), a new principle of this
book. The principle is first stated in Pollard and Sag’s (1994) terminology, and
then explained in following paragraphs.

(4.109) Aspect Principle:

In a headed-phrase, the synsem|loc|cat|aspect value is token-identical
with that of the semantic head. (In a headed phrase, the semantic head is
the adjunct-daughter if any, and the head-daughter otherwise.)

According to the principle, each syntactic constituent inherits the aspect of its
head daughter (this is the main noun in noun phrases, the main verb in verb
phrases, and the preposition in prepositional phrases), except for cases where
the head daughter combines with an adjunct daughter (a modifier), where the
mother syntactic constituent inherits the cont of the adjunct daughter. (4.109)
causes (4.108) to inherit the aspect value of the semantic head at.

In (4.105), the tank 2 was empty receives (4.110). Then, when tank 2 was
empty combines with at 5:00 pm, (4.105) receives (4.111). In this case, tank
2 was empty is the head daughter, and at 5:00 pm is an adjunct daughter (a
modifier). Hence, according to (4.109), (4.111) inherits the aspect of (4.108),
i.e., point; in contrast, the aspect of (4.110) was lex_state. This is in accordance
with the arrangements of Section 2.9.1, whereby punctual adverbials trigger an
aspectual shift to point.

(4.110)



phon 〈tank2, was, empty〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect lex_state

spr 〈〉
subj 〈〉
comps 〈〉




cont

past




et_handle
temp_ent

[
tvar +

]
main_psoa

empty

[
arg1 tank2

]






qstore {}




NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.49 (157)

From English to TOP 

(4.111)



phon 〈tank2, was, empty, at, 5:00pm〉

ss | l




cat




head

verb

[
vform fin

aux +

]

aspect point

spr 〈〉
subj 〈〉
comps 〈〉




cont

at_op




time_spec 1

main_psoa

past




et_handle
temp_ent

[
tvar +

]
main_psoa

empty

[
arg1 tank2

]









qstore







det exists

restind




index minute_ent_var 1

restr



part

[
partng 5:00pm

part_var 1

]














According to the semantics principle, (4.111) also inherits the cont of (4.108),
which is the sign of the modifier, and the qstore of (4.111) is the union of the
qstores of (4.108) and (4.110). Finally, according to the head feature principle
(Section 4.2.2), (4.111) inherits the head of (4.110), which is the sign of the
head daughter. The qstore and cont of (4.111) represent (4.112).

(4.112) Part[5:00pmg , fvv] ∧ At[fvv, Past[ev, empty(tank2)]]

The reader may wonder why temporal adverbials (e.g., at 5:00 pm in (4.105))
are taken to modify whole finite sentences (tank 2 was empty), rather than finite
verb phrases (was empty). The latter approach leads to problems in questions
like ‘Was tank 2 empty at 5:00 pm?’, where was combines in one step with both
its subject tank 2 and its complement empty, following Pollard and Sag’s (1994)
head-subject-complement schema. Hence, there is no verb phrase constituent,
i.e., no verb that has combined with its complements but not its subject, to be
modified by at 5:00 pm.

Apart from finite sentences, temporal adverbials are also allowed to modify
past participle verb phrases, as shown in the mod of (4.106). This is needed in
past perfect sentences like (4.113).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.50 (158)

 Chapter 4

(4.113) BA737 had entered sector 2 at 5:00 pm.

As discussed in Section 2.5.5, (4.113) has two readings: one where the entrance
occurs at 5:00 pm, and one where 5:00 pm is a reference time, a time where
the entrance has already occurred. The two readings are expressed by (4.115)
and (4.117), respectively (Section 3.15). These follow from the fact that (4.113)
is taken to be syntactically ambiguous with two possible parses, sketched in
(4.114) and (4.116), respectively.

(4.114) BA737 had [[entered sector 2] at 5:00 pm].
(4.115) Part[5:00pmg , fvv] ∧

Past[e1v, Perf [e2v, At[fvv, enter(ba737, sector2)]]]
(4.116) [BA737 had [entered sector 2]] at 5:00 pm.
(4.117) Part[5:00pmg , fvv] ∧

At[fvv, Past[e1v, Perf [e2v, enter(ba737, sector2)]]]

One complication of this approach is that it generates two equivalent formulae
for the present perfect (4.118), shown in (4.120) and (4.122), which correspond
to the parses of (4.119) and (4.121), respectively. The reader is reminded that
has does not introduce a Perf operator, as shown in (4.33).

(4.118) BA737 has entered sector 2 at 5:00 pm.
(4.119) [BA737 has [entered sector 2]] at 5:00 pm.
(4.120) Part[5:00pmg , fvv] ∧ At[fvv, Past[ev, enter(ba737, sector2)]]
(4.121) BA737 has [[entered sector 2] at 5:00 pm].
(4.122) Part[5:00pmg , fvv] ∧ Past[ev, At[fvv, enter(ba737, sector2)]]

In the prototype nlitdb of Chapter 6, the sign of has is slightly more complex
than (4.33). It requires the cont of the verb phrase complement to be of sort
predicate. This blocks (4.121) and (4.122), because in (4.121) the at 5:00 pm
causes the cont of entered sector 2 at 5:00 pm to become of sort at_op (it inserts
an At operator), which is not a subsort of predicate.

The sign of (4.106) corresponds to the interjacent meaning of punctual ad-
verbials, which according to Table 2.2 on page 46 is possible only with states and
activities. (4.106) also covers cases where punctual adverbials combine with
points. The inchoative and terminal meanings of punctual adverbials are cov-
ered by additional signs for at, which are similar to (4.106), but introduce ad-
ditional Begin or End operators, and require the modified constituent to have
the appropriate aspect.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.51 (159)

From English to TOP 

.. Period adverbials

We now move on to period adverbials (Section 2.9.2). (4.123) shows one of the
signs of on that are used when on introduces period adverbials.

(4.123)



phon 〈on〉

ss | l




cat




head

prep




prd –

mod s
[

vform fin
]
: 2 ∨

vp
[

vform psp
]
: 2

mod | l | cat |aspect culmact




spr 〈〉
subj 〈〉
comps 〈np

[
-prd

]
day ent 1 〉

aspect point




cont

at_op


time_spec 1

main_psoa
end

[
main_psoa 2

]






qstore {}




According to its mod feature, (4.123) can be used only when the on adver-
bial modifies a culminating activity. (4.123) corresponds to the reading where
the situation of the culminating activity simply reaches its completion within
the adverbial’s period, and causes the aspectual class of the culminating ac-
tivity to become point; see Table 2.3 on page 50. For example, (4.123) causes
(4.124) to be mapped to (4.125). (It is assumed here that to repair is classified
as culminating activity verb, as in the airport domain.) Intuitively, (4.125) re-
quires a past period ev to exist, such that ev covers a whole repair of engine 2 by
J. Adams, from start to completion, and the end-point of ev falls within some
Monday. That is, the repair must have been completed on Monday, but it may
have started before Monday.

(4.124) J. Adams repaired engine 2 on Monday.
(4.125) Part[mondayg , mv] ∧

At[mv, End[Past[ev, [Culm[repairing(occrv , ja, eng2)]]]]

There is also an on sign that is similar to (4.123), but that does not introduce
an End operator, preserves the aspect of the modified expression, and can be
used when on adverbials modify expressions from all four aspectual classes.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.52 (160)

 Chapter 4

This sign causes (4.124) to be mapped to (4.126). (The prototype nlitdb of
Chapter 6 generates both (4.125) and (4.126).) (4.126) corresponds to the read-
ing where the repair must have both started and been completed within the
same Monday. The on sign that does not introduce an End operator also gives
rise to appropriate formulae when on adverbials modify state, activity, or point
expressions.

(4.126) Part[mondayg , mv] ∧
At[mv, Past[ev, [Culm[repairing(occrv , ja, eng2)]]]

Both signs of on require the noun phrase complement of on to introduce an
index of sort day_ent. The signs of 1/1/1991 and Monday introduce indices
of sorts 1/1/1991 and day_ent_var respectively, which are subsorts of day_ent
(Figure 4.4 on page 116). Hence, 1/1/1991 and Monday are legitimate com-
plements of on in period adverbials. In contrast, 5:00 pm introduces an index
of sort minute_ent_var, as can be seen in (4.107), which is not a subsort of
day_ent. Consequently, (4.127) is correctly rejected.

(4.127) *Tank 2 was empty on 5:00 pm.

The signs of other prepositions that introduce period adverbials (e.g., in 1991,
before 29/10/1995, after 5:00 pm) and the signs of yesterday and today are sim-
ilar to the signs of on, except that before and after introduce Before and After
operators instead of At operators. Also, the before preposition is given only one
sign, that does not introduce an End operator, i.e., there is no before sign for
culminating activities analogous to (4.123), which introduces an End. This is
in accordance with the observation made in Section 2.9.2 that in the case of be-
fore adverbials, requiring the situation of a culminating activity to simply reach
its completion before some time (reading with End) is equivalent to requiring
the situation to both start and reach its completion before that time (reading
without End).

.. Duration adverbials

The treatment of duration adverbials is rather ad hoc from a syntactic point
of view. In an adverbial like for two days, both two and days are taken to be
complements of for, instead of treating two as the determiner of days, and two
days as a noun phrase complement of for. Words like one, two, three, etc. are
mapped to signs like (4.128). Their restrs are empty, and their indices rep-
resent the corresponding numbers. The 2 of (4.128) is a subsort of sem_num

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.53 (161)

From English to TOP 

(Section 4.4). The none value of the spec feature reflects the fact that these signs
are not intended to be used when the corresponding words act as determiners.

(4.128)



phon 〈two〉

ss | l




cat




head
det

[
spec none

]
spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj

[
index 2

restr {}

]




qstore {}




The sign of for that is used in duration adverbials is shown in (4.129). The fea-
ture structures that correspond to 5 and 6 are shown in (4.130) and (4.131).
The comps of (4.129) means that for requires two complements: a deter-
miner that introduces a number-denoting index (sem_num), such as the two
of (4.128), and a noun that introduces a Part operator whose first argument
is a complete partitioning name, like the day of (4.75). The adverbial for two
days receives (4.135). No number agreement checks are made (Section 4.3),
and plural nouns are treated semantically as singular ones. Hence, apart from
phon, the sign of days is the same as (4.75).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.54 (162)

 Chapter 4

(4.129)



phon 〈for〉

ss | l




cat




head

prep




prd –

mod s
[

vform fin
]
: 4 ∨

vp
[

vform psp
]
: 4

mod | l | cat |aspect (lex_state

∨ progressive

∨ activity) 1




spr 〈〉
subj 〈〉
comps 〈 5 , 6 〉
aspect 1




cont

for_op




dur_unit 2

duration 3

main_psoa 4







qstore {}




(4.130)

loc

[
cat |head det

cont | index sem_num 3

]5

(4.131)



loc




cat




head noun

spr 〈 _ 〉
subj 〈〉
comps 〈〉




cont | restr

{
part

[
partng compl_partng 2

]}







6

In (4.132), when tank 2 was empty combines with its modifier for two days,
the 4 of (4.135) becomes a feature structure that represents the top formula
for tank 2 was empty, i.e., (4.133). According to the semantics principle of
(4.64), the sign of (4.132) inherits the cont of (4.135), where 4 now represents
(4.133). Hence, (4.132) is mapped to (4.134).

(4.132) Tank 2 was empty for two days.
(4.133) Past[ev, empty(tank2)]
(4.134) For[dayc, 2, Past[ev, empty(tank2)]]

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.55 (163)

From English to TOP 

(4.135)



phon 〈for, two, days〉

ss | l




cat




head

prep




prd –

mod s
[

vform fin
]
: 4 ∨

vp
[

vform psp
]
: 4

mod | l | cat |aspect (lex_state

∨ progressive

∨ activity) 1




spr 〈〉
subj 〈〉
comps 〈〉
aspect 1




cont

for_op




dur_unit day

duration 2

main_psoa 4







qstore {}




Following Table 2.4 on page 53, (4.129) does not allow for adverbials to mod-
ify point expressions (the mod|l|cat|aspect of (4.129) cannot be point). It
also does not allow for adverbials to modify consequent states; otherwise, apart
from (4.137), (4.136) would also receive (4.138).

(4.136) BA737 had circled for two hours.
(4.137) Past[e1v, Perf [e2v, For[hourc, 2, circling(ba737)]]]
(4.138) For[hourc, 2, Past[e1v, Perf [e2v, circling(ba737)]]]

(4.137) corresponds to the parse of (4.136) where for two hours modifies the
past participle circled before circled combines with had. In that case, the for ad-
verbial modifies an activity, because past participles retain the aspectual class of
the base form (to circle is an activity verb in the airport domain). (4.138) cor-
responds to the parse where for two hours modifies the whole sentence BA737
had circled. In that case, the for adverbial modifies a consequent state, because
the had has caused the aspectual class of BA737 had circled to become conse-
quent state. By not allowing for adverbials to modify consequent states, (4.138)
is blocked. This is needed, because in (4.138) the two hours is the duration
of a period (pointed to by e1v) that follows a period (pointed to by e2v) where
BA737 was circling. This reading is never available when for adverbials are used
in past perfect sentences. The for adverbial of (4.136) can only specify the du-

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.56 (164)

 Chapter 4

ration of the circling, as in (4.137). Kamp and Reyle (1993:587) make a similar
observation.

The treatment of for duration adverbials causes (4.139) to receive (4.140),
which does not capture correctly the meaning of (4.139), because it requires
the taxiing to have been completed, i.e., BA737 to have reached gate 2. In con-
trast, as discussed in Section 2.9.3, the for adverbial cancels the normal im-
plication of BA737 taxied to gate 2 that the taxiing was completed. The post-
processing stage that will be discussed in Section 4.17 removes the Culm oper-
ator of (4.140), generating a formula that does not require the taxiing to have
been completed.

(4.139) BA737 taxied to gate 2 for five minutes.
(4.140) For[minutec, 5, Past[ev, Culm[taxiing to(ba737, gate2)]]]

Duration adverbials introduced by in, as in (4.141), are treated by mapping in
to a sign that is the same as (4.129), except that it allows the adverbial to modify
only culminating activities. As discussed in Section 2.9.4, the framework of
this book does not allow in duration adverbials to modify states, activities, or
points.

(4.141) BA737 taxied to gate 2 in five minutes.

This causes (4.141) to be mapped to (4.140), which correctly requires the taxi-
ing to have been completed, and the duration of the taxiing, from start to com-
pletion, to be five minutes. In this case, the post-processing does not remove
the Culm operator.

. Temporal complements of habituals

Let us now examine more closely the status of temporal prepositional phrases,
like at 5:00 pm and on Monday in (4.142)–(4.145).

(4.142) BA737 departed at 5:00 pm.
(4.143) BA737 departs at 5:00 pm.
(4.144) J. Adams inspected gate 2 on Monday.
(4.145) J. Adams inspects gate 2 on Monday.

(4.142) has both a habitual and a non-habitual reading. The non-habitual read-
ing refers to an actual departure that took place at 5:00 pm. The habitual read-
ing means that BA737 had the habit of departing at 5:00 pm; this reading is
easier to accept if an adverbial like in 1999 is added. In (4.143), only the habit-

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.57 (165)

From English to TOP 

ual reading is possible, i.e., BA737 currently has the habit of departing at 5:00
pm. A scheduled-to-happen reading is also possible in (4.143), but as discussed
in Section 2.5.1, this is ignored in this book. Similar comments apply to (4.144)
and (4.145).

To account for the habitual and non-habitual readings of to depart in
(4.142) and (4.143), the base form of the verb is given the signs of (4.146)
and (4.147), which correspond to what Chapter 2 called informally the ha-
bitual and non-habitual homonyms of to depart. (4.146) classifies the habitual
homonym as (lexical) state, while (4.147) classifies the non-habitual homonym
as point; this agrees with Table 2.1 on page 29. According to (4.146), the ha-
bitual homonym requires a prepositional phrase introduced by at that specifies
the habitual departure time. In contrast, the non-habitual homonym of (4.147)
requires no complement.

(4.146)



phon 〈depart〉

ss | l




cat




head

verb

[
vform bse

aux –

]

aspect lex_state

spr 〈〉
subj 〈 np

[
-prd

]
flight ent 1 〉

comps 〈 pp
[

-prd, pform at
]
minute gappy 2 〉




cont

hab_departs_at

[
arg1 1

arg2 2

]




qstore {}




(4.147)



phon 〈depart〉

ss | l




cat




head

verb

[
vform bse

aux –

]

aspect point

spr 〈〉
subj 〈 np

[
-prd

]
flight ent 1 〉

comps 〈〉




cont
actl_depart

[
arg1 1

]




qstore {}




NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.58 (166)

 Chapter 4

In the airport domain, there are actually two habitual signs for to depart: one
where to depart requires a prepositional phrase complement introduced by at,
as in (4.146), and one where to depart requires a prepositional phrase comple-
ment introduced by from; the latter is needed in (4.148). There are also two
non-habitual signs of to depart, one where to depart requires no complement,
as in (4.147), and one where to depart requires a prepositional phrase comple-
ment introduced by from; the latter is needed in (4.149). For simplicity, these
extra signs will be ignored here.

(4.148) BA737 (habitually) departs from gate 2.
(4.149) BA737 (actually) departed from gate 2.

The signs of (4.146) and (4.147), along with the simple past lexical rules of
Section 4.7.1, lead to two signs for the simple past departed, a habitual and a
non-habitual one. These are the same as (4.146) and (4.147), except that they
contain additional Past operators. In contrast, the simple present lexical rule of
Section 4.7.1 generates only one sign for departs. This is the same as (4.146),
except that it contains an additional Pres operator. No simple present sign is
generated from (4.147), because the simple present lexical rule requires the
aspect of the base sign to be state.

The non-habitual simple past sign of departed, the at sign of (4.106), and
the 5:00 pm sign of (4.107), cause (4.142) to be mapped to (4.150), which
expresses the non-habitual reading of (4.142). In this case, at 5:00 pm is
treated as a temporal adverbial modifier of BA737 departed, as discussed in
Section 4.11.1.

(4.150) Part[5:00pm, fvv] ∧ At[fvv, Past[ev, act depart(ba737)]]

In the habitual reading of (4.142), the habitual sign of departed is used, which is
derived from (4.146). In this case, at 5:00 pm is treated as a prepositional phrase
complement of departed, and the sign of at that introduces non-predicative
prepositional phrase complements, i.e., (4.55), is used. The intention is to map
(4.142) to (4.151), where 5:00pm is a constant acting as a generic representative
of 5:00 pm minutes (Section 3.18).

(4.151) Past[ev, hab departs at(ba737, 5:00pm)]

The problem is that in this case the 5:00 pm sign of (4.107) cannot be used, be-
cause it inserts a Part operator in qstore. The semantics principle would cause
this Part operator to be inherited by the sign of the overall (4.142), and thus the
Part operator would appear in the resulting formula. To address this problem,
an extra sign, shown in (4.152), is given to 5:00 pm, which does not introduce

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.59 (167)

From English to TOP 

a Part operator. Similarly, an extra sign for Monday is needed in (4.144). The
5:00 pm sign of (4.152), the at sign of (4.55), and the habitual departed sign,
which is derived from (4.146), cause (4.142) to be mapped to (4.151).

(4.152)



phon 〈5:00pm〉

ss | l




cat




head
noun

[
prd –

]
spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj

[
index 5:00pm

restr {}

]




qstore {}




The habitual departed sign, which derives from (4.146), requires the index of
the prepositional phrase complement to be of sort minute_gappy. As desired,
this does not allow the 5:00 pm sign of (4.107), the one that introduces a Part
operator, to be used in the prepositional phrase complement of the habit-
ual departed, because the index of the prepositional phrase would then be of
sort minute_ent_var, which is not a subsort of minute_gappy (Figure 4.4 on
page 116). In contrast, (4.152) introduces an index of sort 5:00pm, which is a
subsort of minute_gappy, and hence that sign can be used in the complement
of the habitual departed.

The treatment of the simple present (4.143) is similar. In this case, the ha-
bitual simple present sign, which is derived from (4.146), is used, and (4.143)
is mapped to (4.153). As noted above, the simple present lexical rule does not
generate a non-habitual sign for the simple present departs. Consequently, no
top formula is generated for the impossible non-habitual reading of (4.143).

(4.153) Pres[hab departs at(ba737, 5:00pm)]

. Fronted temporal modifiers

As discussed in Section 4.11, temporal adverbial modifiers, like at 5:00 pm in
(4.154) and (4.155) or on Monday in (4.156) and (4.157), are allowed to modify
either whole finite sentences or past participle verb phrases.

(4.154) BA737 entered sector 2 at 5:00 pm.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.60 (168)

 Chapter 4

(4.155) At 5:00 pm BA737 entered sector 2.
(4.156) Tank 2 was empty on Monday.
(4.157) On Monday tank 2 was empty.

In hpsg, the order in which a modifier and the modified constituent can appear
in a sentence is controlled by the constituent ordering principle. This is a general
principle that controls the order in which the various constituents can appear
in a sentence (Pollard & Sag 1987). This book uses a simplified version of the
principle, which places no restriction on the order between temporal modi-
fiers and modified constituents when the modified constituents are sentences.
This allows at 5:00 pm to either follow or precede BA737 entered sector 2, as
in (4.154) and (4.155), respectively. Similarly, on Monday may either follow or
precede tank 2 was empty, as in (4.156) and (4.157), respectively.6 When tem-
poral modifiers attach to past participle verb phrases, however, the constituent
ordering principle of this book requires modifiers to follow the verb phrases,
as in (4.158).7 This rules out unacceptable sentences like (4.159), where at 5:00
pm precedes the entered sector 2.

(4.158) BA737 had [[entered sector 2] at 5:00 pm].
(4.159) *BA737 had [at 5:00 pm [entered sector 2]].

This approach causes (4.160) to receive only (4.161), because at 5:00 pm can
modify only the whole BA737 had entered sector 2; it cannot modify just en-
tered sector 2, because of the intervening BA737 had. In (4.161), 5:00 pm is a
reference time (Section 2.5.5) where the entrance had already occurred. In con-
trast, (4.162) receives both (4.161) and (4.163), because in that case at 5:00 pm
can modify either the whole BA737 had entered sector 2 or only entered sector 2.
In (4.163), 5:00 pm is the time of the entrance.

(4.160) At 5:00 pm [BA737 had entered sector 2].
(4.161) Part[5:00pm, fvv] ∧

At[fvv, Past[e1v, Perf [e2v, enter(ba737, sector2)]]]
(4.162) BA737 had entered sector 2 at 5:00 pm.
(4.163) Part[5:00pm, fvv] ∧

Past[e1v, Perf [e2v, At[fvv, enter(ba737, sector2)]]]

The fact that (4.160) does not receive (4.163) does not seem to be a disadvan-
tage, because in (4.160) the reading of (4.163) seems unlikely, or at least much
more unlikely than in (4.162).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.61 (169)

From English to TOP 

. Temporal subordinate clauses

This section discusses the treatment of temporal subordinate clauses (Sec-
tion 2.10), focusing on clauses introduced by while. The treatment of clauses
introduced by before and after is very similar.

As with temporal adverbials, clauses introduced by while are treated as tem-
poral modifiers of finite sentences or past participle verb phrases. Also, as with
prepositions introducing period adverbials, while is given two signs. The first
one, shown in (4.164), is similar to (4.123): it introduces an End operator, it
causes an aspectual shift to point, and can be used only with culminating activ-
ity main clauses. The second one is the same as (4.164), except that it does not
introduce an End operator, it preserves the aspectual class of the main clause,
and can be used with main clauses of any aspectual class. In both cases, while
requires as its complement a finite sentence whose aspect must not be conse-
quent state; this agrees with Table 2.6 on page 56, which does not allow the
aspectual class of the while clause to be consequent state.

(4.164)



phon 〈while〉

ss | l




cat




head



mod s
[

vform fin
]
: 2 ∨

vp
[

vform psp
]
: 2

mod | l | cat | aspect culmact




spr 〈〉
subj 〈〉

comps 〈s
[

vform fin

aspect ¬cnsq_state

]
: 1 〉

aspect point




cont

at_op


time_spec 1

main_psoa
end

[
main_psoa 2

]






qstore {}




The 1 in (4.164) refers to the cont of the sign of the complement of while, i.e.,
of the subordinate clause. Assuming that to land is a culminating activity verb,
the two while signs cause (4.165) to receive (4.166) and (4.167). (4.166) re-
quires the landing to have simply been completed during the inspection, while
(4.167) requires the landing to have both started and been completed during
the inspection.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.62 (170)

 Chapter 4

(4.165) UK160 landed while J. Adams was inspecting BA737.
(4.166) At[Past[e1v, inspecting(ja, ba737)],

End[Past[e2v, Culm[landing(occrv, uk160)]]]]

(4.167) At[Past[e1v, inspecting(ja, ba737)],
Past[e2v, Culm[landing(occrv, uk160)]]]

Since while clauses are treated as temporal modifiers, the ordering arrange-
ments of Section 4.13 apply to while clauses as well. Hence, while clauses can
either precede or follow finite sentences, as in (4.168) and (4.169).

(4.168) UK160 arrived while J. Adams was inspecting BA737.
(4.169) While J. Adams was inspecting BA737, UK160 arrived.

One problem with the treatment of while clauses is that it maps (4.170) to
(4.171), which requires the inspection to have been completed. This does not
agree with Table 2.6 on page 56, according to which any requirement that the
situation of a culminating activity sentence must have been reached is can-
celled when the sentence is used as a while clause. To overcome this problem,
the post-processing stage, to be discussed in Section 4.17, removes any Culm
operators that are within first arguments of At operators. This removes the
Culm of (4.171), generating a formula that no longer requires the inspection to
have been completed.

(4.170) UK160 departed while J. Adams inspected BA737.
(4.171) At[Past[e1v, Culm[inspecting(ja, ba737)]],

Past[e2v, [actl depart(uk160)]]]

. Interrogatives

So far, this chapter has considered mainly assertions, like (4.172). The reader
is reminded that assertions are treated semantically as yes/no questions; for
example, (4.172) is taken to have the same meaning as (4.173). We will
now examine how the hpsg version of this book handles questions, like
(4.173)–(4.178).

(4.172) Tank 2 was empty.
(4.173) Was tank 2 empty?
(4.174) Did J. Adams inspect BA737?
(4.175) Which tank was empty?
(4.176) Who inspected BA737?

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.63 (171)

From English to TOP 

(4.177) What did J. Adams inspect?
(4.178) When did J. Adams inspect BA737?

Yes/no questions, like (4.173) and (4.174), constitute no particular problem.
hpsg’s schemata allow auxiliary verbs to be used in sentence-initial positions,
and cause (4.173) to receive the same formula as (4.179); the formula is shown
in (4.180). In both (4.173) and (4.179), the same lexical signs are used (punc-
tuation is ignored). Similar comments apply to (4.174) and (4.181), which are
mapped to (4.182).

(4.179) Tank 2 was empty.
(4.180) Past[ev, empty(tank2)]
(4.181) J. Adams did inspect BA737.
(4.182) Past[ev, Culm[inspecting(occrv, ja, ba737)]]

The interrogative which is treated syntactically as a determiner of non-
predicative noun phrases. The sign of which is the same as the sign of a
and the, shown in (4.61), except that it introduces an interrogative quanti-
fier rather than an existential one. For example, (4.175) is analysed syntacti-
cally in the same way as (4.183). However, the formula of (4.175), shown in
(4.185), contains an additional interrogative quantifier, unlike the formula of
(4.183), which is shown in (4.184). (The existential quantifier of the a deter-
miner is removed during the extraction of (4.184) from the sign of (4.183), as
discussed in Section 4.6. It is assumed here that tank does not introduce an
Ntense operator.)

(4.183) A tank was empty.
(4.184) tank(tkv) ∧ Past[ev, empty(tkv)]
(4.185) ?tkv tank(tkv) ∧ Past[ev, empty(tkv)]

The interrogative who is treated syntactically as a non-predicative noun phrase,
whose sign, shown in (4.186), introduces an interrogative quantifier. (4.176) is
analysed syntactically in the same way as (4.187). The sign of who, however,
gives rise to an interrogative quantifier in the formula of (4.176), shown in
(4.189), which is not present in the formula of (4.187), shown in (4.188). The
interrogative what is treated similarly.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.64 (172)

 Chapter 4

(4.186)



phon 〈who〉

ss | l




cat




head
noun

[
prd –

]
spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj


index

person_ent

[
tvar +

]
restr {}


1




qstore




quant

[
det interrog

restind 1

]





(4.187) J. Adams inspected BA737.
(4.188) Past[Culm[inspecting(occrv, ja, ba737)]]
(4.189) ?whv Past[Culm[inspecting(occrv, whv, ba737)]]

The hpsg version of this book also admits questions like (4.190), although they
are unacceptable in most contexts. (4.190) is licensed by the same syntactic
analysis that allows (4.191), and receives the same formula as (4.192).

(4.190) ?Did J. Adams inspect which flight?
(4.191) Did J. Adams inspect a flight?
(4.192) Which flight did J. Adams inspect?

Questions like (4.192), where the interrogative refers to the object of the verb,
are treated using hpsg’s unbounded dependencies mechanisms, namely the
slash feature (Pollard & Sag 1994).8 Roughly speaking, (4.192) is analysed as
a form of (4.190), where the object which flight has moved to the beginning of
the question; see Pollard and Sag (1994) for more details.9

Questions with multiple interrogatives can also be handled. For example,
(4.193) receives (4.194); (4.193) is parsed in the same way as (4.195). Unfor-
tunately, the same mechanisms admit ungrammatical questions like (4.196),
which is treated as a version of (4.193) where the what complement has moved
to the beginning of the sentence; (4.196) receives (4.194).

(4.193) Who inspected what.
(4.194) ?w1v ?w2v Past[ev, Culm[inspecting(occrv, w1v, w2v)]]
(4.195) J. Adams inspected BA737.
(4.196) *What who inspected.

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.65 (173)

From English to TOP 

The interrogative when of (4.197) is treated as a temporal adverbial modifier of
finite sentences. (4.199) shows the sign of when that is used in (4.197). (4.199)
causes (4.197) to receive (4.198).

(4.197) When was tank 2 empty?
(4.198) ?mxlwv Past[ev, empty(tank2)]
(4.199)




phon 〈when〉

ss | l




cat




head

mod s

[
vform fin

]
: 1

mod | l | cat | aspect 2




spr 〈〉
subj 〈〉
comps 〈〉
aspect 2




cont 1




qstore







det interrog_mxl

restind


index

temp_ent

[
tvar +

]
restr {}













(4.199) introduces a ?mxl quantifier whose variable does not appear elsewhere
in the formula; for example, wv in (4.198). The post-processing stage, to be
discussed in Section 4.17, replaces the variables of ?mxl quantifiers by variables
that appear as first arguments of Past or Perf operators. In (4.198), this would
replace wv by ev, generating a formula that asks for the maximal past periods
where tank 2 was empty.

There is also a second sign for the interrogative when, shown in (4.202),
which is used in habitual questions like (4.200). In (4.200), when is taken to
play the same role as at 5:00 pm in (4.201), i.e., it is treated as the prepositional
phrase complement of the habitual depart, which has moved to the beginning
of the sentence via the unbounded dependencies mechanisms.

(4.200) When does BA737 depart (habitually)?
(4.201) Does BA737 depart (habitually) at 5:00 pm?

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.66 (174)

 Chapter 4

(4.202)



phon 〈when〉

ss | l




cat




head
prep

[
prd –

]
spr 〈〉
subj 〈〉
comps 〈〉




cont

nom_obj


index

gappy_partng

[
tvar +

]
restr {}


1




qstore



[

det interrog

restind 1

]





In the simple past (4.203), both the habitual and the non-habitual homonym
of to depart can be used. The corresponding signs of the verb are (4.146) and
(4.147); the habitual homonym requires a prepositional phrase complement,
while the non-habitual homonym requires no complement. Hence, when can
be either a prepositional phrase complement of the habitual depart, as in
(4.202), or a temporal modifier of the non-habitual sentence did BA737 depart,
as in (4.199). This gives rise to (4.204) and (4.205), which correspond to the
habitual and non-habitual readings of (4.203), respectively. The wv of (4.205)
would be replaced by ev during the post-processing.

(4.203) When did BA737 depart?
(4.204) ?wv Past[ev, hab departs at(ba737, wv)]
(4.205) ?mxlwv Past[ev, actl depart(ba737)]

. Multiple temporal modifiers

Sentences with multiple temporal modifiers pose some problems for the En-
glish to top mapping that has been presented so far. This section discusses
these problems, along with possible solutions. The proposed solutions are only
tentative, however, and they have not been incorporated into the prototype
nlitdb of Chapter 6.

Both preceding and trailing temporal modifiers. Temporal modifiers are al-
lowed to either precede or follow finite sentences (Section 4.13). When a fi-
nite sentence is modified by both a preceding and a trailing temporal modifier,

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.67 (175)

From English to TOP 

as in (4.206), two parses are generated: one where the trailing modifier is at-
tached first to the sentence, as in (4.207), and one where the preceding modifier
is attached first, as in (4.209). In most cases, this generates two semantically
equivalent formulae; in (4.206), these are (4.208) and (4.210).

(4.206) Yesterday BA737 was at gate 2 for two hours.
(4.207) Yesterday [[BA737 was at gate 2] for two hours.]
(4.208) At[yesterday, For[hourc, 2, Past[ev, located at(ba737, gate2)]]]
(4.209) [Yesterday [BA737 was at gate 2]] for two hours.
(4.210) For[hourc, 2, At[yesterday, Past[ev, located at(ba737, gate2)]]]

One way to solve this problem would be to allow preceding modifiers to be
attached to the sentence only after all trailing modifiers have been attached
to it. This can be achieved by modifying the constituent ordering principle of
Section 4.13, disallowing temporal modifiers to follow constituents that have
already been modified by preceding temporal modifiers. A mechanism to mark
constituents as having been modified by preceding temporal modifiers would
also be needed.

Multiple temporal modifiers and anaphora. Another problem is that a ques-
tion like (4.211) is mapped to (4.212). (It is assumed here that flight does not
introduce an Ntense operator.) The problem with (4.212) is that it requires the
flight to have arrived on 2/11/1995 and after an arbitrary 5:00 pm minute; for
example, after the 5:00 pm minute of 1/11/1995. In effect, this causes the after
5:00 pm to be ignored.

(4.211) Which flight arrived after 5:00 pm on 2/11/1995?
(4.212) ?flv flight(flv) ∧ Part[5:00pmg , fvv] ∧

At[2/11/1995, After[fvv, Past[ev, arrive(flv)]]]

This is another case where temporal anaphora resolution mechanisms (Section
2.12) are needed. In (4.211), the on 2/11/1995 adverbial provides a strongly
salient period, that can be used to anchor the particular 5:00 pm minute that
the user has in mind.

Culminating activity with both punctual and period adverbial. A further
problem appears when a culminating activity is modified by both a punctual
and a period adverbial. Unlike what one would expect, (4.213) and (4.214)
do not receive equivalent top formulae. (It is assumed here that to repair is
classified as culminating activity verb. Similar problems arise with punctual
adverbials and temporal subordinate clauses.)

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.68 (176)

 Chapter 4

(4.213) J. Adams repaired fault 2 at 5:00 pm on 2/11/1995.
(4.214) J. Adams repaired fault 2 on 2/11/1995 at 5:00 pm.

In (4.213), the punctual adverbial at 5:00 pm modifies the culminating activity
sentence J. Adams repaired fault 2. Following Table 2.2 on page 46, the aspectual
class of the resulting sentence becomes point, and two formulae are generated:
one where the repair starts at 5:00 pm, and one where it is completed at 5:00 pm.
The period adverbial on 2/11/1995 then modifies the point expression J. Adams
repaired fault 2 at 5:00 pm. This leads to (4.215) and (4.216). (The first reading
is easier to accept in J. Adams inspected BA737 at 5:00 pm on 2/11/1995.)

(4.215) Part[5:00pmg , fvv] ∧ At[2/11/1995, At[fvv,
Begin[Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

(4.216) Part[5:00pmg , fvv] ∧ At[2/11/1995, At[fvv,
End[Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

Before considering (4.214), it should be noted that (4.213) also demonstrates
why punctual adverbials are taken to trigger an aspectual shift to point (Section
2.9.1). Without this shift, the aspectual class of J. Adams repaired fault 2 at 5:00
pm would be culminating activity, and the on signs of Section 4.11.2 would
lead to the additional redundant formulae of (4.217) and (4.218), which are
equivalent to (4.215) and (4.216), respectively.

(4.217) Part[5:00pmg , fvv] ∧ At[2/11/1995, End[At[fvv,
Begin[Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]]

(4.218) Part[5:00pmg , fvv] ∧ At[2/11/1995, End[At[fvv,
End[Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]]

In (4.214), J. Adams repaired fault 2 is first modified by the period adverbial on
2/11/1995. Two formulae, shown in (4.219) and (4.220), are generated. (4.219)
requires the repair to simply reach its completion on 2/11/1995, while (4.220)
requires the repair to both start and reach its completion on 2/11/1995. In the
first case, where (4.219) is generated, the aspectual class of the resulting sen-
tence becomes point, while in the other case, where (4.220) is produced, the
aspectual class remains culminating activity (Table 2.3 on page 50).

(4.219) At[2/11/1995,
End[Past[ev, Culm[repairing(occrv , ja, fault2)]]]]

(4.220) At[2/11/1995,
Past[ev, Culm[repairing(occrv , ja, fault2)]]]

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.69 (177)

From English to TOP 

In the case of (4.219), the at signs of Section 4.11.1 cause (4.214) to be mapped
to (4.221), while with (4.220), they lead to (4.222) and (4.223).

(4.221) Part[5:00pmg , fvv] ∧ At[fvv, At[2/11/1995,
End[Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

(4.222) Part[5:00pmg] ∧ At[fvv, Begin[At[2/11/1995,
Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

(4.223) Part[5:00pmg] ∧ At[fvv, End[At[2/11/1995,
Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

Hence, (4.213) receives two formulae, (4.215) and (4.216), while (4.214) re-
ceives three, (4.221)–(4.223). (4.221) is equivalent to (4.216). Unlike what one
might expect, however, (4.222) is not equivalent to (4.215). (4.222) requires a
past period that covers exactly the whole repair, from start to completion, to
fall within 2/11/1995, and the beginning of that period to fall within some 5:00
pm minute. This means that the repair must start at 5:00 pm on 2/11/1995, as
in (4.215); but it also means that the repair must reach its completion within
2/11/1995, which is not a requirement in (4.215). Also, unlike what one might
expect, (4.223) is not equivalent to (4.216) and (4.221). It requires the repair
to reach its completion at 5:00 pm on 2/11/1995, as in (4.216) and (4.221), but
it also requires the repair to start within 2/11/1995, which is not a requirement
in (4.216) and (4.221).

The formulae of (4.215) and (4.216) seem to capture the readings of both
(4.213) and (4.214) better than those of (4.221)–(4.223). Hence, we would like
(4.214) to be treated as (4.213). A tentative solution is to adopt some prepro-
cessing mechanism that would reorder the temporal modifiers, so that punc-
tual adverbials are always attached to sentences before period adverbials. This
would reverse the order of on 2/11/1995 and at 5:00 pm in (4.214), transforming
it into (4.213).

Culminating activity and multiple period adverbials. A final problem is that
a sentence like (4.224), where a culminating activity is modified by two period
adverbials, receives three formulae, shown in (4.225)–(4.227). It turns out that
(4.226) is equivalent to (4.227), and hence one of the two should be eliminated.

(4.224) J. Adams repaired fault 2 in June in 1992.
(4.225) Part[juneg , jv] ∧ At[1992, At[jv, End[

Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

(4.226) Part[juneg , jv] ∧ At[1992, End[At[jv,
Past[ev, Culm[repairing(occrv , ja, fault2)]]]]]

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.70 (178)

 Chapter 4

(4.227) Part[juneg , jv] ∧ At[1992, At[jv,
Past[ev, Culm[repairing(occrv , ja, fault2)]]]]

A period adverbial combining with a culminating activity can either insert an
End operator and cause an aspectual shift to point, or insert no End opera-
tor and leave the aspectual class unchanged (Section 4.11.2). In the case where
(4.225) is generated, in June inserts an End operator and changes the aspec-
tual class to point. Period adverbials combining with points do not insert End
operators, and hence when in 1992 is then attached, no second End operator
can be inserted. When (4.226) and (4.227) are generated, in June does not in-
sert an End operator, and the aspectual class remains culminating activity. The
in 1992 can then insert an End operator, as in (4.226), or not, as in (4.227).
(4.227) requires the whole of the repair to be located within the June of 1992,
while (4.225) requires only the completion point of the repair to be located
within that time; the two formulae seem to capture the most natural readings
of (4.224). (4.226) requires the whole of the repair to be located within a June,
and the completion point of the repair to fall within 1992. This is equivalent to
requiring the whole of the repair to fall within the June of 1992; i.e., (4.226) is
equivalent to (4.227), and one of the two should be eliminated.

One way to address this problem would be to allow period adverbials to
insert End operators and trigger an aspectual shift to point only when attaching
to constituents that have not been modified already by other period adverbials;
this requires some mechanism to flag constituents as having been modified by
period adverbials.

. Post-processing

During the parsing each English question is mapped to an hpsg sign; or mul-
tiple signs, if the parser understands the question to be ambiguous. A top for-
mula is extracted from each resulting sign, as discussed in Section 4.6. The ex-
tracted formulae then undergo an additional post-processing phase, which is
a collection of minor transformations, discussed below, that cannot be carried
out easily during the parsing.

Removing Culm operators. The top formula that is extracted from the sign of
(4.228) is shown in (4.229). As discussed in Sections 2.9.3 and 4.11.3, (4.229)
does not represent correctly (4.228), because it requires the taxiing to have

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.71 (179)

From English to TOP 

been completed, whereas the for adverbial cancels that implication. To express
correctly (4.228), the Culm operator of (4.229) must be removed.

(4.228) BA737 taxied to gate 2 for five minutes.
(4.229) For[minutec, 5, Past[ev, Culm[taxiing to(ba737, gate2)]]]

A first solution would be to remove during the post-processing any Culm oper-
ator that is within the scope of a For operator. The problem with this approach
is that duration in adverbials also introduce For operators (Section 4.11.3), but
unlike for adverbials they do not cancel the implication that the completion
must have been reached. For example, the formula extracted from the sign of
(4.230) is also (4.229). In this case, (4.229) is a correct rendering of (4.230),
and the Culm operator should not be removed. To overcome this problem,
the prototype nlitdb of Chapter 6 attaches to each For operator a flag show-
ing whether it was introduced by a for or an in adverbial. Only For operators
introduced by for adverbials cause Culm operators within their scope to be
removed.

(4.230) BA737 taxied to gate 2 in five minutes.

The post-processing also removes any Culm operator from within the first ar-
gument of an At operator. As explained in Section 4.14, this is needed to express
correctly while clauses.

Variables of ?mxl quantifiers. As noted in Section 4.15, before the post-
processing the variables of interrogative-maximal quantifiers do not occur else-
where in their formulae. For example, (4.232) and (4.234) are extracted from
the signs of (4.231) and (4.233), respectively. In both formulae, wv occurs only
immediately after the ?mxl quantifier.

(4.231) When was J. Adams a manager?
(4.232) ?mxlwv Past[ev, manager(ja)]
(4.233) When while BA737 was circling was runway 2 open?
(4.234) ?mxlwv At[Past[e1v, circling(ba737)], Past[e2v, open(runway2)]]

During the post-processing, the variables of interrogative-maximal quantifiers
are replaced by variables that appear as first arguments of Past or Perf opera-
tors, excluding Past and Perf operators that are within first arguments of At,
Before, or After operators. In (4.232), this causes wv to be replaced by ev. The
resulting formula asks for the maximal past periods where J. Adams was a man-
ager. Similarly, the wv of (4.234) is replaced by e2v. The resulting formula asks
for the maximal past periods e2v, such that runway 2 was open at e2v, and e2v is

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.72 (180)

 Chapter 4

a subperiod of a period e1v where BA737 was circling. In (4.234), wv cannot be
replaced by e1v, because Past[e1v, circling(ba737)] is within the first argument
of an At.

Past and Perf operators located within first arguments of At, Before, or
After operators are excluded, to avoid interpreting when as referring to the time
where the situation of a subordinate clause held (formulae that express subor-
dinate clauses end up within first arguments of At, Before, or After operators).
Time-asking questions always refer to the situation of the main clause. For ex-
ample, (4.233) cannot be asking for maximal periods where BA737 was circling
that subsume periods where runway 2 was open; this would be the meaning of
(4.234) if wv were replaced by e1v.

When the main clause is in the past perfect, the variable of ?mxl can be re-
placed by either the first argument of the main clause’s Past operator, or the first
argument of the main clause’s Perf operator. (4.236), for example, shows the
formula that is extracted from the sign of (4.235). The post-processing gener-
ates two formulae: one where wv is replaced by e1v, and one where it is replaced
by e2v. The first one asks for what Section 2.9.1 called the ‘consequent period’,
i.e., the period that starts at the end of the inspection; readings of this kind look
unlikely, and should probably be blocked. The second reading asks for the time
of the actual inspection.

(4.235) When had J. Adams inspected BA737?
(4.236) ?mxlw

v Past[e1v, Perf [e2v, Culm[inspecting(occrv , ja, ba737)]]]

Ntense operators. As noted in Section 4.9.1, when extracting top formulae
from signs, if an Ntense operator is encountered and the sign contains no defi-
nite indication that the first argument of the Ntense should be now*, the argu-
ment becomes a variable in the extracted formula. That variable does not occur
elsewhere in the extracted formula. Assuming, for example, that the queen in-
troduces an Ntense operator, the formula extracted from the sign of (4.237) is
(4.238); the tv of the Ntense does not occur elsewhere in (4.238).

(4.237) The queen was in Rome.
(4.238) Ntense[tv, queen(qv)] ∧ Past[e1v, located at(qv, rome)]

During the post-processing, variables appearing as first arguments of Ntense
operators give rise to multiple formulae, where the first arguments of the
Ntense operators are replaced by now* or by first arguments of Past or Perf
operators. In (4.238), for example, the post-processing generates two formu-

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.73 (181)

From English to TOP 

lae: one where tv is replaced by now* (queen at the speech time), and one where
tv is replaced by ev (queen when in Rome).

In (4.240), which is the formula extracted from the sign of (4.239), there
is no Past or Perf operator, and hence tv can only become now*. Indeed, the
queen in (4.239) most probably refers to the queen of the speech time.

(4.239) The queen is in Rome.
(4.240) Ntense[tv, queen(qv)] ∧ Pres[located at(qv, rome)]

In (4.242), which is extracted from the sign of (4.241), the post-processing
leads to three formulae, where tv is replaced by now* (queen at speech time),
e2v (queen during the visit), or e1v (queen at a reference time after the visit).

(4.241) The queen had visited Rome.
(4.242) Ntense[tv, queen(qv)] ∧ Past[e1v, Perf [e2v, visiting(qv, rome)]]

. Summary

This chapter has shown how hpsg can be used to translate English questions
submitted to an nlitdb to appropriate top formulae. During the parsing, each
question receives one or more hpsg signs, from which top formulae are ex-
tracted. The extracted formulae then undergo an additional post-processing
phase, which leads to formulae that capture the semantics of the original En-
glish questions.

Several modifications were made to hpsg for the purposes of this book.
The main modifications were the following. (i) hpsg features and sorts in-
tended to account for phenomena not examined in this book (e.g., pronouns,
relative clauses, number agreement) were dropped. (ii) The quantifier storage
mechanism of hpsg was replaced by a more primitive one, that does not al-
low quantifiers to be unstored during the parsing; the semantics principle was
modified accordingly. (iii) An aspect feature was added, along with a principle
that controls its propagation. (iv) The possible values of cont and qstore were
modified, to represent top expressions rather than situation-theory constructs.
(v) A hierarchy of world-entity types was mounted under the ind sort; this is
used to disambiguate sentences, and to block semantically ill-formed ones. (vi)
New lexical signs and lexical rules were introduced to cope with temporal lin-
guistic mechanisms. Apart from these modifications, the hpsg version of this
book follows closely Pollard and Sag (1994).

NLP4[v.20020404] Prn:21/06/2002; 11:59 F: NLP604.tex / p.74 (182)

 Chapter 4

Notes

. This book follows the approach of Section 8.5.1 of Pollard and Sag’s book (1994), whereby
the relation feature is dropped, and its role is taken up by the sort of the feature structure.

. In Pollard and Sag (1994), nom_obj has the subsorts npro (non-pronoun) and pron
(pronoun). These subsorts are not used in this book.

. In Pollard and Sag (1994), the signs of proper names involve naming relations, and
context and background features, which are not used in this book.

. Apart from the remove_ntense, (4.77) is essentially the same as Borsley’s ‘predicative NP
lexical rule’, as discussed by Pollard and Sag (1994:360f).

. Pollard and Sag do not provide much information on determiners of predicative noun
phrases. They seem to acknowledge, however, that they have to be treated differently from
determiners of non-predicative noun phrases (1994:360f).

. An alternative approach is to allow temporal modifiers to participate in unbounded
dependency constructions, as discussed by Pollard and Sag (1994:176–181).

. Constituent ordering restrictions are enforced in the ale grammar of the prototype
nlitdb in a rather ad hoc manner, which involves partitioning the synsem sort into
pre_mod_synsem and post_mod_synsem, and using feature structures from the two sub-
sorts as values of mod to signal that the modifier can only precede or follow the modified
constituent. This idea was borrowed from a grammar written by Suresh Manandhar.

. Pollard and Sag also reserve a que feature, which is intended to be used in the treatment
of interrogatives, but its exact role is left unspecified. They point to Ginzburg (1995a; 1995b;
1995c), where que is used in a general theory of interrogatives, which aims to address issues
beyond the scope of this book. que is not used in this book.

. The prototype nlitdb of Chapter 6 uses the traceless analysis of unbounded dependen-
cies, presented in Chapter 9 of Pollard and Sag’s book (1994).

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.1 (183)

Chapter 5

From TOP to TSQL2

“Time is money.”

. Introduction

This chapter shows how top formulae can be mapped systematically to ap-
propriate expressions of a temporal database language. As already discussed in
Chapter 1, numerous temporal extensions of the sql database language and
the relational model have been proposed. This book adopts tsql2 (Snodgrass
1995), a temporal extension of sql-92 (Melton & Simon 1993) that was de-
signed by a committee of temporal database researchers and constitutes a good
representative of the various extensions that have been proposed. After intro-
ducing tsql2, a set of provably correct translation rules will be presented,
which can transform systematically every top formula into an appropriate
tsql2 query that preserves the semantics of the top formula.

. An introduction to TSQL2

This section introduces tsql2 and the version of the relational model on which
tsql2 is based. Some additional related definitions, which will be used in
following sections, will also be given.

.. The traditional relational model

As explained in Section 1.5, the traditional relational model stores information
in relations, which can be thought of as tables. For example, salaries below is
a relation showing the current salaries of a company’s employees. It has two
attributes, intuitively columns, employee and salary. The tuples of a relation
correspond to the rows of the table; for example, salaries has three tuples.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.2 (184)

 Chapter 5

salaries

employee salary

J. Adams 17000
T. Smith 19000
G. Papas 14500

A set-theoretic definition of relations will be adopted (Ullman 1988). A set of
attributes DA is assumed; for example, employee and salary above are elements
of DA. A relation schema is an ordered tuple of one or more attributes, such as
〈employee, salary〉. A set of domains DD = {D1, . . . , DnD} is also assumed. Each
element Di of DD is itself a set; for example, D1 may contain all the possible
string values, D2 all the positive integers, etc. Each attribute is assigned a do-
main, and D(A) denotes the domain of attribute A. D on its own refers to the
universal domain, the union of all Di ∈ DD.

A relation over a relation schema R = 〈A1, A2, . . . , An〉 is a subset of
D(A1)×D(A2)× · · ·×D(An), where × denotes the cartesian product. That is,
a relation over R is a set of tuples of the form 〈v1, v2, . . . , vn〉, where v1 ∈ D(A1),
v2 ∈ D(A2), . . . , vn ∈ D(An). In each tuple 〈v1, v2, . . . , vn〉, v1 is the at-
tribute value of A1, v2 is the attribute value of A2, etc. The universal domain
D is the set of all the possible attribute values. Assuming, for example, that
employee, salary ∈ DA, that D1 and D2 are as in the previous paragraph, and
that employee and salary are assigned D1 and D2, respectively, r below is a
relation over 〈employee, salary〉; r is a mathematical representation of salaries
above. On its own, the term ‘relation’ will be used to refer to a relation over any
relation schema.

r = {〈J. Adams, 17000〉, 〈T. Smith, 19000〉, 〈G. Papas, 14500〉}

The arity of a relation over R is the number of attributes in R; for example, the
arity of r is 2. The cardinality of a relation is the number of tuples it contains;
the cardinality of r is 3. A relational database is a set of relations; more elaborate
definitions are possible, but this is sufficient for our purposes.

For simplicity, it will be assumed that every element of the universal do-
main D denotes an object in the modelled world, i.e., an object in top’s OBJS
(Section 3.4). The term ‘object in the world’ is used with a very general meaning
that includes non-material objects, such as qualifications of employees, salaries,
etc. It is also assumed that a function fD : D �→ OBJS is available, which maps
each element v of D to the world object denoted by v. fD reflects the seman-
tics assigned to the attribute values by the people who use the database. In

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.3 (185)

From TOP to TSQL2 

practice, an element of D may denote different world objects when used as
the value of different attributes; for example, 15700 may denote a salary when
used as the value of salary, and a part of an engine when used as the value of
an attribute part no. Hence, more strictly the value of fD should also depend
on the attribute where the element of D is used, i.e., it should be a function
fD : D ×DA �→ OBJS. For simplicity, this detail will be overlooked.

It will also be assumed that fD is 1-1 (injective), i.e., that every element
of D denotes a different world object. Again, in practice fD may not be 1-1, as
the database may use two different attribute values (e.g., dpt3 and sales dpt)
to refer to the same world object. Although the top to tsql2 mapping can be
formulated without assuming that fD is 1-1, this assumption will allow us to
bypass some uninteresting details. We will also assume that fD is surjective, i.e.,
that for every o ∈ OBJS, there is a v ∈ D, such that fD(v) = o. Then, since fD

is both 1-1 and surjective, the inverse mapping f –1
D is also a function, and f –1

D is
also 1-1 and surjective.

.. TSQL2’s model of time

Although stated in different terms in the tsql2 definition (Snodgrass 1995), in
effect tsql2 models time as consisting of chronons, which are the shortest units
of time that can be represented in the database. Depending on the tsql2 im-
plementation, chronons may correspond to nanoseconds, minutes, days, etc.1

It also follows from the tsql2 definition that chronons are ordered by a binary
precedence relation, and have the properties of transitivity, irreflexivity, linear-
ity, left and right boundedness, and discreteness, as in top (Section 3.3). This
allows us to use chronons as top’s time-points, and use the two terms inter-
changeably. The definitions of PERIODS, PERIODS* and INSTANTS in tsql2,
then, are as in top.

A temporal element is a non-empty, but not necessarily convex, set of time-
points. Let TELEMS be the set of all temporal elements; then PERIODS ⊆
TELEMS. For every l ∈ TELEMS, mxlpers(l) is the set of the maximal periods
of l, defined as follows:

mxlpers(l)
def
= {p ⊆ l | p ∈ PERIODS and

for no p′ ∈ PERIODS, p′ ⊆ l and p � p′}
This extends the definition of maximal periods of Section 3.3.

tsql2 supports multiple granularities. A granularity can be thought of as a
complete partitioning of top (Section 3.4), and a granule is an element of the

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.4 (186)

 Chapter 5

complete partitioning. A lattice is used in tsql2 to capture relations between
granularities; for example, a year-granule contains month-granules, etc. The
finest available granularity is INSTANTS, also called the granularity of chronons.
tsql2 allows periods and temporal elements to be specified at any granular-
ity. For example, one may specify that the first day of a period is 25/11/1995,
and the last day is 28/11/1995. If the granularity of chronons is finer than the
granularity of days, the exact chronons (time-points) within 25/11/1995 and
28/11/1995 where the period starts and ends are unknown. For simplicity, in
this book all periods and temporal elements will be specified at the granularity
of chronons. Granularities other than INSTANTS will be used only to express
durations, as explained below.

tsql2 uses the term interval to refer to a duration (Section 3.3). An in-
terval is a number of consecutive granules of some particular granularity; for
example, two day-granules or five minute-granules.

.. The BCDM version of the relational model

tsql2 is based on a temporal extension of the relational model called bcdm
(Snodgrass 1995). Apart from the relations of the standard relational model
(Section 5.2.1), which are called snapshot relations in tsql2, bcdm also pro-
vides valid-time relations, transaction-time relations, and bitemporal relations.
Transaction-time and bitemporal relations are not used in this book (Section
1.5), and will not be discussed further. Valid-time relations are similar to snap-
shot relations, except that they have a special extra attribute, called the im-
plicit attribute, which shows the times at which the information of each tuple
is true in the world. A special domain DT ∈ DD is assumed, such that for ev-
ery vt ∈ DT , fD(vt) ∈ TELEMS; this assumes that TELEMS ⊆ OBJS. DT is the
domain of the implicit attribute.

A valid-time relation r over a relation schema R = 〈A1, . . . , An〉 is a subset
of D(A1) × · · · × D(An) × DT . A1, . . . , An are the explicit attributes of r. The
notation 〈v1, . . . , vn; vt〉 will be used to refer to tuples of valid-time relations.
If r is as above and 〈v1, . . . , vn; vt〉 ∈ r, then v1 ∈ D(A1), . . . , vn ∈ D(An), and
vt ∈ DT ; v1, . . . , vn are the values of the explicit attributes, while vt is the value
of the implicit attribute and the time-stamp of the tuple. In snapshot relations,
all attributes count as explicit.

tsql2 actually distinguishes between state valid-time relations and event
valid-time relations, which are intended to model situations that have dura-
tion or are instantaneous, respectively. This distinction seems particularly in-
teresting, because it appears to capture some facets of the aspectual taxonomy

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.5 (187)

From TOP to TSQL2 

of Chapter 2. Unfortunately, it is also an unclear and ill-defined feature of
tsql2. The time-stamps of state and event valid-time relations are said to de-
note temporal elements and instant sets, respectively, where temporal elements
are defined as unions of periods, and instant sets as sets of chronons (Snodgrass
1995:314). This distinction is problematic, however, because a union of periods
is a union of convex sets of chronons, i.e., simply a set of chronons; hence, one
cannot distinguish between unions of periods and sets of chronons. It has also
been argued elsewhere that tsql2 does not allow specifying whether a com-
puted valid-time relation should be state or event (Androutsopoulos, Ritchie,
& Thanisch 1995a). Given these problems, this book does not use the distinc-
tion between state and event valid-time relations; alternative mechanisms will
be introduced instead in the following sections. The time-stamps of all valid-
time relations are taken to denote temporal elements, with temporal elements
being sets of chronons.

Assuming that the domains of employee and salary are as in Section 5.2.1,
val salaries below is a valid-time relation over 〈employee, salary〉, shown in its
tabular form. The double vertical line separates the explicit attributes from the
implicit one. The elements of DT , i.e., the values of the implicit attribute, are
non-atomic (Snodgrass 1995, Chapter 10). Each vt ∈ DT is in turn a set, whose
elements denote the chronons that belong to the temporal element represented
by vt . For example, {c1

1, c1
2, c1

3, . . . , c1
n1
} in the first tuple for J. Adams is an ele-

ment of DT , and c1
1, c1

2, c1
3, . . . , c1

n1
represent the chronons where the salary of

J. Adams was 17000.

val salaries

employee salary

J. Adams 17000 {c1
1, c1

2 , c1
3, . . . , c1

n1
}

J. Adams 18000 {c2
1, c2

2 , c2
3, . . . , c2

n2
}

J. Adams 18500 {c3
1, c3

2 , c3
3, . . . , c3

n3
}

T. Smith 19000 {c4
1, c4

2 , c4
3, . . . , c4

n4
}

T. Smith 21000 {c5
1, c5

2 , c5
3, . . . , c5

n5
}

When depicting valid-time relations, their time-stamps will often be replaced
by higher-level descriptions of the temporal elements they denote. That is,
val salaries will be shown as in (5.1), meaning that the time-stamp of the
first tuple represents a temporal element of two maximal periods, 1/1/1992
to 12/6/1992 and 8/5/1994 to 30/10/1994. Here, now refers to the current
chronon, and it is assumed that chronons correspond to days.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.6 (188)

 Chapter 5

(5.1)
val salaries

employee salary

J. Adams 17000 [1/1/1992, 12/6/92] ∪ [8/5/1994, 30/10/94]
J. Adams 18000 [13/6/1992, 7/5/1994] ∪ [31/10/1994, now]
T. Smith 21000 [15/6/1992, now]

Two tuples 〈v1
1, . . . , v1

n; v1
t 〉 and 〈v2

1, . . . , v2
n; v2

t 〉 are value-equivalent iff v1
1 = v2

1,
. . . , v1

n = v2
n. A valid-time relation is coalesced iff it contains no value-

equivalent tuples. bcdm requires all valid-time relations to be coalesced (Snod-
grass 1995:188). For example, (5.2) is not allowed, because its first and third
tuples are value-equivalent. For reasons that will be explained in later sections,
this requirement is dropped in this book, and coalescing is made optional.
This is not an unprecedented approach; for example, atsql (Section 1.5) also
provides optional coalescing.

(5.2)
employee salary

J. Adams 17000 [1/1/1992, 12/6/1992]
J. Adams 18000 [13/6/1992, 7/5/1994]
J. Adams 17000 [8/5/1994, 30/10/1994]
J. Adams 18000 [31/10/1994, now]
T. Smith 21000 [15/6/1992, now]

Before moving on to a description of the actual tsql2 language, let us define
some additional notation that will prove useful in following sections:

– Let DP be the subset of all elements of DT that denote periods (PERIODS ⊆
TELEMS).2

– Let us also assume that there is a special value vε ∈ D, that is used to
denote the empty set. For example, a tsql2 expression that computes the
intersection of two non-overlapping periods evaluates to vε.3 The notation
D*

P will be used to refer to DP ∪ {vε}.
– Let VRELP be the set of valid-time relations whose time-stamps are all

elements of DP; i.e., all the time-stamps denote periods.
– Let NVRELP be the set of relations r ∈ VRELP with the following property:

if 〈v1, . . . , vn; v1
t 〉 ∈ r, 〈v1, . . . , vn; v2

t 〉 ∈ r, and fD(v1
t) ∪ fD(v2

t) ∈ PERIODS,
then v1

t = v2
t . This ensures that in every r ∈ NVRELP, there is no pair

of different value-equivalent tuples whose time-stamps v1
t and v2

t denote
overlapping or adjacent periods, because if the periods of v1

t and v2
t overlap

or are adjacent, their union is also a period, and then v1
t = v2

t . Intuitively,

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.7 (189)

From TOP to TSQL2 

the relations of NVRELP are normalised, in the sense that their tuples are
time-stamped by the maximal possible periods.

– Let SREL be the set of all snapshot relations.
– For every n ∈ {1, 2, 3, . . . }, let VRELP(n) be the set of all relations in VRELP

with n explicit attributes. Similarly, NVRELP(n) and SREL(n) contain all
the relations of NVRELP and SREL, respectively, with n explicit attributes.
To simplify the proofs in the rest of this chapter, the empty relation is
included in all VRELP(n), NVRELP(n), and SREL(n), for every n.

.. The TSQL2 language

Let us now turn to the actual tsql2 language, focusing on the facilities of the
language that will be used in this book. As already noted, tsql2 is an extension
of sql-92 (Melton & Simon 1993). For the benefit of readers not familiar with
sql-92, at some points below the corresponding functionality of sql-92 will be
introduced first, where applicable, followed by the tsql2 extensions.

SELECT statements. Roughly speaking, sql-92 queries consist of three clauses:
a SELECT, a FROM, and a WHERE clause, as shown in the query of (5.3). The
term SELECT statement will be used to refer to the whole of a sql-92 or tsql2
query.

(5.3) SELECT DISTINCT sal.salary
FROM salaries AS sal, managers AS mgr
WHERE mgr.manager = ’J. Adams’
AND sal.employee = mgr.managed

Assuming that salaries and managers are as shown, (5.3) generates the third
relation below.

(5.3)
salaries

employee salary

J. Adams 17000
T. Smith 18000
G. Papas 14500
B. Hunter 17000
K. Kofen 16000

managers

manager managed

J. Adams G. Papas
J. Adams B. Hunter
J. Adams J. Adams
T. Smith K. Kofen
T. Smith T. Smith

(result)

salary

17000
14500

The query in (5.3) generates a snapshot one-attribute relation that contains the
salaries of all employees managed by J. Adams. The FROM clause of (5.3) shows

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.8 (190)

 Chapter 5

that the query operates on the salaries and managers relations. The sal and
mgr are correlation names. They can be thought of as variables ranging over
the tuples of salaries and managers, respectively. The optional WHERE clause
imposes restrictions on the possible combinations of tuple-values of sal and
mgr. In every combination, the manager value of mgr must be J. Adams, and
the managed value of mgr must be the same as the employee value of sal.
For example, 〈J. Adams, G. Papas〉 and 〈G. Papas, 14500〉 is an acceptable com-
bination of mgr and sal values, respectively, while 〈J. Adams, G. Papas〉 and
〈B. Hunter, 17000〉 is not. In sql-92 and tsql2, correlation names are optional,
and relation names can be used instead (e.g., managers.manager). To sim-
plify the definitions in following sections, however, this book treats correlation
names as mandatory.

The SELECT clause specifies the contents of the resulting relation. In (5.3),
it specifies that the resulting relation should have only one attribute, and that
for each acceptable combination of sal and mgr values, the corresponding tu-
ple of the resulting relation should contain the salary value of sal’s tuple. The
DISTINCT keyword in (5.3) causes duplicates of tuples to be removed from
the resulting relation. Without the DISTINCT, the result of (5.3) would con-
tain two identical tuples 〈17000〉, deriving from the tuples of J. Adams and
B. Hunter in salaries, which is against the set-theoretic definition of relations
of this book (Sections 5.2.1 and 5.2.3). To ensure that relations contain no du-
plicates, in this book SELECT statements always have a DISTINCT keyword in
their SELECT clauses.

tsql2 allows SELECT statements to operate on valid-time relations as well.
A SNAPSHOT keyword in the SELECT statement indicates that the resulting
relation is snapshot. When the resulting relation is valid-time, the SELECT

clause specifies the values of the explicit attributes, and an additional VALID
clause specifies the time-stamps. tsql2 provides defaults for the case where the
VALID clause is absent, but they will not be used in this book. Assuming that
val salaries is as in (5.1), (5.4) returns (5.5).

(5.4) SELECT DISTINCT sal.employee, sal.salary

VALID PERIOD(BEGIN(VALID(sal)), END(VALID(sal)))

FROM val_salaries AS sal

(5.5)
employee salary

J. Adams 17000 [1/1/1992, 30/10/1994]
J. Adams 18000 [13/6/1992, now]
T. Smith 21000 [15/6/1992, now]

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.9 (191)

From TOP to TSQL2 

The VALID keyword is used both to start a VALID-clause and to refer to
the time-stamp of a tuple. In (5.4), VALID(sal) refers to the time-stamp
of sal’s tuple, i.e., to the time-stamp of a tuple from val salaries. The BE-

GIN(VALID(sal)) refers to the first chronon of the temporal element rep-
resented by that time-stamp, and END(VALID(sal)) to the last chronon.4

The PERIOD function generates a period that starts at the chronon of its first
argument, and ends at the chronon of its second argument.

Literals. tsql2 provides PERIOD, INTERVAL, and TIMESTAMP literals, all dis-
cussed below. PERIOD literals specify periods. For example, PERIOD ’[March

3, 1995 - March 20, 1995]’ is a literal that specifies a period at the
granularity of days. If chronons are finer than days, the assumption in tsql2 is
that the exact chronons within March 3 and March 20 where the period starts
and ends are unknown (Section 5.2.2). In this book, PERIOD literals that refer
to granularities other than that of chronons are treated as abbreviations for lit-
erals that refer to the granularity of chronons. The denoted period contains all
the chronons that fall within the granules specified by the literal. For example,
if chronons correspond to minutes, PERIOD ’[March 3, 1995 - March

20, 1995]’ is an abbreviation for PERIOD ’[00:00 March 3, 1995 -

23:59 March 20, 1995]’.
tsql2 allows different calendars to be used. Most Western countries use

the Gregorian calendar, a corrected form of the Julian calendar, but other cal-
endars, like the Chinese, Hebrew, Indian or Hijri, are also used around the
world (Snodgrass 2000). The strings that can appear between the quotes of
PERIOD literals depend on the available calendars and the selected formatting
options. The convention is that the boundaries are separated by a dash, and
that the first and last characters of the quoted string are square or round brack-
ets, depending on whether the boundaries are to be included or not, respec-
tively. This book also assumes that PERIOD ’today’ can be used, provided
that chronons are at least as fine as days, to refer to the period that covers all
the chronons of the present day.

TIMESTAMP literals specify chronons. (The use of ‘TIMESTAMP’ in this case
is unfortunate: these literals specify time-points, not time-stamps of valid-
time relations, which denote temporal-elements). Only the following spe-
cial TIMESTAMP literals are used in this book: TIMESTAMP ’beginning’,
TIMESTAMP ’forever’, TIMESTAMP ’now’. These refer to the beginning
of time, the end of time, and the present chronon, respectively.

An example of an INTERVAL literal is INTERVAL ’5’ DAY, which spec-
ifies a duration of five consecutive day-granules. The available granulari-

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.10 (192)

 Chapter 5

ties depend on the calendars that are active, but the granularities of years,
months, days, hours, minutes, and seconds are supported by default. Inter-
vals can also be used to shift periods or chronons towards the past or the
future. For example, PERIOD ’[1991 - 1995]’ + INTERVAL ’1’ YEAR

is the same as PERIOD ’[1992 - 1996]’, and assuming that chronons
correspond to minutes, PERIOD(TIMESTAMP ’beginning’, TIMESTAMP

’now’ - INTERVAL ’1’ MINUTE) specifies the period that covers all the
chronons from the beginning of time up to, but not including, the current
chronon.

Other TSQL2 functions. The INTERSECT function computes the intersec-
tion of two sets of chronons.5 For example, INTERSECT(PERIOD ’[May 1,

1995 - May 10, 1995]’, PERIOD ’[May 3, 1995 - May 15,

1995]’) is the same as PERIOD ’[May 3, 1995 - May 10, 1995]’.
If the intersection is the empty set, INTERSECT returns vε (Section 5.2.3).

The CONTAINS keyword checks if a chronon belongs to a temporal ele-
ment. For example, if val_salaries is as in (5.1), (5.6) generates a snapshot rela-
tion showing the current salary of each employee. CONTAINS can also be used
to check if a temporal element (set of chronons) is a subset of another temporal
element.

(5.6) SELECT DISTINCT SNAPSHOT sal.employee, sal.salary
FROM val_salaries AS sal
WHERE VALID(sal) CONTAINS TIMESTAMP ’now’

The PRECEDES keyword checks if a chronon or temporal element strictly
precedes another chronon or temporal element: expr1 PRECEDES expr2 is
true iff all the chronons of expr1 precede (≺) all the chronons of expr2.6

For example, PERIOD ’[1/6/1995 - 21/6/1995]’ PRECEDES PERIOD

’[24/6/1995 - 30/6/1995]’ is true.

Embedded SELECT statements. tsql2 and sql-92 allow embedded SELECT

statements to be used in the FROM clause, in the same way that relation names
are used, as demonstrated in (5.7).

(5.7) SELECT DISTINCT SNAPSHOT sal2.salary
FROM (SELECT DISTINCT sal1.salary

VALID VALID(sal1)
FROM val_salaries AS sal1
) AS sal2

WHERE sal2.salary > 17500

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.11 (193)

From TOP to TSQL2 

Assuming that val salaries is as in (5.1), the embedded SELECT statement
above simply drops the employee attribute of val_salaries, generating (5.8).
Hence, sal2 ranges over the tuples of (5.8). (5.7) produces a one-attribute
snapshot relation that includes only salaries greater than 17500.

(5.8)
salary

17000 [1/1/1992, 12/6/1992] ∪ [8/5/1994, 30/10/1994]
18000 [13/6/1992, 7/5/1994] ∪ [31/10/1994, now]
21000 [15/6/1992, now]

Partitioning units. In tsql2, relation names and SELECT statements embed-
ded in the FROM clause can be followed by partitioning units.7 These are not
related in any way to top’s partitionings of the time-axis (Section 3.4), but re-
late to the handling of value-equivalent tuples (Section 5.2.3). Two of tsql2’s
partitioning units will be used in this book, (ELEMENT) and (PERIOD), and
two additional partitioning units will be introduced in Section 5.3 to support
some facets of this book’s aspectual taxonomy. The (ELEMENT) partitioning
unit was actually dropped in the latest version of tsql2 (Snodgrass 1995), but
for reasons that will be explained below it is still used in this book.

The (ELEMENT) partitioning unit merges value-equivalent tuples. For ex-
ample, if rel1 is the relation of (5.9), (5.10) generates the coalesced relation
of (5.11).

(5.9)
rel1

employee salary

J. Adams 17000 [1986, 1988]
J. Adams 17000 [1987, 1990]
J. Adams 17000 [1992, 1994]
G. Papas 14500 [1988, 1990]
G. Papas 14500 [1990, 1992]

(5.10) SELECT DISTINCT r1.employee, r1.salary
VALID VALID(r1)
FROM rel1(ELEMENT) AS r1

(5.11)
employee salary

J. Adams 17000 [1986, 1990] ∪ [1992, 1994]
G. Papas 14500 [1988, 1992]

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.12 (194)

 Chapter 5

The effect of (ELEMENT) on a valid-time relation r is captured by the coalesce
function:

coalesce(r)
def
= {〈v1, . . . , vn; vt〉 | 〈v1, . . . , vn; v′t〉 ∈ r and

fD(vt) =
⋃

〈v1,...,vn;v′′t 〉∈r

fD(v′′t)}

The (ELEMENT) partitioning unit has no effect on already coalesced valid-
time relations. Hence, in the latest bcdm and tsql2 versions (Snodgrass 1995),
where all valid-time relations are coalesced (Section 5.2.3), (ELEMENT) is re-
dundant, and this is probably why it was dropped. In this book, however,
where valid-time relations are not necessarily coalesced, (ELEMENT) plays an
important role.

The (PERIOD) partitioning unit intuitively breaks each tuple of a valid-
time relation into value-equivalent tuples, each corresponding to a maximal
period of the temporal element of the original time-stamp. Assuming, for
example, that rel2 is the relation of (5.11), (5.12) generates (5.13).

(5.12) SELECT DISTINCT r2.employee, r2.salary
VALID VALID(r2)
FROM rel2(PERIOD) AS r2

(5.13)
employee salary

J. Adams 17000 [1986, 1990]
J. Adams 17000 [1992, 1994]
G. Papas 14500 [1988, 1992]

As shown in the example above, (PERIOD) may generate non-coalesced rela-
tions. This is mysterious in the latest bcdm version (Snodgrass 1995), where
non-coalesced valid-time relations are not allowed. The assumption seems to
be that although non-coalesced valid-time relations are not allowed, during the
execution of SELECT statements temporary non-coalesced valid-time relations
may be generated. Any resulting valid-time relations, however, are again coa-
lesced automatically at the end of the statement’s execution. (5.13) would be
coalesced automatically at the end of the execution of (5.12), cancelling in this
particular example the effect of (PERIOD). In the tsql2 version of this book,
no automatic coalescing takes place.

To preserve the spirit of (PERIOD) in the bcdm version of this book, where
valid-time relations are not necessarily coalesced, it will be assumed that (PE-
RIOD) operates on a coalesced copy of the original relation. Intuitively, (PE-

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.13 (195)

From TOP to TSQL2 

RIOD) first causes (5.9) to become (5.11), and then generates (5.13). More
formally, the effect of (PERIOD) on a valid-time relation r is captured by the
pcoalesce function:

pcoalesce(r)
def
= {〈v1, . . . , vn; vt〉 | 〈v1, . . . , vn; v′t〉 ∈ coalesce(r) and

fD(vt) ∈ mxlpers(fD(v′t))}

. Modifications to TSQL2

We have already encountered some of the modifications to tsql2 that this
book introduces. The main changes were the following: (a) non-coalesced
valid-time relations were admitted; (b) the distinction between state and event
valid-time relations was abandoned; (c) the (ELEMENT) partitioning unit was
re-introduced; and (d) the semantics of the (PERIOD) partitioning unit was
enhanced to reflect the fact that non-coalesced valid-time relations are al-
lowed. This section discusses some additional tsql2 modifications that will
be adopted in this book, along with the motivation for introducing them.

.. Referring to explicit attributes by number

In the tsql2 version of this book, reference to explicit attributes is made by
using numbers corresponding to the order of the explicit attributes in the rela-
tion schema (Section 5.2.1). For example, if the relation schema of val_salaries
is 〈employee, salary〉, employee is the first explicit attribute and salary the second
one; (5.14) would be used instead of (5.15). To refer to the implicit attribute,
one still uses the VALID keyword.

(5.14) SELECT DISTINCT sal.2
VALID VALID(sal)
FROM val_salaries AS sal

(5.15) SELECT DISTINCT sal.salary
VALID VALID(sal)
FROM val_salaries AS sal

Referring to explicit attributes by number simplifies the top to tsql2 transla-
tion, because there is no need to keep track of the attribute names of result-
ing relations. This is not an essential modification of tsql2, and it could be
removed by developing additional attribute-tracking mechanisms.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.14 (196)

 Chapter 5

.. Additional partitioning units

Two new partitioning units (Section 5.2.4) will be assumed in the tsql2 ver-
sion of this book: (SUBPERIOD) and (NOSUBPERIOD). The (SUBPERIOD)

partitioning unit is intended to be used with relations from VRELP (Section
5.2.3). Its effect on a relation r is captured by the subperiod function:

subperiod(r)
def
= {〈v1, . . . , vn; vt〉 | 〈v1, . . . , vn; v′t〉 ∈ r and fD(vt) � fD(v′t)}

For each tuple 〈v1, . . . , vn; v′t〉 ∈ r, the resulting relation contains many value-
equivalent tuples of the form 〈v1, . . . , vn; vt〉, one for each subperiod fD(vt) of
fD(v′t). Assuming, for example, that chronons correspond to years, and that rel
is the relation of (5.16), (5.17) returns the relation of (5.18).

(5.16)
J. Adams 17000 [1992, 1993]
G. Papas 14500 [1988, 1990]
G. Papas 14500 [1990, 1991]

(5.17) SELECT DISTINCT r.1, r.2
VALID VALID(r)
FROM rel(SUBPERIOD) AS r

(5.18)
J. Adams 17000 [1992, 1993]
J. Adams 17000 [1992, 1992]
J. Adams 17000 [1993, 1993]
G. Papas 14500 [1988, 1990]
G. Papas 14500 [1988, 1988]
G. Papas 14500 [1988, 1989]
G. Papas 14500 [1989, 1989]
G. Papas 14500 [1989, 1990]
G. Papas 14500 [1990, 1990]
G. Papas 14500 [1990, 1991]
G. Papas 14500 [1991, 1991]

The first three tuples of (5.18) correspond to the first tuple of (5.16). The
following six tuples correspond to the first tuple of G. Papas in (5.16). The
remaining two tuples of (5.18) derive from the second tuple of G. Papas in
(5.16); the tuple for the subperiod [1990, 1990] has already been included.
Notice that (SUBPERIOD) does not coalesce the original relation before gen-

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.15 (197)

From TOP to TSQL2 

erating the result, which is why there is no tuple for G. Papas time-stamped by
[1988, 1991] in (5.18).

Obviously, the cardinality of the resulting relation can be very large, espe-
cially if chronons are very fine (e.g., seconds). Provided that the cardinality of
the original relation is finite, however, the cardinality of the resulting relation
is never infinite. Given that time is discrete, linear, and bounded, any period
p is a finite set of chronons (time-points), and it has at most a finite number
of subperiods. Hence, for any tuple in the original relation whose time-stamp
represents a period p, there will be at most a finite number of tuples in the
resulting relation whose time-stamps represent subperiods of p. It should also
be stressed that the representation of the resulting relation above is only in-
tended to demonstrate the functionality of (SUBPERIOD) at the conceptual
level. At the physical level, more compact representations would have to be
used, as it would be very inefficient to store individually all the tuples of the
resulting relation.8 It remains to be examined if efficient physical-level repre-
sentations of this type exist, an issue that will not be addressed in this book.
Alternatively, it may be possible to obtain the functionality of (SUBPERIOD)
using other database language constructs; this, however, does not seem to be
the case with tsql2.

During the top to tsql2 translation, every top formula will be mapped to
a valid-time relation whose time-stamps denote the event-time periods where
the formula is true. Since not all top formulae are homogeneous (Section 3.6),
it does not suffice to include in the relation only the maximal event-time pe-
riods where the formula is true, which is why non-coalesced relations are al-
lowed. On the other hand, there will be cases where we know only the maximal
event-time periods of a homogeneous formula, and we need to ensure that the
corresponding relation also contains all the subperiods of the maximal peri-
ods; this is where the (SUBPERIOD) partitioning unit is needed. This point
will become clearer in Section 5.11.

The (NOSUBPERIOD) partitioning unit cancels, roughly speaking, the ef-
fect of (SUBPERIOD). It is intended to be used with relations from VRELP, and
its effect on a valid-time relation r is captured by the following function:

nosubperiod(r)
def
= {〈v1, . . . , vn; vt〉 ∈ r | there is no 〈v1, . . . , vn; v′t〉 ∈ r

such that fD(vt) � fD(v′t)}
In other words, (NOSUBPERIOD) eliminates any tuple 〈v1, . . . , vn; vt〉, for
which there is a value-equivalent tuple 〈v1, . . . , vn; v′t〉, such that fD(vt) � fD(v′t).
Applying (NOSUBPERIOD) to (5.18) generates (5.16). Notice that, unlike (PE-

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.16 (198)

 Chapter 5

RIOD), (NOSUBPERIOD) does not coalesce tuples time-stamped by adjacent
periods. Applying (PERIOD) to (5.18) would have generated (5.19).

(5.19)
J. Adams 17000 [1992, 1993]
G. Papas 14500 [1988, 1991]

.. Calendric relations

As mentioned in Section 5.2.4, tsql2 allows different calendars to be used;
for example, Gregorian, Hijri, etc. Calendar definitions for tsql2 are provided
by the database administrator, the dbms vendor, or third parties (Snodgrass
1995, Section 3.2). Among other things, tsql2 calendar definitions specify the
meanings of strings within the quotes of temporal literals, and the available
granularities. In this book, it will be assumed that tsql2 calendar definitions
also provide calendric relations. Calendric relations behave like ordinary rela-
tions in the database, except that they contain information about the calendars,
and cannot be updated. In the case of the Gregorian calendar, for example, it
will be assumed that the following calendric relation is available. (It is assumed
here that chronons are finer than minutes.)

gregorian

year month dnum dname hour minute

. .
1994 Sept 4 Sun 00 00 {cn1 , . . . , cn2 }
1994 Sept 4 Sun 00 01 {cn3 , . . . , cn4 }

. .
1995 Dec 5 Tue 21 35 {cn5 , . . . , cn6 }

. .

The relation above means that the first minute (00:00) of September 4th 1994,
which was a Sunday, covers exactly the period that starts at the chronon cn1 and
ends at the chronon cn2 . Similarly, the period that starts at cn3 and ends at cn4

is the second minute (00:01) of September 4th 1994. Of course, the cardinality
of gregorian is very large, though not infinite: time in tsql2 is bounded, and
hence there is at most a finite number of minute-granules. Again, it is impor-
tant to realise that although gregorian behaves like a normal relation, it does not
need to be physically present in the database. Its tuples can be computed dy-
namically, whenever they are needed, using some algorithm specified by the
calendar definition. Other calendric relations may list the periods that cor-

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.17 (199)

From TOP to TSQL2 

respond to seasons (spring-periods, summer-periods, etc.), special days (e.g.,
Easter days), etc.

Calendric relations like gregorian can be used to construct relations that
represent the periods of top’s partitionings (Section 3.4). For example, (5.20)
constructs a one-attribute snapshot relation, which contains all the time-
stamps of gregorian that correspond to 21:36-minutes. The resulting relation
represents all the periods of the gappy partitioning of 21:36-minutes.

(5.20) SELECT DISTINCT SNAPSHOT VALID(greg)
FROM gregorian AS greg
WHERE greg.5 = 21 AND greg.6 = 36

Similarly, (5.21) generates a one-attribute snapshot relation that represents the
periods of the gappy partitioning of Sundays. The embedded SELECT state-
ment generates a valid-time relation of one explicit attribute, whose value is
Sun in all tuples. The time-stamps of this relation are all the time-stamps
of gregorian that fall within Sundays; there are many tuples for each Sun-
day. The (PERIOD) coalesces tuples that correspond to the same Sunday,
leading to a single period-denoting time-stamp for each Sunday. These time-
stamps become the attribute values of the relation generated by the over-
all (5.21).

(5.21) SELECT DISTINCT SNAPSHOT VALID(greg2)
FROM (SELECT DISTINCT greg1.4

VALID VALID(greg1)
FROM gregorian AS greg1
WHERE greg1.4 = ’Sun’
)(PERIOD) AS greg2

It has been argued elsewhere (Androutsopoulos, Ritchie, & Thanisch 1995a)
that calendric relations constitute a necessary addition to tsql2, and that un-
less appropriate calendric relations are available, it is not possible to formulate
tsql2 queries for questions involving counts, existential, or universal quan-
tification over day-names, month names, season-names, etc., like the ones in
(5.22)–(5.24).

(5.22) Which technicians were at some site on a Sunday?
(5.23) Which technician was at Glasgow Central on every Monday in 1994?
(5.24) On how many Sundays was J. Adams at Glasgow Central in 1994?

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.18 (200)

 Chapter 5

.. Other minor changes

This section discusses some remaining minor tsql2 modifications, which will
allow us to bypass uninteresting details in the top to tsql2 mapping.

The INTERVAL function. tsql2 provides a function INTERVAL that accepts a
period-denoting expression as its argument, and returns an interval reflect-
ing the duration of the period. The assumption seems to be that the result-
ing interval is specified at whatever granularity the period is specified. For ex-
ample, INTERVAL(PERIOD ’[1/12/1995 - 3/12/1995]’) is the same as
INTERVAL ’3’ DAY. In this book, all periods are specified at the granularity
of chronons, and if chronons correspond to minutes, PERIOD ’[1/12/1995

- 3/12/1995]’ is an abbreviation for PERIOD ’[00:00 1/12/1995 -

23:59 3/12/1995]’ (Section 5.2.4). Hence, the results of INTERVAL are al-
ways specified at the granularity of chronons. When translating from top to
tsql2, however, there are cases where we want the results of INTERVAL to be
specified at other granularities.

The tsql2 mechanisms for converting intervals from one granularity to
another are obscure. To avoid these mechanisms, an additional version of the
INTERVAL function is used in this book. If expr1 is a tsql2 expression that
specifies a period p, and expr2 is the tsql2 name (e.g., DAY, MONTH) of a granu-
larity G, then INTERVAL(expr1, expr2) specifies an interval of n granules (pe-
riods) of G, where n is as follows: if there are k consecutive granules g1, . . . , gk

in G, such that g1 ∪ . . .∪ gk = p, then n = k; otherwise, n = 0. For example, IN-
TERVAL(PERIOD ’[May 1, 1995 - June 30, 1995]’, MONTH) is the
same as INTERVAL ’2’ MONTH, because the period covers exactly two con-
secutive month-granules. In contrast, INTERVAL(PERIOD ’[May 1, 1995

- June 15, 1995]’, MONTH) is the same as INTERVAL ’0’ MONTH, i.e.,
zero duration, because there is no union of consecutive month-granules that
covers exactly the specified period.

Correlation names used in the FROM clause that defines them. The syntax
of tsql2 and sql-92 does not allow a correlation name to be used in SE-

LECT statements embedded in the same FROM clause that defines the correla-
tion name. For example, (5.25) is not allowed, because the embedded SELECT

statement uses r1, which is defined by the same FROM clause that contains the
embedded SELECT statement.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.19 (201)

From TOP to TSQL2 

(5.25) SELECT . . .
VALID VALID(r1)
FROM rel1 AS r1,

(SELECT . . .
VALID VALID(r2)
FROM rel2 AS r2
WHERE VALID(r1) CONTAINS VALID(r2)
) AS r3

WHERE . . .

The term definition of a correlation name α, will be used in this book to refer to a
tsql2 expression ‘AS α’ that associates αwith a relation. For example, in (5.25)
the definition of r1 is the AS r1.9 A correlation name α is defined by a FROM

clause ξ, if ξ contains the definition of α, and this definition is not within an
embedded SELECT statement of ξ. For example, in (5.25) the r2 is defined by
the FROM rel2 AS r2, not by the FROM rel1 AS r1, (. . .) AS r3.

The tsql2 version of this book allows correlation names to be used in SE-

LECT statements embedded in the FROM clauses that define them, provided that
the definitions of the correlation names precede the embedded SELECT state-
ments. (5.25) is acceptable, because the definition of r1 precedes the embedded
SELECT statement where r1 is used. In contrast, (5.26) is not acceptable, be-
cause the definition of r1 follows the embedded SELECT statement where r1
is used.

(5.26) SELECT . . .
VALID VALID(r1)
FROM (SELECT . . .

VALID VALID(r2)
FROM rel2 AS r2
WHERE VALID(r1) CONTAINS VALID(r2)
) AS r3,
rel1 AS r1

WHERE . . .

The intended semantics of statements like (5.25) should be easy to see: when
evaluating the embedded SELECT statement, VALID(r1) represents the time-
stamp of a tuple from rel1. The restriction that the definition of the correla-
tion name must precede the embedded SELECT statement is imposed to make
this modification easier to implement. The modification simplifies the trans-
lation of formulae of the form At[φ1,φ2], Before[φ1,φ2], and After[φ1,φ2]; see
Section 5.11 and Appendix A.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.20 (202)

 Chapter 5

Equality checks and different domains. In many cases, using the equality op-
erator (=) with tsql2 or sql-92 expressions that refer to values from different
domains (Section 5.2.1) leads to run-time errors. If, for example, the domain of
the first explicit attribute of rel is the set of all integers,r.1 in (5.27) stands for
an integer. tsql2 and sql-92 do not allow integers to be compared to strings;
consequently, a run-time error would be generated.

(5.27) SELECT DISTINCT SNAPSHOT r.2
FROM rel AS r
WHERE r.1 = ’J. Adams’

In other cases, for example when a real number is compared to an integer, type
conversions take place before the comparison. To bypass uninteresting details,
this book assumes that no type conversions occur when the equality operator
is used. The equality holds iff both of the arguments refer to the same element
of the universal domain D, and no error occurs if the arguments refer to val-
ues from different domains. In the example of (5.27), r.1 = ’J. Adams’ is
not satisfied, because r.1 refers to an integer, and integers are different from
strings. Consequently, in the tsql2 version of this book (5.27) generates the
empty relation; no errors occur.

Partitioning units at top-level SELECT statements. tsql2 does not allow par-
titioning units to follow SELECT statements that are not embedded in other
SELECT statements. For example, (5.28) on its own is unacceptable.

(5.28) (SELECT DISTINCT r1.1, r1.2
VALID VALID(r1)
FROM rel AS r1

)(PERIOD)

Statements like (5.28) can be easily rectified by embedding them in other
SELECT statements, as in (5.29).

(5.29) SELECT DISTINCT r2.1, r2.2
VALID VALID(r2)
FROM (SELECT DISTINCT r1.1, r1.2

VALID VALID(r1)
FROM rel AS r1
)(PERIOD) AS r2

To avoid introducing uninteresting layers in the mapping from top to tsql2,
the tsql2 version of this book allows partitioning units to follow non-
embedded SELECT statements, as in (5.28), assuming that they generate the

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.21 (203)

From TOP to TSQL2 

same relations as the corresponding rectified queries. For uniformity, stand-
alone SELECT statements enclosed in brackets, as in (5.30), are also allowed;
the enclosing brackets are simply to be ignored.

(5.30) (SELECT DISTINCT r1.1, r1.2
VALID VALID(r1)
FROM rel AS r1)

. Additional TSQL2 terminology

This section defines some additional terminology, which will be used to refer
to tsql2 constructs or their denotations during the formulation of the top to
tsql2 mapping.

Column reference. A column reference is an expression of the form α.i or
VALID(α), where α is a correlation name and i ∈ {1, 2, 3, . . . }. For example,
the sal.2 and VALID(sal) in (5.14) are column references.

Binding context. A SELECT statement Σ is a binding context for a column
reference α.i or VALID(α) iff:

– the column reference is part of Σ,
– α is defined (in the sense of Section 5.3.4) by the topmost FROM clause of
Σ, and

– the column reference is not in the topmost FROM clause of Σ; or it is in
the topmost FROM clause of Σ, but the definition of α precedes the column
reference.

The term topmost FROM clause of Σ refers to the single FROM clause of Σ that
does not appear in any SELECT statement embedded in Σ; for example, the
topmost FROM clause of (5.31) is the FROM (. . .) AS r3, tab1 AS r1.

(5.31) SELECT DISTINCT r1.1, r3.2
VALID VALID(r1)
FROM (SELECT DISTINCT SNAPSHOT r2.1, r2.2

FROM tab2 AS r2
WHERE VALID(r2) CONTAINS VALID(r1)

) AS r3,
tab1 AS r1

WHERE r1.1 = ’J. Adams’

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.22 (204)

 Chapter 5

We will often have to distinguish between individual occurrences of column
references. For example, (5.31) is a binding context for the occurrence of
VALID(r1) in the VALID clause, because that occurrence is part of (5.31),
r1 is defined by the topmost FROM clause of (5.31), and the occurrence of
VALID(r1) is not in the topmost FROM clause of (5.31). However, (5.31) is
not a binding context for the occurrence of VALID(r1) in the embedded SE-

LECT statement, because that occurrence is in the topmost FROM clause, and it
does not follow the definition of r1. In contrast, (5.32) is a binding context for
the VALID(r1) in the embedded SELECT statement, because the definition of
r1 precedes that occurrence of VALID(r1).

(5.32) SELECT DISTINCT r1.1, r3.2
VALID VALID(r1)
FROM tab1 AS r1,

(SELECT DISTINCT SNAPSHOT r2.1, r2.2
FROM tab2 AS r2
WHERE VALID(r2) CONTAINS VALID(r1)

) AS r3
WHERE r1.1 = ’J. Adams’

In both (5.31) and (5.32), the overall SELECT statement is not a binding con-
text for r2.1, r2.2, and VALID(r2), because r2 is not defined by the top-
most FROM clause of the overall SELECT statement. The embedded SELECT

statement of (5.31) and (5.32), however, is a binding context for r2.1, r2.2,
and VALID(r2).

Free column reference. An occurrence of a column reference α.i or VALID(α)
is a free in a tsql2 expression ξ, iff:

– the occurrence of the column reference is part of ξ, and
– there is no SELECT statement in ξ, possibly being the whole ξ, which is a

binding context for the occurrence of the column reference.

The VALID(r1) of the embedded SELECT statement of (5.31) is free in (5.31),
because there is no binding context for that occurrence in (5.31). In contrast,
the VALID(r1) of the VALID clause of (5.31) is not free in (5.31), because
(5.31) is a binding context for that occurrence. The VALID(r2) of (5.31)
is not free in (5.31), because the embedded SELECT statement is a binding
context for it.

A correlation name α has a free column reference in a tsql2 expression ξ,
iff there is an occurrence of a column reference α.i or VALID(α) in ξ which is

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.23 (205)

From TOP to TSQL2 

free. For every tsql2 expression ξ, fcn(ξ) is the set of all correlation names that
have a free column reference in ξ. For example, if ξ is (5.31), fcn(ξ) = {r1}.

There must be no free column references in the overall SELECT statements
that are submitted to the tsql2 (or sql-92) interpreter, though there may be
free column references in their embedded SELECT statements. Hence, it is im-
portant to prove that the top to tsql2 mapping generates tsql2 code with this
property.

Value expression. A value expression is a tsql2 expression that normally
evaluates to elements of the universal domain D. The meaning of ‘nor-
mally’ will be explained when defining the eval function below. For ex-
ample, ’J. Adams’, VALID(sal), and INTERSECT(PERIOD ’[1993 -

1995]’, PERIOD ’[1994 - 1996]’) are all value expressions.

Assignment to correlation names. An assignment to correlation names is a
function gdb that maps every tsql2 correlation name to a possible tuple of a
snapshot or valid-time relation. Gdb is the set of all possible assignments to
correlation names. If α is a correlation name, 〈v1, v2, . . . 〉 is a possible tuple of
a snapshot or valid-time relation, and gdb ∈ Gdb, then (gdb)α〈v1,v2,... 〉 is the same
as gdb, except that it assigns 〈v1, v2, . . . 〉 to α.

The eval function. For every tsql2 SELECT statement or value expression ξ,
and every st ∈ PTS and gdb ∈ Gdb, eval(st, ξ, gdb) is the relation (if ξ is a SELECT
statement) or the element of D (if ξ is a value expression) that is generated when
the tsql2 interpreter evaluates ξ in the following way:

– st is taken to be the current chronon (time-point).
– Every free column reference of the form α.i is treated as a value expression

that evaluates to vi, where vi is the value of the i-th explicit attribute in
gdb(α).

– Every free column reference of the form VALID(α) is treated as a value
expression that evaluates to vt , where vt is the time-stamp of gdb(α).

If ξ cannot be evaluated in this way, for example if ξ contains a free column
reference of the form α.4 and gdb(α) = 〈v1, v2, v3〉, then eval(st, ξ, gdb) returns
the special value error; it is assumed that error
∈ D. A value expression ξ nor-
mally, but not always, evaluates to an element of D, because when errors arise
eval(st, ξ, gdb) = error
∈ D; otherwise eval(st, ξ, gdb) ∈ D.

Strictly speaking, eval should also have as its argument the database against
which ξ is evaluated. For simplicity, however, we will omit this argument.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.24 (206)

 Chapter 5

Finally, if fcn(ξ) = ∅, i.e., if ξ contains no free column references, then
eval(st, ξ, gdb) does not depend on gdb, in which case the notation eval(st, ξ)
will be used.

. Adjustments in TOP and additional TOP terminology

This section discusses some adjustments that are made to the top formulae
before translating them to tsql2, and introduces some additional top termi-
nology that will be useful in the remainder of this chapter.

Part, At, Before, and After opertors. In the formulae that are generated by the
English to top mapping of Chapter 4, each Part[σ, β] operator is conjoined
with a subformula that is, or contains, an expression of the form At[β,φ],
Before[β,φ], or After[β,φ], where σ ∈ PARTS, φ ∈ YNFORMS, β ∈ VARS, and
β is the same variable in all of the expressions. For example, (5.33) is mapped
to (5.34), and the reading of (5.35) where Monday is the time when the tank
was empty is mapped to (5.36).

(5.33) Tank 2 was empty on a Monday.
(5.34) Part[mondayg , monv] ∧ At[monv, Past[ev, empty(tank2)]]
(5.35) Tank 2 had been empty on a Monday.
(5.36) Part[mondayg , monv] ∧

Past[e1v, Perf [e2v, At[monv, empty(tank2)]]]

The mapping from top to tsql2 of this chapter uses a slightly different ver-
sion of top, where the Part[σ, β] expressions are merged with the correspond-
ing At[β,φ], Before[β,φ], or After[β,φ] expressions, and Part[σ, β], At[β,φ],
Before[β,φ], and After[β,φ] are no longer yes/no formulae. For example, (5.34)
and (5.36) become (5.37) and (5.38), respectively.

(5.37) At[mondayg , monv, Past[ev, empty(tank2)]]
(5.38) Past[e1v, Perf [e2v, At[mondayg , monv, empty(tank2)]]]

The semantics of At[σ, β,φ], Before[σ, β,φ], and After[σ, β,φ] follow; f is fgparts

if σ ∈ GPARTS, and fcparts if σ ∈ CPARTS. As with the top version of Chap-
ter 3 (Section 3.2), β must not occur within φ. This is needed to prove the
correctness of the top to tsql2 translation process.

– ‖At[σ, β,φ]‖st,et,lt,g = T iff g(β) ∈ f (σ) and ‖φ‖st,et,lt∩g(β),g = T.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.25 (207)

From TOP to TSQL2 

– ‖Before[σ, β,φ]‖st,et,lt,g = T iff
g(β) ∈ f (σ) and ‖φ‖st,et,lt∩[tfirst ,minpt(‖β‖g)),g = T.

– ‖After[σ, β,φ]‖st,et,lt,g = T iff
g(β) ∈ f (σ) and ‖φ‖st,et,lt∩(maxpt(‖β‖g),tlast],g = T.

The top version of Chapter 3 is more convenient for the English to top map-
ping, while the version of this chapter simplifies the top to tsql2 transla-
tion. In the prototype nlitdb of Chapter 6, the conversion between the two
top versions is performed during the post-processing of the top formulae
(Section 4.17).

The top to tsql2 translator also assumes that in any expression of the
form At[κ,φ], Before[κ,φ] or After[κ,φ] (κ ∈ CONS, φ ∈ YNFORMS),
fcons(κ) ∈ PERIODS. The definitions of Section 3.10 are more liberal: they allow
fcons(κ)
∈ PERIODS, in which case the denotation of the expression is always
F. In practice, however, the formulae that are generated by the English to top
mapping always use κ to denote a period.

Corners. For every φ ∈ YNFORMS, �φ�, pronounced corners φ, is the tuple
〈τ1, . . . , τn〉, where τ1, . . . , τn are all the constants that are used as arguments
of predicates in φ, and all the variables that occur in φ, in the same order that
they appear in φ. If a constant occurs more than once as a predicate argument
in φ, or if a variable occurs more than once in φ, there are multiple τis in �φ�
for that constant or variable. If �φ� = 〈τ1, . . . , τn〉, the length of �φ� is n. For
example, if:

φ = Ntense[tv, woman(pv)] ∧ At[1999, Past[ev, manager of (pv, sales)]]

then �φ� = 〈tv, pv, ev, pv, sales〉, and the length of �φ� is 5.

. Linking the TOP model to the database

The answer to an English question submitted at a time-point st (speech time)
must report the denotation ‖φ‖M,st of the corresponding top formula φ (Sec-
tion 3.6). ‖φ‖M,st follows from the semantics of top, provided that the model
M, which provides all the necessary information about the modelled world,
has been defined. In an nlidb, the only source of information about the world
is the database.10 Hence, M has to be defined in terms of information in the

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.26 (208)

 Chapter 5

database. This mainly involves defining the functions fcons, fpfuns, fculms, fcparts,
and fgparts, which are parts of M (Section 3.4), in terms of the database.

The functions above show how certain basic top expressions (e.g., con-
stants, predicates, and partitioning names) relate to the modelled world. In this
chapter, they will be defined in terms of another set of functions, hcons, hpfuns,
hculms, hcparts, and hgparts, respectively, and fD (Section 5.2.1). Roughly speaking,
the h functions map basic top expressions to database constructs, and fD maps
the attribute values of these constructs to world objects (Figure 5.1). The h
functions will in turn be defined in terms of a third set of functions, h′cons,
h′pfuns, h′culms, h′cparts, and h′gparts, respectively, and eval (Section 5.4). The h′ func-
tions map basic top expressions to tsql2 expressions, and eval maps tsql2
expressions to database constructs.

After defining the h′ functions, one could compute ‖φ‖M,st using a reason-
ing system, which would contain inference rules encoding the semantics of top,
and which would use the path from basic top expressions to tsql2 expressions,
database constructs, and the modelled world in Figure 5.1 to compute any nec-
essary values of fcons, fpfuns, fculms, fcparts, and fgparts. That is, only basic top ex-
pressions would be translated into tsql2, and the dbms would be used only to
evaluate the tsql2 translations of these expressions. The rest of the processing
to compute ‖φ‖M,st would be carried out by the reasoning system.

This book adopts an alternative approach, which exploits the capabilities
of the dbms to a larger extent and requires no additional reasoning system.
Building upon the h′ functions, which translate only basic top expressions to
tsql2, a method to translate any top formula into tsql2 will be developed
(Figure 5.2). The resulting tsql2 code will then be executed by the dbms, gen-
erating a relation that represents, via an interpretation function, ‖φ‖M,st . It can

Figure 5.1 From basic TOP expressions to the modelled world

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.27 (209)

From TOP to TSQL2 

Figure 5.2 From TOP formulae to their denotations

be proven formally that this approach indeed generates ‖φ‖M,st , i.e., that paths
1 and 2 of Figure 5.2 lead to the same result. Central parts of this proof will be
presented in later sections; the full details can be found in the thesis on which
this book is based (Androutsopoulos 1996).

It should be noted at this point that, to the best of the author’s knowledge,
the semantics of tsql2 was never defined formally. That is, the behaviour of the
various tsql2 expressions has been defined using only textual descriptions and
examples, as opposed to specifying mathematically the data that the expres-
sions generate when tsql2 code is executed. Hence, the reader may wonder
how it is possible to prove formally that the top to tsql2 mapping is correct, if
the semantics of the target language is not defined formally. To sidestep this de-
ficiency, when a need arises to refer formally to the data that a tsql2 expression
generates, this book and the thesis on which it is based first specify formally,
using set-theoretic notions, what the author understands to be the result of
the tsql2 expression, based on the available tsql2 documentation. Although
this does not rule out the risk of misunderstanding the intended functionality
of some tsql2 expressions, it clarifies the author’s interpretation of the tsql2
documentation, and the functionality that corresponding expressions in other
database languages would have to provide if another database language were to
be used instead of tsql2.

There is one further complication: the values of fcons, fpfuns, fculms, fcparts, and
fgparts will ultimately be obtained by evaluating tsql2 expressions. A tsql2 ex-
pression, however, may generate different results when evaluated at different
times; for example, as a result of database updates. Hence, the functions must
be made sensitive to the speech time st, as explained below.

First, fcons becomes a function PTS �→ (CONS �→ OBJS), instead of
CONS �→ OBJS. This allows the world objects that are assigned to top con-
stants via fcons to be different at different time-points st. Similarly, fpfuns becomes

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.28 (210)

 Chapter 5

a function over PTS. For every st ∈ PTS, fpfuns(st) is in turn a function that maps
each pair 〈π, n〉, where π ∈ PFUNS and n ∈ {1, 2, 3, . . . }, to another function
(OBJS)n �→ pow(PERIODS) (cf. Section 3.4). The definitions of the remain-
ing functions are modified accordingly, and whatever restrictions applied to
the original functions now apply to fcons(st), fpfuns(st), fculms(st), fcparts(st), and
fgparts(st), for every st ∈ PTS.

The top model also becomes sensitive to st, as shown below. Intuitively,
M(st) contains the history of the world as recorded in the database at the time
when the question is submitted (st). The answer to an English question sub-
mitted at st must now report the denotation ‖φ‖M(st),st of the corresponding
top formula φ.

M(st) = 〈OBJS, fcons(st), fpfuns(st), fculms(st), fgparts(st), fcparts(st)〉

If the database supports both valid and transaction time (Section 1.5), it is pos-
sible to answer questions based on the history that was recorded in the database
at non-present time-points t, by reporting ‖φ‖M(t),st instead of ‖φ‖M(st),st.

. The h functions

Let us now define hcons, hpfuns, hculms, hcparts, and hgparts, i.e., the functions that
map basic top expressions to database constructs (Figure 5.1). The values of
these functions will ultimately be obtained by evaluating tsql2 expressions at
st; hence their definitions must be sensitive to st.

hcons. This is a function PTS �→ (CONS �→ D). For every st ∈ PTS, hcons(st) is
in turn a function that maps each top constant to an attribute value that repre-
sents the same world-entity. For example, hcons(st) could map the top constant
sales department to the string attribute value Sales Department, and the con-
stant today to the element of DP (DP ⊆ D) that denotes the day-period which
contains st.

hpfuns. This is a function over PTS. For every st ∈ PTS, hpfuns(st) is in turn a
function over PFUNS × {1, 2, 3, . . . }, such that for every π ∈ PFUNS and n ∈
{1, 2, 3, . . . }, hpfuns(st)(π, n) ∈ NVRELP(n) (Section 5.2.3). hpfuns(st) is intended
to map every top predicate of functor π and arity n to a relation that shows for
which arguments of the predicate and at which maximal periods the situation
represented by the predicate is true. The relation draws information from the

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.29 (211)

From TOP to TSQL2 

history that is recorded in the database at st. For example, if circling(ba737)
represents the situation where BA737 is circling, and if according to the history
that is recorded in the database at st, p is a maximal period where BA737 was
circling, then hpfuns(st)(circling, 1) must contain a tuple 〈v; vt〉, such that fD(v) =
fcons(ba737) and fD(vt) = p.

hculms. This is also a function over PTS. For every st, hculms(st) is in turn a func-
tion over PFUNS × {1, 2, 3, . . . }, such that for every π and n, hculms(st)(π, n) ∈
SREL(n) (Section 5.2.3). Intuitively, hculms plays the same role as fculms (Sec-
tion 3.4). In practice, hculms is consulted only for predicates that describe sit-
uations with inherent climaxes. hculms(st) maps each top predicate of functor π
and arity n to a relation that shows for which predicate arguments the situation
of the predicate reaches its climax at the latest time-point where the situation
is ongoing, according to the history recorded in the database at st.

For example, if inspecting(ja, ba737) represents a situation where BA737
is being inspected by J. Adams, then hpfuns(st)(inspecting, 2) is a relation in
NVRELP(2) and hculms(st)(inspecting, 2) a relation in SREL(2). If the history
that is recorded in the database at st shows that the maximal periods where
J. Adams was inspecting BA737 are p1, . . . , pj, then hpfuns(st)(inspecting, 2) con-

tains the tuples 〈v1, v2; v1
t 〉, . . . , 〈v1, v2; vj

t〉, where fD(v1) = fcons(ja), fD(v2) =
fcons(ba737), and fD(v1

t) = p1, . . . , fD(vj
t) = pj. Let us assume that p is the

latest maximal period among p1, . . . , pj. Then, hculms(st)(inspecting, 2) contains
〈v1, v2〉 iff according to the history recorded in the database at st, the inspection
of BA737 by J. Adams reaches its completion at the end of p.

hgparts. This is a function over PTS. For every st, hgparts(st) is in turn a func-
tion that maps every element of GPARTS to an r ∈ SREL(1), such that the set
S = {fD(v) | 〈v〉 ∈ r} is a gappy partitioning. hgparts(st) is intended to map
each top gappy partitioning name σg to a one-attribute snapshot relation r,
whose attribute values represent the periods of the gappy partitioning S that is
assigned to σg . For example, hgparts(st) could map mondayg to a one-attribute
snapshot relation whose attribute values denote all the Monday-periods.

hcparts. This is similar to hgparts, except that it is used with complete partitioning
names. It is a function over PTS. For every st, hcparts(st) is in turn a function
that maps every element of CPARTS to an r ∈ SREL(1), such that the set S =
{fD(v) | 〈v〉 ∈ r} is a complete partitioning. For example, hcparts(st) could map

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.30 (212)

 Chapter 5

dayc to a one-attribute snapshot relation whose attribute values denote all the
day-periods.

. The TOP model in terms of database concepts

The top model can now be defined in terms of database concepts as discussed
below (see also Sections 3.4 and 5.6). A mapping fD between the universal
domain D and top’s OBJS is assumed, as in Section 5.2.1.

fcons. For every st ∈ PTS and κ ∈ CONS, fcons(st)(κ)
def
= fD(hcons(st)(κ)). hcons(st)

is a function CONS �→ D, and fD is a function D �→ OBJS. Hence, fcons(st) is a
function CONS �→ OBJS, as required by Sections 3.4 and 5.6.

fpfuns. For st ∈ PTS, π ∈ PFUNS, n ∈ {1, 2, 3, . . . }, o1, . . . , on ∈ OBJS:

fpfuns(st)(π, n)(o1, . . . , on)
def
=

{fD(vt) | 〈f –1
D (o1), . . . , f –1

D (on); vt〉 ∈ hpfuns(st)(π, n)}

That is, fD(vt) is a maximal period where the situation that involves the entities
o1, . . . , on is ongoing iff vt is the time-stamp of a tuple in hpfuns(st)(π, n) that cor-
responds to o1, . . . , on. The definition of hpfuns guarantees that hpfuns(st)(π, n) ∈
NVRELP(n), which implies that fpfuns(st)(π, n)(o1, . . . , on) is a set of periods.
According to Sections 3.4 and 5.6, it must also be the case that if p1, p2 ∈
fpfuns(st)(π, n)(o1, . . . , on) and p1∪p2 ∈ PERIODS, then p1 = p2. fpfuns, as defined
above, has this property. The proof follows.

Let us assume that p1 and p2 are as above, but p1
= p2. Let v1
t = f –1

D (p1) and
v2

t = f –1
D (p2), i.e., fD(v1

t) = p1 and fD(v2
t) = p2. Since p1
= p2 and f –1

D is 1-1 (Sec-
tion 5.2.1), f –1

D (p1)
= f –1
D (p2), i.e., v1

t
= v2
t . Then, by the definition of fpfuns above,

hpfuns(st)(π, n) contains the value-equivalent tuples 〈f –1
D (o1), . . . , f –1

D (on); v1
t 〉

and 〈f –1
D (o1), . . . , f –1

D (on); v2
t 〉, where fD(v1

t) ∪ fD(v2
t) ∈ PERIODS. This, how-

ever, implies that v1
t = v2

t , because hpfuns(st)(π, n) ∈ NVRELP(n) (Section 5.7),
which is not true. Hence, it cannot be the case that p1
= p2, which implies
that p1 = p2.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.31 (213)

From TOP to TSQL2 

fculms. For st ∈ PTS, π ∈ PFUNS, n ∈ {1, 2, 3, . . . }, o1, . . . , on ∈ OBJS:

fculms(st)(π, n)(o1, . . . , on)
def
=




T, if 〈f –1
D (o1), . . . , f –1

D (on)〉
∈ hculms(st)(π, n)

F, otherwise

That is, the situation that involves o1, . . . , on reaches its climax at the end of
the latest maximal period where the situation is ongoing iff there is a tuple in
hculms(st)(π, n) that corresponds to o1, . . . , on. The definition of hculms guarantees
that hculms(st)(π, n) ∈ SREL(n).

fgparts. For every st ∈ PTS and σg ∈ GPARTS, fgparts(st)(σg)
def
= {fD(v) | 〈v〉 ∈

hgparts(st)(σg)}. The definition of hgparts guarantees that fgparts(st)(σg) is always a
gappy partitioning. Similar comments apply to fcparts below.

fcparts. For every st ∈ PTS and σc ∈ CPARTS, fcparts(st)(σc)
def
= {fD(v) | 〈v〉 ∈

hcparts(st)(σc)}.

. The h′ functions

We can now examine in more detail the h′ functions, i.e., the functions that
map basic top expressions to tsql2 expressions (Figure 5.1), and how the
h functions of Section 5.7 can be defined in terms of the h′ functions. It is
assumed that the exact definitions of the h′ functions are provided in each
application domain by the configurer of the nlitdb (Section 1.2).

h′
cons. This function maps every top constant κ to a tsql2 value expression ξ,

such that fcn(ξ) = ∅, and for every st ∈ PTS, eval(st, ξ) ∈ D. ξ is intended to
represent the same world object as κ. For example, h′cons could map the top
constant sales department to the tsql2 value expression ’Sales Depart-

ment’, and the top constant yesterday to PERIOD ’today’ - INTERVAL

’1’ DAY. In practice, the values of h′cons need to be defined only for top con-
stants that are used in the particular application domain. The values of h′cons for
other constants are not used, and can be chosen arbitrarily. Similar comments
apply to h′pfuns, h′culms, h′gparts, and h′cparts.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.32 (214)

 Chapter 5

The hcons function can then be defined in terms of h′cons. For every st ∈ PTS
and κ ∈ CONS:

hcons(st)(κ)
def
= eval(st, h′cons(κ))

The restrictions on h′cons above guarantee that eval(st, h′cons(κ)) ∈ D. Hence,
hcons(st) is a function CONS �→ D, as required by Section 5.7.

h′
pfuns. This is a function over PFUNS × {1, 2, 3, . . . }. The value of the func-

tion is always a tsql2 SELECT statement Σ, such that fcn(Σ) = ∅, and for
every st ∈ PTS, eval(st,Σ) ∈ NVRELP(n). For every π ∈ PFUNS and
n ∈ {1, 2, 3, . . . }, h′pfuns(π, n) is intended to be a SELECT statement that gen-
erates the relation to which hpfuns(st) maps π and n, i.e., the relation that shows
for which arguments and at which maximal periods the situation described by
π(τ1, . . . , τn) is true.

The hpfuns function can then be defined in terms of h′pfuns. For every st ∈
PTS, π ∈ PFUNS, and n ∈ {1, 2, 3, . . . }:

hpfuns(st)(π, n)
def
= eval(st, h′pfuns(π, n))

The restrictions on h′pfuns above ensure that hpfuns(st)(π, n) ∈ NVRELP(n), as
required by Section 5.7.

Let us assume, for example, that manager(τ) means that τ is a manager, and
that manager of is the relation of NVRELP(2) in (5.39) that shows the maximal
periods where somebody is the manager of a department. (To save space, the
names of the explicit attributes will often be omitted. References to explicit
attributes are made by number, as in Section 5.3.1.)

(5.39)
J. Adams sales [1/5/1993, 31/12/1994]
J. Adams personnel [1/1/1995, 31/3/1995]
J. Adams research [5/9/1995, 31/12/1995]
T. Smith sales [1/1/1995, 7/5/1995]
.

Then, h′pfuns(manager, 1) could be defined to be (5.40), which generates (5.41).
The embedded SELECT statement of (5.40) discards the second explicit at-
tribute of manager of , and the (PERIOD) coalesces tuples that correspond to
the same employees, generating one tuple for each maximal period.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.33 (215)

From TOP to TSQL2 

(5.40) SELECT DISTINCT mgr2.1
VALID VALID(mgr2)
FROM (SELECT DISTINCT mgr1.1

VALID VALID(mgr1)
FROM manager_of AS mgr1
)(PERIOD) AS mgr2

(5.41)
J. Adams [1/5/1993, 31/3/1995]
J. Adams [5/9/1995, 31/12/1995]
T. Smith [1/1/1995, 7/5/1995]
.

h′
culms. This is a function over PFUNS × {1, 2, 3, . . . }. The value of the func-

tion is always a tsql2 SELECT statement Σ, such that fcn(Σ) = ∅, and
for every st ∈ PTS, eval(st,Σ) ∈ SREL(n). For every π ∈ PFUNS and
n ∈ {1, 2, 3, . . . }, h′culms(π, n) is intended to be a SELECT statement that
generates the relation to which hculms(st) maps π and n, i.e., the relation
that shows for which arguments of π(τ1, . . . , τn) the situation of the pred-
icate reaches its climax at the end of the latest maximal period where it
is ongoing.

The hculms function is then defined in terms of h′culms as follows. For every
st ∈ PTS, π ∈ PFUNS, and n ∈ {1, 2, 3, . . . }:

hculms(st)(π, n)
def
= eval(st, h′culms(π, n))

The restrictions on h′culms above guarantee that hculms(st)(π, n) ∈ SREL(n), as
required by Section 5.7.

In the airport application, for example, inspecting(τ1, τ2, τ3) means that an
occurrence τ1 of an inspection of τ3 by τ2 is ongoing. An inspections relation is
available, and it has the form shown below:

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.34 (216)

 Chapter 5

inspections

code inspector inspected status

i158 J. Adams UK160 complete [9:00am 1/5/1995,
9:45am 1/5/1995] ∪

[10:10am 1/5/1995,
10:25am 1/5/1995]

i160 J. Adams UK160 incomplete [11:00pm 2/7/1995,
1:00am 3/7/1995] ∪

[6:00am 3/7/1995,
6:20am 3/7/1995]

i205 T. Smith BA737 complete [8:00am 16/11/1995,
8:20am 16/11/1995]

i214 T. Smith BA737 incomplete [8:10am 14/2/1996, now]

The first tuple above shows that J. Adams started to inspect UK160 at 9:00 am
on 1/5/1995, and continued the inspection up to 9:45 am. He resumed the in-
spection at 10:10 am, and completed the inspection at 10:25 am on the same
day. The status shows whether or not the inspection reaches its completion
at the last time-point of the time-stamp. The inspection of the second tuple
was ongoing from 11:00 pm on 2/7/1995 to 1:00 am on 3/7/1995, and from
6:00 am to 6:20 am on 3/7/1995, without reaching its completion. The inspec-
tion of the last tuple started at 8:10 am on 14/2/1996 and is still ongoing. Each
inspection is assigned a unique inspection code, stored as the value of the code
attribute. The inspection codes are useful to distinguish, for example, J. Adams’
inspection of UK160 on 1/5/1995 from that on 2-3/7/1995 (Section 3.16).
h′pfuns(inspecting, 3) and h′culms(inspecting, 3) are defined to be (5.42) and (5.43),
respectively, which causes hpfuns(st)(inspecting, 2) and hculms(st)(inspecting, 2) to
be (5.44) and (5.45), respectively.

(5.42) SELECT DISTINCT insp.1, insp.2, insp.3
VALID VALID(insp)
FROM inspections(PERIOD) AS insp

(5.43) SELECT DISTINCT SNAPSHOT icmp.1, icmp.2, icmp.3
FROM inspections AS icmp
WHERE icmp.4 = ’complete’

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.35 (217)

From TOP to TSQL2 

(5.44)
i158 J. Adams UK160 [9:00am 1/5/1995,

9:45am 1/5/1995]
i158 J. Adams UK160 [10:10am 1/5/1995,

10:25am 1/5/1995]
i160 J. Adams UK160 [11:00pm 2/7/1995,

1:00am 3/7/1995]
i160 J. Adams UK160 [6:00am 3/7/1995,

6:20am 3/7/1995]
i205 T. Smith BA737 [8:00am 16/11/1995,

8:20am 16/11/1995]
i214 T. Smith BA737 [8:10am 14/2/1996, now]

(5.45)
i158 J. Adams UK160
i205 T. Smith BA737

h′
gparts. This is a function that maps every top gappy partitioning name σg to a

tsql2 SELECT statement Σ, such that fcn(Σ) = ∅, and for every st ∈ PTS, it is
true that eval(st,Σ) ∈ SREL(1) and {fD(v) | 〈v〉 ∈ eval(st,Σ)} is a gappy parti-
tioning. h′gparts(σg) is intended to generate the relation to which hgparts(st) maps
σg , i.e., the relation that represents the members of the gappy partitioning. As-
suming, for example, that the gregorian calendric relation of Section 5.3.3 is
available, h′gparts(sundayg) could be (5.21).

The hgparts function is then defined in terms of h′gparts. For every st ∈ PTS
and σg ∈ GPARTS:

hgparts(st)(σg)
def
= eval(st, h′gparts(σg))

h′
cparts. It is assumed that for each complete partitioning used in the top formu-

lae, there is a corresponding tsql2 granularity (Section 5.2.2). h′cparts is a func-
tion that maps each top complete partitioning name to an ordered pair 〈γ,Σ〉,
where γ is the name of the corresponding tsql2 granularity and Σ is a SELECT
statement that returns a relation representing the periods of the partitioning.
More precisely, it must be the case that fcn(Σ) = ∅, and for every st ∈ PTS,
eval(st,Σ) ∈ SREL(1) and {fD(v) | 〈v〉 ∈ eval(st,Σ)} is a complete partitioning.
For example, if the gregorian relation of Section 5.3.3 is available, h′cparts could
map dayc to 〈DAY,Σ〉, where Σ is (5.46). (5.46) returns a one-attribute snapshot
relation whose attribute values denote all the day-periods. The γ, in this case
DAY, is used when translating formulae of the form For[σc, νqty,φ]; see Section
5.11 and Appendix A.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.36 (218)

 Chapter 5

(5.46) SELECT DISTINCT SNAPSHOT VALID(greg2)
FROM (SELECT DISTINCT greg1.4

VALID VALID(greg1)
FROM gregorian AS greg1
)(PERIOD) AS greg2

The hcparts function is then defined in terms of h′cparts as follows. For every st ∈
PTS and σc ∈ CPARTS, if h′cparts(σc) = 〈γ,Σ〉, then:

hcparts(st)(σc)
def
= eval(st,Σ)

. Formulation of the translation problem

Let us now specify formally what we want the top to tsql2 translation process
to achieve. The interp function, defined below, will allow us to interpret the
relations that the resulting tsql2 queries generate. For every φ ∈ FORMS and
every relation r:

(5.47) interp(r,φ)
def
=




T, if φ ∈ YNFORMS and r
= ∅
F, if φ ∈ YNFORMS and r = ∅
{〈fD(v1), . . . , fD(vn)〉 | 〈v1, . . . , vn〉 ∈ r},

if φ ∈ WHFORMS

Assuming that φ is translated to a SELECT statement that generates r,
interp(r,φ) shows how to interpret r. If φ ∈ YNFORMS, i.e., if the user has
submitted a yes/no question, then an non-empty r signals that an affirmative
answer should be generated; otherwise, if r is empty, the answer must be neg-
ative. If φ ∈ WHFORMS, i.e., if the user’s question contained interrogatives
(e.g., who?, when?), the answer should report all the tuples of world objects
that correspond to the tuples of r.

A translation function tr is needed, which will map every φ ∈ FORMS to a
tsql2 SELECT statement tr(φ), such that for every st ∈ PTS, (5.48) and (5.49)
hold.

(5.48) fcn(tr(φ)) = ∅
(5.49) interp(eval(st, tr(φ)),φ) = ‖φ‖M(st),st

As discussed in Section 3.6, each reading of an English question is mapped
to a top formula φ. The answer for each reading must report ‖φ‖M(st),st. If tr

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.37 (219)

From TOP to TSQL2 

satisfies (5.49), then ‖φ‖M(st),st can be computed as interp(eval(st, tr(φ)),φ) by
letting the dbms execute tr(φ).

The tr function will be defined in terms of an auxiliary function trans.
This is a function of two arguments, φ ∈ FORMS and λ, where λ is a tsql2
value expression (Section 5.4). The value of trans is always a tsql2 SELECT

statement Σ.

trans(φ, λ) = Σ

A set of translation rules, to be discussed in Section 5.11, specifies the Σ val-
ues of trans for different forms of φ. The λ corresponds to top’s lt. When trans
is invoked for the first time, via tr, as will be explained below, λ is set to PE-

RIOD(TIMESTAMP ’beginning’, TIMESTAMP ’forever’) to reflect the
fact that top’s lt is initially set to PTS, i.e., the whole time-axis (Section 3.6).
Recursive calls to trans may then follow to translate subformulae of φ. When
calling trans recursively, λmay represent a period that does not cover the whole
time-axis, to reflect the fact that already encountered top operators may have
narrowed lt.

We can now define the top-level tr function as follows, where λinit stands
for PERIOD(TIMESTAMP ’beginning’, TIMESTAMP ’forever’).

(5.50) tr(φ)
def
= trans(φ, λinit)

Since λinit contains no correlation names, fcn(λinit) = ∅, which implies that
eval(st, λinit , gdb) does not depend on gdb. λinit always evaluates to the element
of DP that represents the period that covers the whole time-axis. Therefore,
Lemma 5.1 below holds.

Lemma 5.1 fcn(λinit) = ∅, and for every st ∈ PTS, eval(st, λinit) ∈ DP and
fD(eval(st, λinit)) = PTS.

Using (5.50), we can rewrite (5.48) and (5.49) as (5.51) and (5.52), respectively.
The translation rules, which specify the values of trans, must ensure that for
every φ ∈ FORMS and st ∈ PTS, (5.51) and (5.52) hold. The thesis on which
this book is based (Androutsopoulos 1996) proves that the translation rules of
Section 5.11 satisfy Theorems 5.1 and 5.2; and it will be shown below that the
two theorems imply (5.51) and (5.52).

(5.51) fcn(trans(φ, λinit)) = ∅
(5.52) interp(eval(st, trans(φ, λinit)),φ) = ‖φ‖M(st),st

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.38 (220)

 Chapter 5

In effect, Theorems 5.1 and 5.2 can be used as entry points for anybody wish-
ing to add new translation rules. The theorems are proven separately for each
translation rule, and for each new translation rule, one has to guarantee that
Theorems 5.1 and 5.2 still hold.

Theorem 5.1 If φ ∈ WHFORMS, st ∈ PTS, trans(φ, λinit) = Σ, and the total
number of interrogative and interrogative-maximal quantifiers in φ is n, then:

1. fcn(Σ) = ∅
2. eval(st,Σ) ∈ SREL(n)

3. {〈fD(v1), . . . , fD(vn)〉 | 〈v1, . . . , vn〉 ∈ eval(st,Σ)} = ‖φ‖M(st),st

That is, if the user’s question contains interrogatives, the resulting tsql2 query
contains no free column references, and it evaluates to a snapshot relation with
as many attributes as the interrogatives, whose tuples represent ‖φ‖M(st),st.

Theorem 5.2 If φ ∈ YNFORMS, st ∈ PTS, λ is a tsql2 expression, gdb ∈ Gdb,
eval(st, λ, gdb) ∈ D*

P, �φ� = 〈τ1, . . . , τn〉, and trans(φ, λ) = Σ, then:

1. fcn(Σ) ⊆ fcn(λ)

2. eval(st,Σ, gdb) ∈ VRELP(n)

3. 〈v1, . . . , vn; vt〉 ∈ eval(st,Σ, gdb) iff for some g ∈ G:

‖τ1‖M(st),g = fD(v1), . . . , ‖τn‖M(st),g = fD(vn) and

‖φ‖M(st),st,fD(vt),fD(eval(st,λ,gdb)),g = T

That is, the tsql2 query that is generated when the user submits a yes/no ques-
tion φ contains no correlation names with free column references, apart from
correlation names in fcn(λ). Furthermore, if �φ� = τ1, . . . , τn, i.e., if τ1, . . . , τn
are all the constants in predicate argument positions and all the variables in
φ, the resulting tsql2 query generates a valid-time relation of n explicit at-
tributes, whose time-stamps denote periods. In each tuple of the relation, the
values of the explicit attributes and the time-stamp correspond to denotations
of τ1, . . . , τn and an et, such that ‖φ‖M(st),st,et,lt,g = T, for some g ∈ G, where lt
is the element of PERIODS* represented by λ.

Let us now prove that Theorems 5.1 and 5.2 imply (5.51) and (5.52), for
every st ∈ PTS and φ ∈ FORMS; i.e., that trans has the desired properties.

Proof of (5.51). Since FORMS = WHFORMS∪YNFORMS, it is either the case
that φ ∈ WHFORMS or φ ∈ YNFORMS. In both cases, (5.51) holds:

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.39 (221)

From TOP to TSQL2 

– If φ ∈ WHFORMS, then by Theorem 5.1, fcn(trans(φ, λinit)) = ∅; i.e.,
(5.51) holds.

– If φ ∈ YNFORMS, then by Theorem 5.2 and Lemma 5.1, it is true that
fcn(trans(φ, λinit)) ⊆ fcn(λinit) = ∅; i.e., (5.51) holds.

Proof of (5.52). Again, it will either be the case that φ ∈ WHFORMS or φ ∈
YNFORMS. If φ ∈ WHFORMS, by Theorem 5.1 the following is true:

{〈fD(v1), . . . , fD(vn)〉 | 〈v1, . . . , vn〉 ∈ eval(st, trans(φ, λinit))} = ‖φ‖M(st),st

Then, by the definition of interp, (5.52) holds.
It remains to prove (5.52) for φ ∈ YNFORMS. Let �φ� = 〈τ1, . . . , τn〉.

By Lemma 5.1, for every gdb ∈ Gdb, eval(st, λinit , gdb) = eval(st, λinit) ∈ DP

and fD(eval(st, λinit)) = PTS. Also, by (5.51), eval(st, trans(φ, λinit), gdb) does
not depend on gdb. Then, from Theorem 5.2 we get (5.53) and (5.54).

(5.53) eval(st, trans(φ, λinit)) ∈ VRELP(n)

(5.54) 〈v1, . . . , vn; vt〉 ∈ eval(st, trans(φ, λinit)) iff for some g ∈ G:

‖τ1‖M(st),g = fD(v1), . . . , ‖τn‖M(st),g = fD(vn) and

‖φ‖M(st),st,fD(vt),PTS,g = T

Since φ ∈ YNFORMS, by the definition of interp the left-hand side of (5.52)
has the following values:{

T, if eval(st, trans(φ, λinit))
= ∅
F, if eval(st, trans(φ, λinit)) = ∅

Also, the definition of ‖φ‖M(st),st for φ ∈ YNFORMS (Section 3.6) implies that
the right-hand side of (5.52) has the following values:{

T, if for some g ∈ G and et ∈ PERIODS, ‖φ‖M(st),st,et,PTS,g = T

F, otherwise

Hence, to complete the proof of (5.52), it is enough to prove (5.55):

(5.55) eval(st, trans(φ, λinit))
= ∅ iff

for some g ∈ G and et ∈ PERIODS, ‖φ‖M(st),st,et,PTS,g = T

We first prove the forward direction of (5.55). If eval(st, trans(φ, λinit))
= ∅, by
(5.53) eval(st, trans(φ, λinit)) contains at least a tuple of the form 〈v1, . . . , vn; vt〉;
i.e., (5.56) is true. (5.56) and (5.54) imply that for some g ∈ G, (5.57) holds.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.40 (222)

 Chapter 5

(5.56) 〈v1, . . . , vn; vt〉 ∈ eval(st, trans(φ, λinit))

(5.57) ‖φ‖M(st),st,fD(vt),PTS,g = T

The definition of VRELP, (5.53), and (5.56) imply that fD(vt) ∈ PERIODS. Let
et = fD(vt). Then, (5.57) becomes (5.58), where g ∈ G and et = fD(vt) ∈
PERIODS. The forward direction of (5.55) has been proven.

(5.58) ‖φ‖M(st),st,et,PTS,g = T

We now prove the backwards direction of (5.55). We assume that g ∈ G,
et ∈ PERIODS, and ‖φ‖M(st),st,et,PTS,g = T. Let vt = f –1

D (et), which implies
that et = fD(vt); then (5.59) holds. Let us also set v1 = f –1

D (‖τ1‖M(st),g), . . . ,
vn = f –1

D (‖τn‖M(st),g); then (5.60) also holds.

(5.59) ‖φ‖M(st),st,fD(vt),PTS,g = T

(5.60) ‖τ1‖M(st),g = fD(v1), . . . , ‖τn‖M(st),g = fD(vn)

The assumption that g ∈ G, (5.60), (5.59), and (5.54) imply (5.61), which in
turn implies that eval(st, trans(φ, λinit))
= ∅. The backwards direction of (5.55)
has been proven, which concludes the proof of (5.52).

(5.61) 〈v1, . . . , vn; vt〉 ∈ eval(st, trans(φ, λinit))

. The translation rules

The values of trans are specified by translation rules of two kinds: (a) base,
non-recursive, rules that specify trans(φ, λ) when φ is an atomic formula or a
formula of the form Culm[π(τ1, . . . , τn)]; and (b) recursive rules that specify
trans(φ, λ) in all other cases by calling other translation rules to process sub-
formulae of φ. This section attempts to convey the intuitions behind the design
of the translation rules, and to illustrate the functionality of some representa-
tive rules. The full set of the rules can be found in Appendix A, and a proof
that they satisfy Theorems 5.1 and 5.2 can be found in the thesis on which this
book is based (Androutsopoulos 1996).

Translation rule for predicates. The reader is reminded that in the case of a
yes/no formula φ, with �φ� = 〈τ1, . . . , τn〉, the aim is for the resulting SELECT
statement to return a relation in VRELP(n) that shows all the combinations of
event times et and denotations of τ1, . . . , τn for which φ is satisfied. In each

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.41 (223)

From TOP to TSQL2 

tuple 〈v1, . . . , vn; vt〉, vt represents et, while v1, . . . , vn correspond to the values
of τ1, . . . , τn. The translation rule for predicates is as follows.

trans(π(τ1, . . . , τn), λ)
def
=

(SELECT DISTINCT α.1, α.2, . . . , α.n
VALID VALID(α)
FROM (h′pfuns(π, n))(SUBPERIOD) AS α

WHERE . . .
AND . . .
...
AND λ CONTAINS VALID(α))

The dots in the WHERE clause stand for all the strings in S1 ∪ S2:

S1 = {“α.i = h′cons(τi)” | i ∈ {1, 2, 3, . . . , n}, τi ∈ CONS}
S2 = {“α.i = α.j” | i, j ∈ {1, 2, 3, . . . , n}, i < j, τi = τj, τi, τj ∈ VARS}

It is assumed that whenever the translation rule is invoked, a new correlation
name α is used (e.g., t354, t355, . . .), which has never been used before and
which is obtained by calling a generator of correlation names. The use of the
generator means that trans is strictly speaking not a pure function, since the
same π and τ1, . . . , τn lead to slightly different SELECT statements whenever
trans(π(τ1, . . . , τn), λ) is computed: each time the resulting statement contains
a different α.

Let us consider, for example, the predicate inspecting(i158, ja, uk160). Ac-
cording to Section 3.6, ‖inspecting(i158, ja, uk160)‖M(st),st,et,lt,g = T iff et � lt
and et � p, where:

p ∈ fpfuns(st)(inspecting, 3)(‖i158‖M(st),g, ‖ja‖M(st),g , ‖uk160‖M(st),g)

Let us assume that h′pfuns(inspecting, 3) and hpfuns(st)(inspecting, 3) are as in
(5.42) and (5.44), respectively, that h′cons maps i158, ja, and uk160 to ’i158’,
’J. Adams’, and ’UK160’, respectively, and that λ, the tsql2 expres-
sion that corresponds to lt is PERIOD ’[9:00am 1/5/1995 - 9:30pm

1/5/1995]’. By the definition of fpfuns (Section 5.8):

fpfuns(st)(inspecting, 3)(‖i158‖M(st),g, ‖ja‖M(st),g , ‖uk160‖M(st),g) = {p1, p2}

where p1 and p2 are the periods of the first two tuples of (5.44). The denotation
of inspecting(i158, ja, uk160) is T for all the ets that are both subperiods of p1

or p2 and also subperiods of lt.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.42 (224)

 Chapter 5

The translation rule above maps inspecting(i158, ja, uk160) to (5.62),
where h′pfuns(inspecting, 3) is the query of (5.42), which returns (5.44).

(5.62) (SELECT DISTINCT t1.1, t1.2, t1.3
VALID VALID(t1)
FROM (h′pfuns(inspecting, 3))(SUBPERIOD) AS t1

WHERE t1.1 = ’i158’
AND t1.2 = ’J. Adams’
AND t1.3 = ’UK160’
AND PERIOD ’[9:00am 1/5/1995 - 9:30pm 1/5/1995]’

CONTAINS VALID(t1))

(5.62) returns (5.63), where the time-stamps correspond to all the subperiods
of p1 and p2 that are also subperiods of lt.

(5.63)
i158 J. Adams UK160 [9:00am 1/5/1995, 9:30pm 1/5/1995]
i158 J. Adams UK160 [9:10am 1/5/1995, 9:15pm 1/5/1995]
i158 J. Adams UK160 [9:20am 1/5/1995, 9:25pm 1/5/1995]
.

In other words, the time-stamps of (5.63) represent correctly all the ets where
the denotation of inspecting(i158, ja, uk160) is T. In this example, all the pred-
icate arguments are constants. Hence, there can be no variation in the values of
the arguments, and the values of the explicit attributes in (5.63) are the same
in all the tuples. When some of the predicate arguments are variables, however,
the values of the corresponding explicit attributes are not necessarily fixed.

The S2 constraints in the WHERE clause of the translation rule are needed
when the predicate contains the same variable in more than one argument po-
sition. In those cases, S2 requires the attributes that correspond to the argument
positions where the variable appears to have the same values. S2 contains re-
dundant constraints when some variable appears in more than two argument
positions. For example, in π(β, β, β), with β ∈ VARS, S2 requires the tuples
〈v1, v2, v3; vt〉 of the resulting relation to satisfy v1 = v2, v1 = v3, and v2 = v3;
the third constraint is redundant, because it follows from the others. The pro-
totype nlitdb of Chapter 6 employs a slightly more complex definition of S2

that does not generate redundant constraints of this type. Similar comments
apply to the rule for Culm[π(τ1, . . . , τn)] below, and the rules for conjunction,
At[φ1,φ2], Before[φ1,φ2], and After[φ1,φ2] in Appendix A.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.43 (225)

From TOP to TSQL2 

Translation rule for Culm[π(τ1, . . . , τn)]. Formulae of this form are translated
using the following rule.

trans(Culm[π(τ1, . . . , τn)], λ)
def
=

(SELECT DISTINCT α1.1, α1.2, . . . , α1.n
VALID PERIOD(BEGIN(VALID(α1)), END(VALID(α1)))
FROM (h′pfuns(π, n))(ELEMENT) AS α1, (h′culms(π, n)) AS α2

WHERE α1.1 = α2.1
AND α1.2 = α2.2

...
AND α1.n = α2.n
AND . . .

...
AND λ CONTAINS PERIOD(BEGIN(VALID(α1)), END(VALID(α1))))

Whenever the rule is used, α1 and α2 are two new different correlation names,
which have never been used before, obtained by calling the correlation names
generator. The dots after α1.n = α2.n in the WHERE clause stand for all the
strings in S1 ∪ S2, where S1 and S2 are as in the translation rule for predicates,
except that α is now α1.

The rule for Culm[π(τ1, . . . , τn)] is similar to that for π(τ1, . . . , τn). The
resulting SELECT statement returns an element of VRELP(n) that shows the
ets and the values of the predicate arguments for which the denotation of
Culm[π(τ1, . . . , τn)] is T. In the case of Culm[π(τ1, . . . , τn)], however, the gen-
erated relation contains only tuples 〈v1, . . . , vn; vt〉 for which 〈v1, . . . , vn〉 ap-
pears in hculms(st)(π, n), the relation returned by h′culms(π, n). This captures the
requirement that the situation of π(τ1, . . . , τn) must reach its climax at the
latest time-point where it is ongoing. Also, hpfuns(st)(π, n) is coalesced using
(ELEMENT). This causes all the tuples of hpfuns(st)(π, n) that refer to the same
situation to be merged into one tuple, time-stamped by a temporal element
that is the union of all the periods where the situation is ongoing. Let us
refer to this coalesced version of hpfuns(st)(π, n) as r. α1 ranges over the tu-
ples of r, while α2 over the tuples of hculms(st)(π, n). The relation returned by
trans(Culm[π(τ1, . . . , τn)], λ) contains all the tuples 〈v1, . . . , vn; vt〉, such that
for some 〈v1, . . . , vn; v′t〉 ∈ r, vt represents the period that starts at the begin-
ning of the temporal element of v′t and ends at the end of that temporal ele-
ment, 〈v1, . . . , vn〉 ∈ hculms(st)(π, n), and vt ’s period is a subperiod of λ’s, i.e.,
et � lt. S1 and S2 play the same role as in the translation rule for predicates.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.44 (226)

 Chapter 5

As an example, let us consider the case where h′pfuns(inspecting, 3) and
h′culms(inspecting, 3) are (5.42) and (5.43), respectively, with their results being
(5.44) and (5.45), and that λ = PERIOD ’[1/5/1995 - 18/11/1995]’.
The translation rule above maps Culm[inspecting(occrv, personv, flightv)] to
(5.64), which returns (5.65).

(5.64) (SELECT DISTINCT t1.1, t1.2, t1.3
VALID PERIOD(BEGIN(VALID(t1)), END(VALID(t1)))
FROM (h′pfuns(inspecting , 3))(ELEMENT) AS t1,

(h′culms(inspecting , 3)) AS t2
WHERE t1.1 = t2.1
AND t1.2 = t2.2
AND t1.3 = t2.3
AND PERIOD ’[1/5/1995 - 18/11/1995]’ CONTAINS

PERIOD(BEGIN(VALID(t1)), END(VALID(t1))))

In (5.65), there is, correctly, no tuple for the incomplete inspection i160. There
is also no tuple for i214, because that inspection is also incomplete and it is
not located within λ’s period. Finally, (5.65) does not contain tuples for the
subperiods of [9:00am 1/5/1995, 10:25am 1/5/1995] and [8:00am 16/11/1995,
8:20am 16/11/1995]. This is in accordance with the semantics of Culm (Section
3.9), which allows Culm[inspecting(occrv, ja, ba737)] to be true only at ets that
cover entire inspections, from start to completion.

(5.65)
i158 J. Adams UK160 [9:00am 1/5/1995,

10:25am 1/5/1995]
i205 T. Smith BA737 [8:00am 16/11/1995,

8:20am 16/11/1995]

Translation rule for Past[β,φ]. All the other translation rules for yes/no for-
mulae are recursive. For example, Past[β,φ′] is translated using the follow-
ing rule.

trans(Past[β,φ′], λ)
def
=

(SELECT DISTINCT VALID(α), α.1, α.2, . . . , α.n
VALID VALID(α)
FROM trans(φ′, λ′) AS α)

The λ′ stands for INTERSECT(λ, PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’now’ - INTERVAL ’1’ χ)), χ is the tsql2 name of the gran-
ularity of chronons (e.g., DAY), and n is the length of �φ′�. Whenever the rule
is used, α is a new correlation name, which has never been used before.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.45 (227)

From TOP to TSQL2 

The rule for Past[β,φ′] calls recursively trans to translate φ′. φ′ is translated
with respect to λ′, i.e., the intersection of the period of the original λ with the
period that covers all the time up to, but not including, the present chronon.
This reflects the semantics of the Past operator (Section 3.8), which narrows
lt to lt ∩ [tfirst , st). The relation returned by trans(Past[β,φ′], λ) is the same
as that of trans(φ′, λ′), except that it contains an additional explicit attribute
that corresponds to the β of Past[β,φ′]. The values of that attribute are the
same as the corresponding time-stamps, i.e., they represent et. This reflects the
semantics of Past[β,φ′], that requires the value of β to be et.

Translation rule for At[κ,φ′]. As a further example, At[κ,φ′], with κ ∈ CONS,
is translated using the following rule, where λ′ stands for the expression
INTERSECT(λ, h′cons(κ)).

trans(At[κ,φ′], λ)
def
= trans(φ′, λ′)

The translation of At[κ,φ′] is the same as the translation of φ′, but φ′ is trans-
lated with respect to λ′, which represents the intersection of λ’s period with
that of κ. This reflects the semantics of At[κ,φ′] (Section 3.10). There are sep-
arate rules for At[σc, β,φ′], At[σg , β,φ′], and At[φ1,φ2], where σc ∈ CPARTS,
σg ∈ GPARTS, φ′,φ1,φ2 ∈ YNFORMS (see Appendix A).

Translation rule for ?β1 . . . ?βk φ
′. Let us now consider the translation rules

for wh-formulae, starting from formulae of the form ?β1 . . . ?βk φ
′, where

φ′ ∈ YNFORMS. These are processed using the following rule.

trans(?β1 . . . ?βk φ
′, λinit)

def
=

(SELECT DISTINCT SNAPSHOT α.ω1, . . . , α.ωk

FROM trans(φ′, λinit) AS α)

Whenever the rule is used, α is a new correlation name, which has never been
used before. Assuming that �φ′� = 〈τ1, . . . , τn〉, for every i ∈ {1, 2, 3, . . . , κ}:

ωi = min({j | j ∈ {1, 2, 3, . . . , n} and τj = βi})

That is,ωi is the index of the first position in 〈τ1, . . . , τn〉 from left to right where
βi appears. The rules for wh-formulae define trans(φ, λ) only for λ = λinit , as
they are invoked only with this value of λ.

Intuitively, the translation of ?β1 . . . ?βk φ
′ must return a snapshot relation

whose tuples represent ‖?β1 . . . ?βk φ
′‖M(st),st. That is, the tuples must repre-

sent all the possible combinations of denotations assigned to β1, . . . , βk by any

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.46 (228)

 Chapter 5

g ∈ G, such that for some et ∈ PERIODS, ‖φ′‖M(st),st,et,PTS,g = T (Section 3.6).
By Theorem 5.2, the relation returned by trans(φ′, λinit) in the translation rule is
a valid-time relation whose tuples show all the possible ets and denotations of
τ1, . . . , τn for which ‖φ′‖M(st),st,et,PTS,g = T. The syntax of top (Section 3.2) guar-
antees that β1, . . . , βk appear within φ′. This in turn guarantees that β1, . . . , βk

appear among τ1, . . . , τn, i.e., the relation of trans(φ′, λinit) contains attributes
for β1, . . . , βk. Hence, to find all the possible combinations of denotations of
β1, . . . , βk for which ‖φ′‖M(st),st,et,PTS,g = T for some et, we simply need to pick,
to ‘project’ in relational terms, from the relation of trans(φ′, λinit) the attributes
that correspond to β1, . . . , βk. If a βi occurs more than once in φ′, there will be
several attributes for it, all with identical values. The translation rule picks the
leftmost of those attributes.

Let us consider, for example, the wh-formula of (5.67), which is generated
when (5.66) is submitted.

(5.66) Who inspected what?
(5.67) ?w1v ?w2v Past[ev, Culm[inspecting(occrv, w1v, w2v)]]

In this case, φ′ = Past[ev, Culm[inspecting(occrv , w1v, w2v)]] and �φ′� =
〈ev, occrv, w1v, w2v〉. Let us assume that trans(φ′, λinit) returns (5.68), i.e., that
(5.68) shows all the possible combinations of ets and denotations that can be
assigned by some g ∈ G to ev, occrv , w1v, and w2v, such that ‖φ′‖M(st),st,et,PTS,g =
T. In every tuple, the time-stamp is the same as the value of the first explicit
attribute, because the semantics of the Past operator requires the value of ev,
which is represented by the first explicit attribute, to be set to et, which is
represented by the time-stamp. To save space, the time-stamps of (5.68) are
ommitted.

(5.68)
[9:00am 1/5/1995, i158 J. Adams UK160 . . .

3:00pm 1/5/1995]
[10:00am 4/5/1995, i165 J. Adams BA737 . . .

11:30am 4/5/1995]
[7:00am 16/11/1995, i204 T. Smith UK160 . . .

7:30am 16/11/1995]

To generate the snapshot relation that represents ‖?w1v ?w2v φ′‖M(st),st , we sim-
ply need to project the leftmost explicit attributes of (5.68) that correspond to
w1v and w2v. The leftmost positions where w1v and w2v appear in �φ′� are
the third and fourth ones. The resulting tsql2 query is shown in (5.69); it
generates (5.70).

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.47 (229)

From TOP to TSQL2 

(5.69) (SELECT DISTINCT SNAPSHOT t1.3, t1.4
FROM trans(Past[ev , Culm[inspecting(occrv , w1v, w2v)]], λinit) AS t1)

(5.70)
J. Adams UK160
J. Adams BA737
T. Smith UK160

Translation rule for ?mxlβ1 ?β2 . . . ?βk φ
′. Wh-formulae of this form, where

φ′ ∈ YNFORMS, are translated using the following rule.

trans(?mxlβ1 ?β2 . . . ?βk φ
′, λinit)

def
=

(SELECT DISTINCT SNAPSHOT VALID(α2), α2.2, α2.3, . . . , α2.k
FROM (SELECT DISTINCT ’dummy’, α1.ω2, α1.ω3, . . . , α1.ωk

VALID α1.ω1

FROM trans(φ′, λinit) AS α1

)(NOSUBPERIOD) AS α2)

Whenever the rule is used, α1 and α2 are two different new correlation names,
that have never been used before. Assuming that �φ′� = 〈τ1, . . . , τn〉, ω1, . . . ,ωk

are as in the rule for ?β1 . . . ?βk φ.
Let us consider, for example, the wh-formula of (5.72), which is generated

when (5.71) is submitted. In this case, φ′ = Past[ev, circling(wv)] and �φ′� =
〈ev, wv〉.
(5.71) What circled when?
(5.72) ?mxlev ?wv Past[ev, circling(wv)]
(5.73)

[5:02pm 22/11/1995, 5:17pm 22/11/1995] BA737 . . .
[5:05pm 22/11/1995, 5:15pm 22/11/1995] BA737 . . .
[5:07pm 22/11/1995, 5:13pm 22/11/1995] BA737 . . .
.
[4:57pm 23/11/1995, 5:08pm 23/11/1995] BA737 . . .
[4:59pm 23/11/1995, 5:06pm 23/11/1995] BA737 . . .
[5:01pm 23/11/1995, 5:04pm 23/11/1995] BA737 . . .
.
[8:07am 22/11/1995, 8:19am 22/11/1995] UK160 . . .
[8:08am 22/11/1995, 8:12am 22/11/1995] UK160 . . .
[8:09am 22/11/1995, 8:10am 22/11/1995] UK160 . . .
.

Let us also assume that trans(Past[ev, circling(wv)], λinit) returns (5.73), i.e., that
(5.73) shows all the ets and values of ev and wv for which the denotation of

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.48 (230)

 Chapter 5

Past[ev, circling(wv)] is T. As a result of the semantics of the Past operator, the
values of the first explicit attribute, which correspond to ev, are the same as the
time-stamps, which correspond to et. To save space, the time-stamps are omit-
ted. For example, BA737 was circling from 5:02 pm to 5:17 pm on 22/11/1995,
and from 4:57 pm to 5:08 pm on 23/11/1995. (5.73) also contains tuples for
the subperiods of these periods, because circling(wv), like all top predicates, is
homogeneous (Section 3.6).

The embedded SELECT statement of trans(?mxlβ1 ?β2 . . . ?βk φ
′, λinit) be-

comes (5.74). The ’dummy’ means that the first explicit attribute of the re-
sulting relation should have that string as its value in all the tuples. This is
needed for k = 1, where the SELECT clause of the embedded statement would
otherwise specify no explicit attributes, which is not allowed in tsql2.

(5.74) (SELECT DISTINCT ’dummy’, t1.2
VALID t1.1
FROM trans(Past[ev , circling(wv)], λinit) AS t1)

The result of (5.74) is shown in (5.75). The time-stamps of (5.75) are the values
of the first explicit attribute of (5.73), i.e., they correspond to ev. The (NOSUB-
PERIOD) of the translation rule then removes from (5.75) any tuples that do
not correspond to maximal periods, and (5.75) becomes (5.76).

(5.75)
dummy BA737 [5:02pm 22/11/1995, 5:17pm 22/11/1995]
dummy BA737 [5:05pm 22/11/1995, 5:15pm 22/11/1995]
dummy BA737 [5:07pm 22/11/1995, 5:13pm 22/11/1995]
.
dummy BA737 [4:57pm 23/11/1995, 5:08pm 23/11/1995]
dummy BA737 [4:59pm 23/11/1995, 5:06pm 23/11/1995]
dummy BA737 [5:01pm 23/11/1995, 5:04pm 23/11/1995]
.
dummy UK160 [8:07am 22/11/1995, 8:19am 22/11/1995]
dummy UK160 [8:08am 22/11/1995, 8:12am 22/11/1995]
dummy UK160 [8:09am 22/11/1995, 8:10am 22/11/1995]
.

(5.76)
dummy BA737 [5:02pm 22/11/1995, 5:17pm 22/11/1995]
dummy BA737 [4:57pm 23/11/1995, 5:08pm 23/11/1995]
dummy UK160 [8:07am 22/11/1995, 8:19am 22/11/1995]

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.49 (231)

From TOP to TSQL2 

The overall (5.72) is mapped to (5.77), which generates (5.78). (5.78) repre-
sents the denotation of (5.72) w.r.t. M(st) and st, i.e., it shows the pairs of
maximal past circling periods and the corresponding flights.

(5.77) (SELECT DISTINCT SNAPSHOT VALID(t2), t2.2
FROM (SELECT DISTINCT ’dummy’, t1.2

VALID t1.1
FROM trans(Past[ev, circling(wv)], λinit) AS t1
)(NOSUBPERIOD) AS t2)

(5.78)
[5:02pm 22/11/1995, 5:17pm 22/11/1995] BA737
[4:57pm 23/11/1995, 5:08pm 23/11/1995] BA737
[8:07am 22/11/1995, 8:19am 22/11/1995] UK160

. Optimising the generated TSQL2 code

The generated tsql2 code is often verbose, in the sense that it can often be
shortened and still return the same results. Figure 5.3, for example, shows the
code that is generated for (5.80), if chronons correspond to minutes. (5.80)
expresses the reading of (5.79) where the inspection must have both started
and been completed on the previous day.

(5.79) Who inspected UK160 yesterday?
(5.80) ?wv At[yesterday, Past[ev, Culm[inspecting(occrv, wv, uk160)]]]

It is assumed here that h′pfuns(inspecting, 3) and h′culms(inspecting, 3) are (5.42)
and (5.43), respectively. The embedded SELECT statements of Figure 5.3 that
are associated with t1 and t2 are (5.42) and (5.43). The embedded SELECT

statement that is associated with t3 is generated by the translation rule for
Culm[π(τ1, . . . , τn)]. It returns a relation whose explicit attributes show all
the combinations of codes, inspectors, and inspected objects that correspond
to complete inspections. The time-stamps of this relation represent periods
that cover whole inspections, from start to completion. The CONTAINS con-
straint in the WHERE clause admits only tuples whose time-stamps are subpe-
riods of lt. The At has narrowed lt to its intersection with the previous day
(PERIOD ’today’ - INTERVAL ’1’ DAY)), and the Past has narrowed
lt further to its intersection with [tfirst , st) (PERIOD(TIMESTAMP ’begin-

ning’, TIMESTAMP ’now’ - INTERVAL ’1’ MINUTE)). The embedded
SELECT statement that is associated with t4 is generated by the translation rule

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.50 (232)

 Chapter 5

(SELECT DISTINCT SNAPSHOT t4.3
FROM (SELECT DISTINCT VALID(t3), t3.1, t3.2, t3.3

VALID VALID(t3)
FROM (SELECT DISTINCT t1.1, t1.2, t1.3

VALID PERIOD(BEGIN(VALID(t1)), END(VALID(t1)))
FROM (SELECT DISTINCT insp.1, insp.2, insp.3

VALID VALID(insp)
FROM inspections(PERIOD) AS insp
)(ELEMENT) AS t1,
(SELECT DISTINCT SNAPSHOT
icmp.1, icmp.2, icmp.3
FROM inspections AS icmp
WHERE icmp.4 = ’complete’) AS t2

WHERE t1.1 = t2.1 AND t1.2 = t2.2
AND t1.3 = t2.3 AND t1.3 = ’UK160’
AND INTERSECT(INTERSECT(

PERIOD(TIMESTAMP ’beginning’,
TIMESTAMP ’forever’),

PERIOD ’today’ - INTERVAL ’1’ DAY),
PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’now’ -
INTERVAL ’1’ MINUTE))

CONTAINS
PERIOD(BEGIN(VALID(t1)), END(VALID(t1)))

) AS t3
) AS t4)

Figure 5.3 Example of generated tsql2 code

for Past[β,φ′] (Section 5.11). It returns the same relation as the statement that
is associated with t3, except that the relation of t4’s statement has an addi-
tional explicit attribute that corresponds to the first argument of Past. In each
tuple, the value of this extra attribute is the same as the time-stamp (et). The
topmost SELECT clause projects only the third explicit attribute of the relation
returned by t4’s statement (this attribute corresponds to wv of (5.80)).

The code of Figure 5.3 could be shortened in several ways. For example,
t4’s statement simply adds an extra attribute for the first argument of Past.
In this particular case, this extra attribute is not used, because (5.80) contains
no interrogative quantifier for that argument. Hence, t4’s statement could be
replaced by t3’s; the topmost SELECT clause would also have to become SE-

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.51 (233)

From TOP to TSQL2 

(SELECT DISTINCT SNAPSHOT t1.2
FROM (SELECT DISTINCT insp.1, insp.2, insp.3

VALID VALID(insp)
FROM inspections(PERIOD) AS insp
)(ELEMENT) AS t1,
(SELECT DISTINCT SNAPSHOT icmp.1, icmp.2, icmp.3
FROM inspections AS icmp
WHERE icmp.4 = ’complete’) AS t2

WHERE t1.1 = t2.1 AND t1.2 = t2.2
AND t1.3 = t2.3 AND t1.3 = ’UK160’
AND INTERSECT(

PERIOD ’today’ - INTERVAL ’1’ DAY,
PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’now’ - INTERVAL ’1’ MINUTE))
CONTAINS
PERIOD(BEGIN(VALID(t1)), END(VALID(t1)))

Figure 5.4 Shortened tsql2 code

LECT DISTINCT SNAPSHOT t3.2. One could also drop the top-level SE-
LECT statement, and replace the SELECT clause of t3’s statement with SELECT
DISTINCT SNAPSHOT t1.2 removing the VALID clause. Furthermore, the
intersection of the whole time-axis (PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’forever’)) with any period p is simply p. Hence, one of the
two INTERSECTs in Figure 5.3 can be omitted. The resulting code is shown in
Figure 5.4.

Although dbmss typically employ optimisation techniques, that would be
able to carry out at least some of the simplifications above, long queries can
confuse generic dbms optimisers, causing them to produce inefficient code.
Hence, it would be interesting to examine if optimisations like the ones dis-
cussed above could be automated and integrated into the framework of this
book as an additional layer between the top to tsql2 translator and the dbms.
This issue, however, will not be explored in this book.

. Related work

Various mappings from forms of logic to and from relational algebra or rela-
tional calculus (Ullman 1988; van Gelder & Topor 1991; Abiteboul, Herr, & den

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.52 (234)

 Chapter 5

Bussche 1999), from logic programming languages to sql (Lucas 1988; Draxler
1991), and from meaning representations generated by nlidbs to sql (Low-
den et al. 1991; Androutsopoulos 1992; Androutsopoulos, Ritchie, & Thanisch
1993; Rayner 1993) have been studied in the past. This section discusses briefly
a mapping proposed by Böhlen et al. (1996), which has influenced the top to
tsql2 translation method of this chapter; see also Chomicki et al. (2001).

Böhlen et al. study the relation between a subset of tsql2 and a form of
temporal logic, hereafter called tl, that provides the temporal operators • (pre-
vious), ◦ (next), since, and until. tl is point-based, in the sense that its formu-
lae are evaluated with respect to single time-points. tl also assumes that time
is discrete. Roughly speaking, •φ is true at a time-point t iff φ is true at the
time-point immediately before t. Similarly, ◦φ is true at t iff φ is true at the
time-point immediately after t. φ1 since φ2 is true at t iff there is some t ′ before
t, such that φ2 is true at t ′, and for every t ′′ between t ′ and t, φ1 is true at t ′′.
Similarly, φ1 until φ2 is true at t iff there is some t ′ after t, such that φ2 is true
at t ′, and for every t ′′ between t and t ′, φ1 is true at t ′′.

Various other tl operators are also defined, but these are all definable in
terms of •, ◦, since, and until. For example, �φ is equivalent to true since φ;
true is a special formula that is true at all time-points. In effect, �φ is true at t
if there is a t ′ before t, and φ is true at t ′. For example, (5.81) and (5.83) can be
expressed as (5.82) and (5.84), respectively.

(5.81) BA737 departed (at some past time).
(5.82) �depart(ba737)
(5.83) Tank 2 has been empty (all the time) since BA737 departed.
(5.84) empty(tank2) since depart(ba737)

Böhlen et al. provide rules that translate from tl to tsql2. (They also show
how to translate from a subset of tsql2 back to tl, but this direction is ir-
relevant here.) The underlying ideas are very similar to those of this chapter.
Roughly speaking, there are non-recursive rules for atomic formulae, and re-
cursive rules for non-atomic formulae. For example, the translation rule for
φ1 since φ2 calls recursively the translation algorithm to translate φ1 and φ2.
The result is a SELECT statement, that contains two embedded SELECT state-
ments corresponding to φ1 and φ2. Devising rules to map from tl to tsql2 is
much easier than in the case of top, because tl formulae are evaluated with re-
spect to only one time-parameter, as opposed to top’s st, et, and lt parameters;
furthermore, tl is point-based, whereas top is period-based (Section 3.1), and
it provides only four temporal operators whose semantics are very simple.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.53 (235)

From TOP to TSQL2 

It should be noted, however, that top and tl were designed for very differ-
ent purposes. tl is interesting from a theoretical temporal-logic point of view
(van Benthem 1991; Abiteboul, Herr, & den Bussche 1999). The mapping from
tl to tsql2 and the reverse mapping from a fragment of tsql2 to tl are parts
of a study of the relative expressiveness of the two languages. The existence of
a mapping from tl to tsql2 shows that tsql2 is at least as expressive as tl.
The reverse is not true; i.e., full tsql2 is more expressive than tl, as shown by
Böhlen et al.

In contrast, top was not designed to study expressiveness issues, but to
facilitate the mapping from English questions with temporal expressions to
meaning representations. Chapter 4 showed how to translate systematically
from a fragment of English questions to top. No such systematic translation
has been shown to exist in the case of tl, and it is not at all obvious how tempo-
ral English questions, e.g., containing progressive and perfect tenses, temporal
adverbials, or temporal subordinate clauses, could be mapped systematically to
appropriate tl formulae.

Although the study of expressiveness issues is beyond the scope of this
book, it can be noted that the top to tsql2 translation of this chapter im-
plies that tsql2 is at least as expressive as top, because every top formula can
be mapped to an appropriate tsql2 query. The reverse is not true: it is easy
to think of tsql2 queries, e.g., queries that report the cardinalities of sets, that
cannot be expressed in top. Finally, neither top nor tl can be said to be more
expressive than the other, as there are English sentences that can be expressed
in tl but not top, and vice-versa. For example, the tl formula (5.84) expresses
(5.83), a sentence that cannot be expressed in the current version of top. On
the other hand, the top formula (5.86) expresses (5.85), but there does not
seem to be any way to express (5.85) in tl.

(5.85) Tank 2 was empty for two hours.
(5.86) For[hourc, 2, Past[ev, empty(tank2)]]

. Summary

This chapter has shown how top formulae can be translated into tsql2, a tem-
poral extension of sql-92. When configuring the nlitdb for a new application
domain, certain mappings from basic top expressions, like constants and pred-
icate functors, to the corresponding tsql2 expressions need to be provided (the
h′ functions). Once this information has been provided, any top formula can

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.54 (236)

 Chapter 5

be transformed automatically into an appropriate tsql2 query. The transfor-
mation is carried out by a set of translation rules, which comprises base rules
for top predicates and other simple formulae, and rules that process more
complex formulae by invoking recursively other rules to translate subformu-
lae. A representative sample of translation rules was examined in detail; the full
set of rules can be found in Appendix A.

The translation process is provably correct, in the sense that the resulting
tsql2 code generates relations that represent the denotations of the original
top formulae. Formal machinery was introduced to capture the exact prop-
erties that the translation rules must satisfy for the translation process to be
correct, along with an overview of the proof of their correctness. The full proof
can be found in the thesis this book is based on.

Some modifications to tsql2 had to be made to facilitate the mapping from
top to tsql2. Most of them are rather minor, and where introduced to avoid
uninteresting details or obscure points in the definition of tsql2. The most
significant modifications were: (a) calendric relations, which is a necessary ad-
dition regardless of natural language issues, (b) allowing non-coalesced valid-
time relations, and (c) the (SUBPERIOD) partitioning unit. It remains to be
examined if the latter can be supported efficiently at the physical level, or if its
functionality can be obtained in terms of other database language constructs.
Further work is also needed to optimise the generated tsql2 code.

The top to tsql2 translation process of this chapter has been influenced
by the mapping from temporal logic to tsql2 of Böhlen et al. (1996). top and
the logic of Böhlen et al., however, were designed for very different purposes.
The mapping of Böhlen et al. is also much simpler than the top to tsql2 one.

Notes

. tsql2 distinguishes between valid-time chronons, transaction-time chronons, and bitempo-
ral chronons. Since transaction time is ignored in this book (Section 1.5), transaction-time
and bitemporal chronons are not used here, and ‘chronon’ refers to valid-time chronons.

. The tsql2 book (Snodgrass 1995) seems to adopt a different approach, where DP and DT

are separate domains. There is no significant difference between the two approaches.

. The tsql2 book (Snodgrass 1995, Table 8.3) implies that vε is the special ‘null’ value,
which has several roles in sql. Here, it is assumed that a special value vε exists, whose only
purpose is to denote the empty set.

NLP4[v.20020404] Prn:24/06/2002; 11:50 F: NLP605.tex / p.55 (237)

From TOP to TSQL2 

. The tsql2 book (Snodgrass 1995, Section 30.5) allows BEGIN and END to be used only
with periods. There seems to be no reason for this limitation, and in this book BEGIN and
END are allowed to be used with any temporal element.

. It is unclear in the tsql2 book if the arguments of INTERSECT can only be periods or
if temporal elements are allowed as well (Snodgrass 1995, Sections 8.3.3 and 30.14). This
book adopts the latter choice. Similar comments apply to the CONTAINS and PRECEDES
keywords (Snodgrass 1995, Sections 8.3.6 and 32.4).

. The tsql2 book (Snodgrass 1995, Section 8.3.6) specifies the functionality of PRE-
CEDES only when its arguments are chronons or periods. The extension to temporal
elements follows naturally.

. Section 30.3 of the tsql2 book (Snodgrass 1995) allows partitioning units to follow only
relation names, not embedded SELECT statements, in the FROM clause. However, other
tsql2 documentation (Snodgrass et al. 1994d, queries Q.1.2.2, Q.1.2.5, Q.1.7.6), shows par-
titioning units following embedded SELECT statements in FROM clauses, and there seems
to be no reason to disallow this.

. In that respect, SUBPERIOD is similar to Lorentzos’ FOLD and UNFOLD operators
(Lorentzos & Johnson 1988).

. In SELECT statements that contain other embedded SELECT statements, multiple
definitions of the same correlation name may be present, and there are rules that deter-
mine the scope of each definition. We do not need to worry about such cases, however,
because the generated tsql2 code of this book never contains multiple definitions of the
same correlation name.

. This is not entirely true in the framework of this book, as there is also a type hierarchy
of world entities in the hpsg grammar (Section 4.2).

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.1 (239)

Chapter 6

The prototype NLITDB

“Time works wonders.”

. Introduction

To demonstrate that the theoretical framework of this book is workable, it was
used to implement a prototype nlitdb, the source code of which accompanies
this book.* This chapter describes the architecture of the prototype nlitdb,
provides some information on how the modules of the system were imple-
mented, and explains which extensions would have to be made if the prototype
were to be used in real-life applications. A more detailed description of the hy-
pothetical airport database (Chapter 2) is also given, followed by sample ques-
tions from the airport domain and the corresponding output of the prototype
nlitdb.

. Architecture of the prototype NLITDB

Figure 6.1 shows the architecture of the prototype nlitdb. For simplicity, the
prototype does not include a preprocessor (cf. Figure 1.2 on page 6). As we will
see in later sections, this has the consequence that English questions have to
be typed in a slightly awkward format, as lists of Prolog atoms, imitating the
output of a preprocessor.

Each English question is first parsed using the hpsg grammar of Chapter
4, generating an hpsg sign. Multiple signs are generated for questions that the
parser understands to be ambiguous. A top formula is then extracted from
each sign, as discussed in Section 4.6, and each extracted formula undergoes
the post-processing of Section 4.17; this may generate multiple formulae from
the same original formula. As discussed in Chapter 1, this book does not ad-
dress dialogue management or anaphora resolution issues; hence, the role of

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.2 (240)

 Chapter 6

Figure 6.1 Architecture of the prototype NLITDB

the post-processor is much simpler than in a fully-fledged nlidb, which is why
it has no access to a discourse history or the ontology (cf. Figure 1.2).

Each of the formulae that are generated at the end of the post-processing
captures what the nlitdb understands to be a possible reading of the English
question. Many fully-fledged nlidbs use preference measures to guess the most
likely reading, or generate unambiguous English paraphrases of the various
readings asking the user to select one (Section 1.2). No such mechanism is
present in the prototype nlitdb. All the formulae that are generated at the end
of the post-processing are translated into tsql2, and the nlitdb prints all the
resulting tsql2 queries along with the corresponding top formulae. In a real-
life system, the tsql2 queries would be executed by the dbms to retrieve the
information requested by the user. As discussed in Section 1.5, however, the
prototype nlitdb is not linked to a dbms, which means that the tsql2 queries
are currently not executed.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.3 (241)

The prototype NLITDB 

. Implementation

The hpsg version of Chapter 4 was coded in the formalism of ale (Carpen-
ter 1992; Carpenter & Penn 2001).1 ale can be thought of as a grammar-
development environment. It provides a chart parser, which is the one used
in the prototype nlitdb, and a formalism that can be used to write unification
grammars that employ feature structures. Coding the hpsg version of Chap-
ter 4 in ale’s formalism proved straightforward. ale’s formalism allows one to
specify grammar rules, lexical entries, lexical rules, a hierarchy of sorts of fea-
ture structures, and definite constraints; the latter are similar to Prolog rules,
except that the predicate arguments are feature structures. The schemata and
principles of the hpsg version of Chapter 4 were coded using ale grammar
rules and definite constraints. hpsg’s lexical signs, lexical rules, and sort hier-
archy were coded using ale’s lexical entries, lexical rules, and sort hierarchy,
respectively.

The ale grammar rules and definite constraints that encode the hpsg
schemata and principles are domain-independent (Figure 6.1); i.e., they re-
quire no modifications when the nlitdb is configured for a new application.
The lexical rules of the prototype nlitdb are also intended to be domain-
independent, though their morphology parts need to be extended to cover
arbitrary verbs and nouns. The lexical entries of the system that correspond
to function words (e.g., determiners, prepositions) or names of months, days,
etc. are domain-independent, but the configurer of the nlitdb needs to pro-
vide lexical entries for the open-class words, namely nouns, adjectives, and
non-auxiliary verbs, of the application domain (e.g., flight, open, to land). The
largest part of the nlitdb’s sort hierarchy is also domain-independent; how-
ever, two parts of it need to be modified when the system is configured for
a new domain: the hierarchy of entity types that is mounted under ind (Fig-
ure 4.4 on page 116), and the subsorts of predicate that correspond to the top
predicates of the domain (Figure 4.1 on page 113).

The module that extracts top formulae from hpsg signs was implemented
using Prolog rules and ale definite constraints. It operates as discussed in Sec-
tion 4.6, and generates top formulae written as Prolog terms; for example, (6.1)
is written as (6.2). The Prolog notation of (6.2) is also used in the formulae that
are passed to the top to tsql2 translator, and in the output of the nlitdb.

(6.1) ?x1v Ntense[x3v, president(x1v)] ∧ Past[x2v, located at(x1v, gate2)]
(6.2) interrog(x1ˆv, and(ntense(x3ˆv, president(x1ˆv)),

past(x2ˆv, located_at(x1ˆv, gate2))))

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.4 (242)

 Chapter 6

The post-processor’s code is a rather straightforward implementation in Pro-
log of the manipulations discussed in Section 4.17, including the top conver-
sions of Section 5.5. The module that translates from top to tsql2 is an equally
straightforward implementation in Prolog of the translation rules of Chapter 5.

. Extensions for real-life applications

The prototype nlitdb is only intended to demonstrate that the mappings from
English to top and from top to tsql2 of Chapters 4 and 5, respectively, are
implementable. Consequently, it is a rather minimal system, that would have
to be extended in several ways if it were to be used in real-life applications.

We have already discussed the need for a preprocessor (Section 1.2), that
would decompose the English questions into tokens, and would identify and
normalise expressions such as dates, times, and proper names. Since no prepro-
cessor is currently present, questions have to be typed as Prolog lists of atoms,
as in (6.3), with multi-token expressions (e.g., J. Adams, 5:00 pm) merged into
single atoms (e.g., j_adams, pm5_00).

(6.3) [was,ba737,circling,at,pm5_00]

For demonstration purposes, the lexicon of the prototype nlitdb contains
some entries for proper names, such as names of flights and persons, as well
as sample entries for times and dates (e.g., 5:00 pm, 1/1/1991). In real-life ap-
plications, however, proper names and expressions like times and dates cannot
usually be included in the lexicon, because they are too many or they are not
known in advance. Instead, they would be identified during the preprocessing,
and the corresponding lexicon entries would be generated on the fly based on
appropriate templates.

The post-processor would also have to be enhanced for real-life applica-
tions, in order to be able to handle anaphoric expressions (Sections 1.2 and
2.12) and quantifier scoping. The latter refers to cases where the meaning repre-
sentation contains both universal and existential quantifiers, with the relative
scope of the quantifiers being unclear. For example, ignoring temporal issues,
(6.4) can be represented in first-order predicate logic as (6.5) or (6.6). Accord-
ing to (6.5), where the existential quantifier has wider scope, all the gates were
inspected by the same guard; in contrast, in (6.6) each gate may have been
inspected by a different guard.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.5 (243)

The prototype NLITDB 

(6.4) A guard inspected every gate.
(6.5) ∃ x (guard(x) ∧ ∀ y (gate(y) → inspect(x, y)))
(6.6) ∀ y (gate(y) → ∃ x (guard(x) ∧ inspect(x, y)))

Although in (6.4) both scopings seem plausible, often one of the possible scop-
ings is more natural, and heuristics can be used to identify it; see Chapter 8 of
Alshawi et al. (1992). In this book, words that introduce universal quantifiers
were deliberately excluded from the linguistic coverage (Section 2.13). This
leaves only existential quantification, and sidesteps quantifier scoping, because
when all the quantifiers are existential ones, their relative scope does not mat-
ter. (In top, existential quantification is expressed using free variables. There
are also interrogative and interrogative-maximal quantifiers, but these are in
effect existential ones, with the additional side-effect of including the values of
their variables in the answer.)

An additional inferencing layer may also be necessary between the post-
processor and the top to tsql2 translator. This is needed when some top pred-
icates cannot be mapped directly to relations computed from the information
in the database. The doctor on board problem (Rayner 1993) is a well-known
example of such a case. Let us consider (6.7), which would be mapped to the
top formula (6.8). It is assumed here that doctor and ship introduce predi-
cates of the form doctor(τ1) and ship(τ2), respectively, and that the predica-
tive preposition on introduces a predicate of the form located on(τ3, τ4), with
τ1, . . . , τ4 ∈ TERMS. For simplicity, it is assumed that doctor and ship do not
introduce Ntense operators (Section 4.9.1).

(6.7) Is there a doctor on some ship?
(6.8) doctor(dv) ∧ ship(sv) ∧ Pres[located on(dv, sv)]

To apply the top to tsql2 translation method of Chapter 5, doctor(τ1) has to be
mapped to a valid-time relation, computed from information in the database,
that shows when τ1 was a doctor. Similarly, ship(τ2) has to be mapped to a
relation showing the ships that existed at each time, and located on(τ3, τ4) to
a relation showing when the entity denoted by τ3 was on the entity denoted
by τ4. The database, however, may contain only the relation doctor on board
below, which does not show the times when particular people were doctors,
when ships existed, or when particular doctors where on the various ships. The
relation simply shows the times when some (any) doctor was on each ship.
Consequently, doctor(τ1), ship(τ2), and located on(τ3, τ4) cannot be mapped to
appropriate relations, and the translation method of Chapter 5 cannot be used.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.6 (244)

 Chapter 6

If, however, doctor on ship(τ5) is true at event times where the entity de-
noted by τ5 is a ship and a doctor of that time is on that ship, (6.8) is equiva-
lent to (6.9).

(6.9) Pres[doctor on ship(sv)]

Unlike (6.8), in (6.9) there is enough information in the database to map
doctor on ship(τ5) to an appropriate relation: the predicate can be mapped to
the doctor on board relation. Hence, the top to tsql2 translation method of
Chapter 5 can be applied to (6.9), and the answer to (6.7) can be found by
evaluating the resulting tsql2 code.

doctor on board

ship

Vincent [8:30am 22/1/1996 – 11:45am 22/1/1996]
∪ [3:10pm 23/1/1996 – 5:50pm 23/1/1996]
∪ [9:20am 24/1/1996 – 2:10pm 24/1/1996]

Invincible [8:20am 22/1/1996 – 10:15am 22/1/1996]
∪ [1:25pm 23/1/1996 – 3:50pm 23/1/1996]

.

The problem is that (6.7) cannot be mapped directly to (6.9), because the En-
glish to top mapping of Chapter 4 generates (6.8). We need to convert (6.8),
whose predicates are introduced by the lexical entries of nouns, prepositions,
etc., to (6.9), whose predicates are chosen to correspond to relations computed
from the database. An inference module could be used to carry out this con-
version (Alshawi et al. 1992; Rayner 1993). Roughly speaking, this would be an
inference module between the post-processor and the top to tsql2 translator,
that would use domain-dependent conversion rules. (6.10) is a simplistic ex-
ample of such a rule; it allows any formula of the form doctor(τ1) ∧ ship(τ2) ∧
Pres[located on(τ1, τ2)] to be replaced by Pres[doctor on ship(τ2)].

(6.10) doctor(τ1) ∧ ship(τ2) ∧ Pres[located on(τ1, τ2)] ≡
Pres[doctor on ship(τ2)]

The rule of (6.10) would license the conversion of (6.8) into (6.9). In prac-
tice, the rules would have to be written in a more complex pattern-matching
formalism, to allow them to apply to broader sets of formulae.

To these extensions, one has to add the need to tailor the linguistic coverage
to the characteristics of the target range of applications, possibly in conjunc-
tion with robust parsing and error recovery techniques (Sections 1.2 and 2.1),
and the need for a response generator (Section 1.2); throughout the book, we

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.7 (245)

The prototype NLITDB 

have identified several cases where a generator of cooperative responses would
be particularly useful. Configuration tools could also be added, to help peo-
ple that are not familiar with the internals of the nlitdb port the system to
new applications; see Androutsopoulos and Ritchie (2000), and Chapter 11 of
Alshawi et al. (1992) for related discussion.

. The airport database

Let us now consider in more detail the hypothetical airport database (Section
2.4.5) for which the prototype nlitdb is currently configured.

The database contains nineteen relations, all valid-time and coalesced (Sec-
tion 5.2.3). Figure 6.2 shows the names and explicit attributes of the relations.
For simplicity, it is assumed that the values of all the explicit attributes are
strings. It is also assumed that chronons correspond to minutes, and that the
gregorian calendric relation of Section 5.3.3 is available. Let us first consider the
runways relation, which has the following form.

gates(gate, availability)
runways(runway, availability)
queues(queue, runway)
servicers(servicer)
inspectors(inspector)
sectors(sector)
flights(flight)
tanks(tank, content)
norm_departures(flight, norm_dep_time, norm_dep_gate)
norm_arrivals(flight, norm_arr_time, norm_arr_gate)
norm_servicer(flight, servicer)
flight_locations(flight, location)
circling(flight)
inspections(code, inspector, inspected, status)
services(code, servicer, flight, status)
boardings(code, flight, gate, status)
landings(code, flight, runway, status)
takeoffs(code, flight, runway, status)
taxiings(code, flight, origin, destination, status)

Figure 6.2 Relations of the airport database

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.8 (246)

 Chapter 6

runways

runway availability

runway1 open [8:00am 1/1/1996, 7:30pm 3/1/1996]
∪ [6:00am 4/1/1996, 2:05pm 8/1/1996] ∪ . . .

runway1 closed [7:31pm 3/1/1996, 5:59am 4/1/1996]
∪ [2:06pm 8/1/1996, 5:45pm 8/1/1996] ∪ . . .

runway2 open [5:00am 1/1/1996, 9:30pm 9/1/1996] ∪ . . .
runway2 closed [9:31pm 9/1/1996, 10:59am 10/1/1996] ∪ . . .

The availability values are always open or closed. There are two tuples for each
runway: one showing the times when the runway was open, and one showing
the times when it was closed. If a runway did not exist at some time, both tuples
of that runway exclude that time from their time-stamps. The gates relation is
similar. Its availability values are always open or closed, and there are two tuples
for each gate, showing the times when the gate was open or closed, respectively.

Runways used for landings or take-offs have queues, where flights wait un-
til they are given permission to enter the runway. The queues relation lists the
names of the queues that exist at various times, along with the runways the
queues lead to. The servicers relation shows the names of the servicing compa-
nies that existed over time. The inspectors, sectors, and flights relations are sim-
ilar. The tanks relation shows the contents of each tank over time; for example,
water, foam, or empty if the tank was empty.

Each outgoing flight is assigned a normal departure time and gate (Section
2.4.5); these are recorded in norm departures as shown below. From 9:00 am
on 1/1/1992 to 5:30 pm on 9/9/1995 BA737 normally departed each day from
gate 2 at 2:05 pm. (For simplicity, it is assumed here that all flights are daily.)
At 5:31 pm on 9/9/1995, the normal departure time of BA737 was changed to
2:20 pm, while the normal departure gate remained gate 2. No further change
to the normal departure time or gate of BA737 was made since then.

norm departures

flight
norm dep

time
norm dep

gate

BA737 2:05pm gate2 [9:00am 1/1/1992, 5:30pm 9/9/1995]
BA737 2:20pm gate2 [5:31pm 9/9/1995, now]

Similarly, each incoming flight is assigned a normal arrival time and gate,
recorded in norm arrivals. Flights are also assigned normal servicers, i.e., com-
panies that normally service the flights whenever they arrive or depart; this in-

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.9 (247)

The prototype NLITDB 

formation is stored in norm servicer. The flight locations relation shows the lo-
cation of each flight over time. Possible location values are the names of airspace
sectors, gates, runways, or queues of runways. The circling relation shows the
flights that were circling at each time.

As discussed in Section 2.4.5, flights, gates, and runways are occasionally
inspected. The inspections relation was discussed in Section 5.9. It shows the in-
spection code, inspector, inspected object, status (completed or not), and time
of each inspection. The services, boardings, landings, takeoffs, and taxiings rela-
tions are very similar; they provide information about actual services, board-
ings, landings, take-offs, and taxiings from one location (origin) to another
(destination). Each service, boarding, landing, take-off, or taxiing is assigned
a unique code, stored in the code attribute. The status attribute shows if the
climax is reached at the latest time-point of the time-stamp. The values of
the origin and destination attributes of taxiings are names of gates, runways,
and queues.

Apart from relations, a temporal database would in practice also contain
time-sensitive integrity constraints (Gertz & Lipeck 1995; Wijsen 1995; Snod-
grass 2000). There would be, for example, a constraint saying that if the circling
relation shows a flight as circling at some time, the flights relation must show
that flight as existing at the same time. The integrity constraints of the airport
database will not be discussed, as they are not directly relevant to the topic
of this book.

. Sample questions and output

Let us now examine sample questions from the airport domain, along with the
corresponding output of the prototype nlitdb. The questions are chosen to
demonstrate that the nlitdb is a faithful implementation of the theory pre-
sented in the previous chapters. The questions are not intended to be, and
are probably not, representative of the questions that real users might use in
the airport domain; see related comments on Wizard of Oz experiments in
Sections 1.2 and 2.1.

The user submits questions using the nli Prolog predicate, as illustrated
below. The system first reports the generated hpsg sign.

?- nli([which,flight,left,sector3,at,pm5_00,yesterday]).

HPSG Sign:

(phrase,

qstore:(ne_set_quant,

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.10 (248)

 Chapter 6

elt:(det:exists,

restind:(index:(_10148,

minute_ent,

tvar:plus),

restr:(ne_set_psoa,

elt:(part,

part_var:_10148,

partng:pm5_00),

elts:e_set))),

elts:(ne_set_quant,

elt:(det:interrog,

restind:(index:(_10486,

flight_ent,

tvar:plus),

restr:(ne_set_psoa,

elt:(flight,

arg1:_10486),

elts:e_set))),

elts:e_set)),

synsem:(synsem,

loc:(cat:(aspect:point,

comps:e_list,

head:(aux:minus,

inv:minus,

mod:none,

prd:minus,

vform:fin),

spr:e_list,

subj:e_list),

cont:(at_op,

main_psoa:(at_op,

main_psoa:(past,

et_handle:(temp_ent,

tvar:plus),

main_psoa:(leave_something,

arg1:_10486,

arg2:sector3)),

time_spec:_10148),

time_spec:yesterday)),

nonloc:(inherited:slash:e_set,

to_bind:slash:e_set)))

The sign above is written in ale’s notation. The sign is of sort phrase, i.e.,
it corresponds to a phrase rather than a single word, and it has the features
qstore and synsem. The ne_set_quant value of qstore stands for a non-
empty set of quantifiers. Its elt feature describes the first element of that set,
which is an existential quantifier. The quantifier ranges over a top variable,
represented by an hpsg index of sort minute_ent (Figure 4.4 on page 116)
whose tvar is + (Section 4.3). The elt value represents the top-like expres-
sion ∃ x2v Part[pm5 00g , x2v]. The Prolog variable _10148 corresponds to
the index of the quantifier; i.e., it plays the same role as the boxed numbers

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.11 (249)

The prototype NLITDB 

(e.g., 1 , 2) in the hpsg formalism of Chapter 4. The elts value describes
the rest of the set of quantifiers, using in turn an elt feature, which corre-
sponds to the second element of the overall set, and an elts feature, which
describes the remainder of the set, in this case the empty set. The second el-
ement of the overall set represents the top expression ?x1v flight(x1v). In the
airport application, the lexical entries of non-predicative nouns do not intro-
duce Ntense operators (Section 4.9.1); this generates appropriate readings in
most cases. This is why no Ntense operator is present in the second quanti-
fier of the sign. The effect of Ntense operators can be seen in the case of non-
predicative adjectives, that do introduce Ntenses, as will be shown in later ex-
amples. The features of synsem are as in Chapter 4. The cont value above
stands for At[yesterday, At[x2v, Past[x3v, leave something(x1v, sector3)]]].

The overall formula is then extracted from the hpsg sign, and is printed as
a Prolog term:

TOP formula extracted from HPSG sign:

interrog(x1^v,

and(part(pm5_00^g, x2^v),

and(flight(x1^v),

at(yesterday,

at(x2^v,

past(x3^v,

leave_something(x1^v, sector3)))))))

The Prolog term above stands for:

?x1v Part[pm5 00g , x2v] ∧ flight(x1v) ∧
At[yesterday, At[x2v, Past[x3v, leave something(x1v, sector3)]]]

The extracted formula then goes through the post-processor (Sections 4.17,
5.5), which eliminates the Part operator, adding the pm5 00g as an extra argu-
ment to the corresponding At operator:

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

at(yesterday,

at(pm5_00^g, x2^v,

past(x3^v,

leave_something(x1^v, sector3))))))

The Prolog term above stands for:

(6.11) ?x1v flight(x1v) ∧ At[yesterday,

At[pm5 00g , x2v, Past[x3v, leave something(x1v, sector3)]]]

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.12 (250)

 Chapter 6

The post-processed formula is then translated to tsql2:

TSQL2 query:

(SELECT DISTINCT SNAPSHOT t8.1

FROM (SELECT DISTINCT t6.1, t7.1, t7.2, t7.3, t7.4

VALID VALID(t6)

FROM (SELECT DISTINCT t1.1

VALID VALID(t1)

FROM (SELECT DISTINCT fl.1

VALID VALID(fl)

FROM flights(PERIOD) AS fl

)(SUBPERIOD) AS t1

WHERE PERIOD(TIMESTAMP ’beginning’, TIMESTAMP ’forever’)

CONTAINS VALID(t1)

) AS t6,

(SELECT DISTINCT t2.1, t5.1, t5.2, t5.3

VALID VALID(t5)

FROM (SELECT DISTINCT SNAPSHOT VALID(cp2)

FROM gregorian AS cp2

WHERE cp2.5 = ’17’ AND cp2.6 = ’00’

) AS t2,

(SELECT DISTINCT VALID(t4), t4.1, t4.2

VALID VALID(t4)

FROM (SELECT DISTINCT t3.1, t3.2

VALID VALID(t3)

FROM (SELECT DISTINCT flocs.1, flocs.2

VALID PERIOD(END(VALID(flocs)),

END(VALID(flocs)))

FROM flight_locations(PERIOD) AS flocs

)(SUBPERIOD) AS t3

WHERE t3.2 = ’sector3’

AND INTERSECT(

INTERSECT(t2.1,

INTERSECT(

PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’forever’),

PERIOD ’today’ - INTERVAL ’1’ DAY)),

PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’now’ -

INTERVAL ’1’ MINUTE))

CONTAINS VALID(t3)

) AS t4

) AS t5

) AS t7

WHERE t6.1 = t7.3

AND VALID(t6) = VALID(t7)

) AS t8

)

The expression SELECT DISTINCT fl.1 . . . FROM flights(PERIOD) AS

fl that starts in the sixth line of the tsql2 code is the SELECT state-
ment to which h′pfuns maps predicates of the form flight(τ1). It returns a re-
lation that shows the flights that existed at each time. The SELECT state-

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.13 (251)

The prototype NLITDB 

ment that is associated with the correlation name t6 is the result of ap-
plying the translation rule for predicates (Section 5.11) to the flight(x1v)
of (6.11). The WHERE PERIOD(TIMESTAMP ’beginning’, TIMESTAMP

’forever’) CONTAINS VALID(t1) corresponds to the restriction that et
must fall within lt. (At this point, no constraint has been imposed on lt, and
hence it covers the whole time-axis.) This WHERE clause has no effect, and could
be removed during an optimisation phase (Section 5.12).

The expression SELECT DISTINCT flocs.1 . . . flight_loca-

tions(PERIOD) AS flocs that starts in the 23rd line of the tsql2 code is
the SELECT statement to which h′pfuns maps predicates of the form leave some-
thing(τ1, τ2). This statement generates a relation that shows, for each flight and
location, the end-points of the maximal periods where the flight was at that lo-
cation. The broader SELECT statement that is associated with t4 is the result of
applying the translation rule for predicates to the leave something(x1v, sector3)
of (6.11). VALID(t3) is the leaving-time, which has to fall within lt. The three
nested INTERSECTs represent constraints that have been imposed on the local-
isation time: the Past operator requires lt to be a subperiod of [pfirst , st) (i.e., a
subperiod of TIMESTAMP ’beginning’, TIMESTAMP ’now’ - INTER-

VAL ’1’ MINUTE), the At[pm5 00g , . . .] requires lt to be a subperiod of a
5:00pm-period (t2.1 ranges over 5:00pm-periods), and At[yesterday, . . .] re-
quires lt to be a subperiod of the previous day (PERIOD ’today’ - INTER-

VAL ’1’ DAY).
The SELECT statement that is associated with t5 is generated by the trans-

lation rule for Past (Section 5.11), and the SELECT statement that is associated
with t7 is introduced by the translation rule for At[σg , β,φ′] (Section A.1.15).
(The At[yesterday, . . .] of (6.11) does not introduce its own SELECT statement,
it only restricts lt; see the translation rule for At[κ,φ′] in Section 5.11.) The SE-
LECT statement that is associated with t8 is introduced by the translation rule
for conjunction (Section A.1.3). It requires the attribute values that correspond
to the x1v arguments of flight(x1v) and leave something(x1v, sector3), and the
event times where the two predicates are true to be identical. Finally, the top-
level SELECT statement is introduced by the translation rule for ?β1 . . . ?βk φ

′

(Section 5.11). It returns a snapshot relation that contains the attribute values
corresponding to x1v, i.e., the flights.

In the following examples we will concentrate on the generated top for-
mulae, ignoring the hpsg signs and the tsql2 code. The sample questions also
serve as a recapitulation of the linguistic coverage of this book.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.14 (252)

 Chapter 6

Progressives of state verbs. As noted in Section 2.5.3, no attempt is made to
block progressive forms of state verbs. The progressive forms of these verbs are
taken to have the same meanings as the corresponding non-progressive ones.
This causes the two questions below to receive the same top formula.

?- nli([which,tanks,contain,water]).

TOP formula after post-processing:

interrog(x1^v,

and(tank(x1^v),

pres(contains(x1^v, water))))

?- nli([which,tanks,are,containing,water]).

TOP formula after post-processing:

[same formula as above]

Habituals and simple present. There are two lexical entries for the base form
of to service, one for the habitual homonym, and one for the non-habitual
one. The habitual entry introduces the predicate functor hab servicer of and
classifies the base form as state. The non-habitual entry introduces the func-
tor actl servicing and classifies the base form as culminating activity. The sim-
ple present lexical rule (Section 4.7.1) generates a simple present lexical en-
try only for the habitual homonym, whose base form is state. Hence, the ser-
vices below is treated as the simple present of the habitual homonym, not as
the simple present of the non-habitual homonym, and only a formula that
contains the hab servicer of functor is generated. This captures the fact that
the question can only have a habitual meaning; it cannot refer to a servicer
that is actually servicing BA737 at the present. The reader is reminded that
the scheduled-to-happen reading of the simple present is ignored in this book
(Section 2.5.1).

?- nli([which,servicer,services,ba737]).

TOP formula after post-processing:

interrog(x1^v,

and(servicer(x1^v),

pres(hab_servicer_of(x1^v, ba737))))

Habituals and progressives. In contrast, the present participle lexical rule (Sec-
tion 4.7.1) generates progressive entries for both the non-habitual (culminat-
ing activity base form) and the habitual (state base form) homonyms. This
gives rise to two formulae, one involving the actl servicing functor (the servicer
must be servicing BA737 at the present), and one involving the hab servicer of
functor (the servicer must be the current normal servicer of BA737). The x2v in

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.15 (253)

The prototype NLITDB 

the first formula is an occurrence identifier (Section 3.16). The habitual reading
of the second formula seems less likely in this case.

?- nli([which,servicer,is,servicing,ba737]).

TOP formula after post-processing:

interrog(x1^v,

and(servicer(x1^v),

pres(actl_servicing(x2^v, x1^v, ba737))))

TOP formula after post-processing:

interrog(x1^v,

and(servicer(x1^v),

pres(hab_servicer_of(x1^v, ba737))))

Habituals and temporal complements. There are also different lexical entries
for the habitual and actual to depart. The habitual entry introduces the functor
hab dep time, requires a complement introduced by at that specifies the ha-
bitual departure time, and classifies the base form as state. The non-habitual
entry introduces the functor actl depart, requires no complement, and classi-
fies the base form as point. In the following question, this leads to two formu-
lae: one where the habitual departure time of each reported flight must have
been 5:00 pm at some time in 1993, and one where each reported flight must
have actually departed at least once at 5:00 pm in 1993. In the habitual reading,
at 5:00 pm is the complement that specifies the habitual departure time, while
in the actual reading, it is a temporal modifier that introduces an At operator
(Section 4.11.1).

?- nli([which,flights,departed,at,pm5_00,in,y1993]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

at(y1993,

at(pm5_00^g, x2^v,

past(x3^v,

actl_depart(x1^v))))))

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

at(y1993,

past(x2^v,

hab_dep_time(x1^v, pm5_00)))))

Simple present with non-states. The first question below receives no parse,
because to circle is classified as an activity verb (there is no habitual state
homonym in this case), and the simple present lexical rule does not generate

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.16 (254)

 Chapter 6

simple present lexical entries for activity verbs. In contrast, the present partici-
ple lexical rule does generate progressive entries for activity verbs. This causes
the second question below to be mapped to the formula one would expect.
The failure to parse the first question is justified, in the sense that the question
seems to be asking about flights that have some circling habit, and the nl-
itdb has no access to information of this kind. A more cooperative response,
however, is needed.

?- nli([does,ba737,circle]).

**No (more) parses.

?- nli([is,ba737,circling]).

TOP formula after post-processing:

pres(circling(ba737))

Culminating activity with period adverbial. Following the arrangements of
Section 4.11.2, in the following question where a culminating activity com-
bines with a period adverbial, two formulae are generated: one where the in-
spection must have simply been completed on 1/5/1992, and one where the
whole inspection, from start to completion, must have been carried out on
1/5/1992. The first reading seems unlikely in this example, though as discussed
in Section 2.9.2, there are sentences where the first reading is the intended one.

?- nli([who,inspected,uk160,on,d1_5_92]).

TOP formula after post-processing:

interrog(x1^v,

at(d1_5_92,

end(past(x2^v,

culm(inspecting(x3^v, x1^v, uk160))))))

TOP formula after post-processing:

interrog(x1^v,

at(d1_5_92,

past(x2^v,

culm(inspecting(x3^v, x1^v, uk160)))))

Culminating activity with both punctual and period adverbial. In the follow-
ing question, the punctual adverbial at 5:00 pm combines with a culminating
activity. According to Section 2.9.1, two readings arise: one where the taxiing
starts at 5:00 pm, and one where it finishes at 5:00 pm. In both cases, the punc-
tual adverbial causes the aspect of which flight taxied to gate 2 to become point.
That point sentence then combines with the period adverbial yesterday. Ac-
cording to Section 2.9.2, the instantaneous situation of the point phrase, i.e.,

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.17 (255)

The prototype NLITDB 

the start or end of the taxiing, must occur within the period of the adverbial.
This leads to two formulae: one where the taxiing starts at 5:00 pm on the pre-
vious day, and one where the taxiing finishes at 5:00 pm on the previous day.
The formulae capture the most likely readings of the question. Unfortunately,
if the order of at 5:00 pm and yesterday is reversed, the generated formulae are
not equivalent to the ones below; see the discussion in Section 4.16.

?- nli([which,flight,taxied,to,gate2,at,pm5_00,yesterday]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

at(yesterday,

at(pm5_00^g, x2^v,

end(past(x3^v,

culm(taxiing_to(x4^v, x1^v, gate2))))))))

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

at(yesterday,

at(pm5_00^g, x2^v,

begin(past(x3^v,

culm(taxiing_to(x4^v, x1^v, gate2))))))))

Past perfect of point verb and punctual adverbial. In the sentence below,
which is treated as a yes/no question, the treatment of past perfects and punc-
tual adverbials of Section 4.11.1 allows at 5:00 pm to modify either the verb
phrase left gate 2, or the entire BA737 had left gate 2. This gives rise to two
top formulae: one where 5:00 pm is the time when BA737 left gate 2, and one
where 5:00 pm is a reference time at which BA737 had already left gate 2. The
two formulae capture the most likely readings of the sentence.

?- nli([ba737,had,left,gate2,at,pm5_00]).

TOP formula after post-processing:

past(x2^v,

perf(x3^v,

at(pm5_00^g, x1^v,

leave_something(ba737, gate2))))

TOP formula after post-processing:

at(pm5_00^g, x1^v,

past(x2^v,

perf(x3^v,

leave_something(ba737, gate2))))

Past perfect of culminating activity verb and punctual adverbial. Similarly,
in the following question, the at 5:00 pm is allowed to modify either the verb

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.18 (256)

 Chapter 6

phrase taken off, or the entire BA737 had taken off. In the first case, the verb
phrase still has the aspectual class of the base form, i.e., culminating activity.
According to Section 2.9.1, 5:00 pm is the time where the taking off was com-
pleted or started; the second reading seems unlikely in this particular example.
The two readings are captured by the first and second formulae below, respec-
tively. In the case where at 5:00 pm modifies the entire BA737 had taken off, the
had has already caused the aspect of the sentence to become consequent state.
Then, according to Section 2.9.1, 5:00 pm is simply a time-point where the sit-
uation of the sentence (having departed) holds. This reading is captured by the
third formula.

?- nli([ba737,had,taken,off,at,pm5_00]).

TOP formula after post-processing:

past(x2^v,

perf(x3^v,

at(pm5_00^g, x1^v,

end(culm(taking_off(x4^v, ba737))))))

TOP formula after post-processing:

past(x2^v,

perf(x3^v,

at(pm5_00^g, x1^v,

begin(culm(taking_off(x4^v, ba737))))))

TOP formula after post-processing:

at(pm5_00^g, x1^v,

past(x2^v,

perf(x3^v,

culm(taking_off(x4^v, ba737)))))

Both preceding and trailing temporal modifiers. The first question below re-
ceives the formula one would expect. As discussed in Section 4.16, in the sec-
ond question below the grammar of Chapter 4 allows two parses: one where
yesterday attaches to BA737 was circling for two hours, and one where it attaches
to BA737 was circling. The two parses give rise to different, but semantically
equivalent, formulae.

?- nli([ba737,was,circling,for,two,hours,yesterday]).

TOP formula after post-processing:

at(yesterday,

for(hour^c, 2,

past(x1^v,

circling(ba737))))

?- nli([yesterday,ba737,was,circling,for,two,hours]).

TOP formula after post-processing:

[same formula as above]

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.19 (257)

The prototype NLITDB 

TOP formula after post-processing:

for(hour^c, 2,

at(yesterday,

past(x1^v,

circling(ba737))))

Temporal modifier between verb and complement. The following example re-
veals a problem in the current treatment of temporal modifiers. The hpsg ver-
sion of this book (Section 4.11) allows temporal modifiers to attach only to
finite sentences, i.e., finite verb forms that have already combined with their
subjects and complements, or past participle verb phrases, i.e., past participles
that have combined with all their complements but not their subjects. In both
cases, the temporal modifier is attached after the verb has combined with all of
its complements. English temporal modifiers typically appear either at the be-
ginning or the end of the sentence, not between the verb and its complements,
and hence requiring temporal modifiers to attach after the verb has combined
with its complements is in most cases not a problem. However, in the following
question, which native English speakers seem to find acceptable, the tempo-
ral modifier (for two hours) is between the verb (queued) and its complement
(for runway2). Therefore, the temporal modifier cannot attach to the verb af-
ter the verb has combined with its complement, and the system fails to parse
the sentence. In contrast, UK160 queued for runway 2 for two hours, where the
temporal modifier follows the complement, is parsed without problems.

?- nli([uk160,queued,for,two,hours,for,runway2]).

**No (more) parses.

Culm operators and ‘for’ duration adverbials. As explained in Section 4.17,
the post-processor removes Culm operators from the scope of For operators in-
troduced by for adverbials; this is demonstrated in the following example. The
for adverbial introduces a for_remove_culm pseudo-operator; this can be
thought of as a For operator with a flag attached to it, which signals that Culm
operators within its scope must be removed. The post-processor removes the
Culm operator, and replaces the for_remove_culm with an ordinary For
operator.
?- nli([which,flight,boarded,for,two,hours]).

TOP formula extracted from HPSG sign:

interrog(x1^v,

and(flight(x1^v),

for_remove_culm(hour^c, 2,

past(x2^v,

culm(boarding(x3^v, x1^v))))))

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.20 (258)

 Chapter 6

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

for(hour^c, 2,

past(x2^v,

boarding(x3^v, x1^v)))))

Culm operators and ‘in’ duration adverbials. Duration adverbials introduced
by in contribute For operators that carry no flags to remove enclosed Culm
operators. In the following question, this leads to a formula that, correctly,
requires the boarding to have been completed.

?- nli([which,flight,boarded,in,two,hours]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

for(hour^c, 2,

past(x2^v,

culm(boarding(x3^v, x1^v))))))

Present perfect. As explained in Section 2.5.4, the present perfect is treated
semantically in exactly the same way as the simple past. This causes the two
questions below to receive the same formula.

?- nli([which,flight,has,been,at,gate2,for,two,hours]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

for(hour^c, 2,

past(x2^v,

located_at(x1^v, gate2)))))

?- nli([which,flight,was,at,gate2,for,two,hours]).

TOP formula after post-processing:

[same formula as above]

Temporal verbs. As discussed in Section 2.6, when finished combines with a
culminating activity, the situation must have reached its completion. In con-
trast, with stopped the situation must have simply stopped, without necessarily
reaching its completion. This difference is captured in the two formulae below
by the existence or absence of a Culm operator.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.21 (259)

The prototype NLITDB 

?- nli([j_adams,finished,inspecting,uk160,at,pm5_00]).

TOP formula after post-processing:

at(pm5_00^g, x1^v,

past(x2^v,

end(culm(inspecting(x3^v, j_adams, uk160)))))

?- nli([j_adams,stopped,inspecting,uk160,at,pm5_00]).

TOP formula after post-processing:

at(pm5_00^g, x1^v,

past(x2^v,

end(inspecting(x3^v, j_adams, uk160))))

Non-predicative adjectives and Ntense operators. In the airport domain, non-
predicative adjectives, like closed below, introduce Ntense operators. In the
question below, the formula that is extracted from the hpsg sign contains an
Ntense operator whose first argument is a variable. As explained in Section
4.17, this leads to two different formulae after the post-processing, one where
closed refers to the present, and one where closed refers to the time of the verb
tense.

?- nli([was,any,flight,on,a,closed,runway,yesterday]).

TOP formula extracted from HPSG sign:

and(flight(x1^v),

and(and(ntense(x2^v, closed(x3^v)),

runway(x3^v)),

at(yesterday,

past(x4^v,

located_at(x1^v, x3^v)))))

**Post processing of TOP formula generated 2 different

formulae.

TOP formula after post-processing:

and(flight(x1^v),

and(and(ntense(now, closed(x3^v)),

runway(x3^v)),

at(yesterday,

past(x4^v,

located_at(x1^v, x3^v)))))

TOP formula after post-processing:

and(flight(x1^v),

and(and(ntense(x4^v, closed(x3^v)),

runway(x3^v)),

at(yesterday,

past(x4^v,

located_at(x1^v, x3^v)))))

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.22 (260)

 Chapter 6

Ntense operator and ‘currently’. In the following question, the currently clari-
fies that closed refers to the present. The Ntense in the formula that is extracted
from the hpsg sign has now* as its first argument, and the post-processing has
no effect.

?- nli([was,any,flight,on,a,currently,closed,runway,yesterday]).

TOP formula extracted from HPSG sign:

and(flight(x1^v),

and(and(ntense(now, closed(x2^v)),

runway(x2^v)),

at(yesterday,

past(x3^v,

located_at(x1^v, x2^v)))))

Ntense operator and present tense. In the following question, the verb tense
refers to the present, and hence closed can only refer to a currently closed run-
way. The post-processor generates only one formula, where the first argument
of Ntense is now*.

?- nli([is,any,flight,on,a,closed,runway]).

TOP formula extracted from HPSG sign:

and(flight(x1^v),

and(and(ntense(x2^v, closed(x3^v)),

runway(x3^v)),

pres(located_at(x1^v, x3^v))))

TOP formula after post-processing:

and(flight(x1^v),

and(and(ntense(now, closed(x3^v)),

runway(x3^v)),

pres(located_at(x1^v, x3^v))))

Predicative adjectives. Predicative adjectives do not introduce Ntense opera-
tors (Section 4.10); top predicates introduced by these adjectives always end up
within the operator(s) of the verb tense. This captures the fact that predicative
adjectives always refer to the time of the verb tense.

?- nli([was,gate2,open,on,monday]).

TOP formula after post-processing:

at(monday^g, x1^v

past(x2^v,

open(gate2)))

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.23 (261)

The prototype NLITDB 

Proper names as predicative noun phrases. For reasons explained in Section
4.9.2, the system fails to parse sentences that contain proper names or names
of days, months, etc. when they are used as predicative noun phrases, as in the
first two questions below. Other predicative noun phrases pose no problem, as
illustrated in the third question below.
?- nli([d1_1_91,was,a,monday]).

**No (more) parses.

?- nli([ba737,is,uk160]).

**No (more) parses.

?- nli([ba737,is,a,flight]).

TOP formula after post-processing:

pres(flight(ba737))

Multiple interrogatives. Multiple interrogative words can be handled, as
demonstrated below.
?- nli([which,flight,is,at,which,gate]).

TOP formula after post-processing:

interrog(x1^v,

interrog(x2^v,

and(gate(x1^v),

and(flight(x2^v),

pres(located_at(x2^v, x1^v))))))

Subordinate clause and adverbial. The first question below reveals another
case where two semantically equivalent top formulae are generated; see also
Section 4.16. The grammar of Chapter 4 allows yesterday to attach to either
BA737 was circling or to the whole did any flight leave a gate while BA737 was
circling, leading to two hpsg signs from which the equivalent formulae are gen-
erated. In contrast, in the second question below, yesterday cannot attach to
BA737 was circling, because the intervening while causes the subordinate clause
to be treated as an adverbial, and yesterday cannot attach to another adverbial;
hence, only one formula is generated.
?- nli([did,any,flight,leave,a,gate,while,ba737,was,circling,yesterday]).

TOP formula after post-processing:

and(flight(x1^v),

and(gate(x2^v),

at(at(yesterday,

past(x3^v,

circling(ba737))),

past(x4^v,

leave_something(x1^v, x2^v)))))

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.24 (262)

 Chapter 6

TOP formula after post-processing:

and(flight(x1^v),

and(gate(x2^v),

at(yesterday,

at(past(x3^v,

circling(ba737)),

past(x4^v,

leave_something(x1^v, x2^v))))))

?- nli([did,any,flight,leave,a,gate,yesterday,while,ba737,was,circling]).

TOP formula after post-processing:

and(flight(x1^v),

and(gate(x2^v),

at(past(x3^v,

circling(ba737)),

at(yesterday,

past(x5^v,

leave_something(x1^v, x2^v))))))

Progressive state subordinate clause introduced by ‘before’ or ‘after’. In the
questions below, the subordinate clause is a progressive state that modifies a
point sentence (to arrive is a point verb in the airport domain). Following Sec-
tion 2.10.2, the formula of the first question requires the flights to have ar-
rived before a time-point where BA737 started to board. In the second ques-
tion, Section 2.10.2 allows two readings: the flights must have arrived after a
time-point where BA737 started or stopped boarding; the generated formulae
capture these readings.

?- nli([which,flights,arrived,before,ba737,was,boarding]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

before(past(x2^v,

boarding(x3^v, ba737)),

past(x4^v,

actl_arrive(x1^v)))))

?- nli([which,flights,arrived,after,ba737,was,boarding]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

after(begin(past(x2^v,

boarding(x3^v, ba737))),

past(x4^v,

actl_arrive(x1^v)))))

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.25 (263)

The prototype NLITDB 

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

after(past(x2^v,

boarding(x3^v, ba737)),

past(x4^v,

actl_arrive(x1^v)))))

Consequent state subordinate clause introduced by ‘before’ or ‘after’. In the
next two questions, the subordinate clause is a consequent state. According to
Section 2.10.2, in the first question the flights must have arrived before the situ-
ation of the subordinate clause (having boarded) began, i.e., before BA737 fin-
ished boarding. In the second question, the flights must have arrived after the
situation of the subordinate clause began, i.e., after BA737 finished boarding.
These readings are captured by the generated formulae.

?- nli([which,flights,arrived,before,ba737,had,boarded]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

before(past(x2^v,

perf(x3^v,

culm(boarding(x4^v,

ba737)))),

past(x5^v,

actl_arrive(x1^v))))))

?- nli([which,flights,arrived,after,ba737,had,boarded]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

after(begin(past(x2^v,

perf(x3^v,

culm(boarding(x4^v,

ba737))))),

past(x5^v,

actl_arrive(x1^v))))))

Culminating activity subordinate clause introduced by ‘before’ or ‘after’. Be-
low, the subordinate clause is a culminating activity. Following Section 2.10.2,
in the first question the flights must have arrived before a time-point where
BA737 finished or started to board. In the second question, the flights must
have arrived after a time-point where BA737 finished boarding. The generated
formulae capture these readings.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.26 (264)

 Chapter 6

?- nli([which,flights,arrived,before,ba737,boarded]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

before(end(past(x2^v,

culm(boarding(x3^v, ba737)))),

past(x4^v,

actl_arrive(x1^v)))))

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

before(past(x2^v,

culm(boarding(x3^v, ba737))),

past(x4^v,

actl_arrive(x1^v)))))

?- nli([which,flights,arrived,after,ba737,boarded]).

TOP formula after post-processing:

interrog(x1^v,

and(flight(x1^v),

after(past(x2^v,

culm(boarding(x3^v, ba737))),

past(x4^v,

actl_arrive(x1^v)))))

Interrogative ‘when’ and subordinate clause introduced by ‘while’. The ques-
tion below combines a when interrogative and a subordinate clause intro-
duced by while. The generated formula asks for maximal past circling-periods
of BA737 that fall within maximal past periods where UK160 was located at
gate 2.

?- nli([when,while,uk160,was,at,gate2,was,ba737,circling]).

TOP formula after post-processing:

interrog_mxl(x3^v,

at(past(x2^v,

located_at(uk160, gate2)),

past(x3^v,

circling(ba737))))

Interrogative ‘when’ and habituals. The first question below receives two for-
mulae, one for actual past departures, and one for habitual past departure
times; the latter reading is easier to accept if an adverbial like in 1992 is at-
tached. In the second question, only a formula for the habitual reading is gen-
erated, because the simple present lexical rule (Section 4.7.1) does not generate
a simple present lexical entry for the non-habitual to depart.

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.27 (265)

The prototype NLITDB 

?- nli([when,did,ba737,depart]).

TOP formula after post-processing:

interrog_mxl(x2^v,

past(x2^v,

actl_depart(ba737)))

TOP formula after post-processing:

interrog(x1^v,

past(x2^v,

hab_dep_time(ba737, x1^v)))

?- nli([when,does,ba737,depart]).

TOP formula after post-processing:

interrog(x1^v,

pres(hab_dep_time(ba737, x1^v)))

. Performance

The prototype nlitdb was developed for demonstration purposes, and its code
is not optimised for speed. Nevertheless, improvements that have been made
to ale over recent years (Carpenter & Penn 2001) and the availability of faster
computers have had a very significant impact on the prototype’s speed com-
pared to the performance figures that were reported in the thesis on which this
book is based (Androutsopoulos 1996).2 On a Pentium III PC at 730 MHz with
256 MB RAM, none of the questions above requires more than a couple of sec-
onds to map to tsql2, including the time to print the hpsg signs, top formulae
and tsql2 code; loading and compiling the source code takes approximately
10 seconds.

. Summary

To demonstrate that the theoretical framework of this book is workable, it was
used to implement a prototype nlitdb, using Prolog and ale. The source code
of the prototype is freely available, and it is currently configured for a hypothet-
ical airport database. A number of sample questions were used in this chap-
ter to demonstrate that the prototype behaves according to the theory of the
previous chapters.

The architecture of the system is currently minimal. Apart from tailoring
the linguistic coverage, additional mechanisms for preprocessing, robust pars-
ing, anaphora resolution, quantifier scoping, response generation, and possibly

NLP4[v.20020404] Prn:21/06/2002; 13:46 F: NLP606.tex / p.28 (266)

 Chapter 6

inferencing would have to be added if the system were to be used in real-life
applications.

Notes

* The code can be downloaded from:
http://www.aueb.gr/users/ion/nlitdb_book/

. The prototype nlitdb currently uses ale version 3.2.1 and swi Prolog version 5.0.1,
which are freely available for both Unix and Windows platforms. Instructions on how to
obtain ale and swi Prolog are included in the files of the prototype nlitdb.

. See also Flickinger et al. (2000) for related work on efficient processing with hpsg.

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.1 (267)

Chapter 7

Related work and directions for
further research

“Times change and we with time.”

. Introduction

The previous chapters have established a theoretical framework for construct-
ing nlitdbs, which is intended to serve as a starting point for developers of
nlitdbs and as a basis for further research. The framework consists of a se-
mantic analysis of a range of English temporal mechanisms (Chapter 2), a for-
mal meaning representation language, top, that can represent the semantics
of these mechanisms (Chapter 3), a temporally enhanced hpsg grammar that
maps English questions containing the supported mechanisms to appropri-
ate top expressions (Chapter 4), and a set of translation rules that turn top
expressions into suitable tsql2 queries (Chapter 5). A prototype nlitdb, in-
tended to demonstrate that the framework is implementable, is also available
(Chapter 6). This chapter examines how the framework of this book relates to
work on nlitdbs that has been carried out by other researchers, and concludes
with proposals for further research.

. Related work on NLITDBs

This section discusses prominent work on nlitdbs that has been carried out
by Moens (1987), Clifford (1990), and Nelken (2001). Information about other
work on nlitdbs (Bruce 1972; De, Pan, & Whinston 1985; Hafner 1985; Mays
1986; Spenceley 1989) can be found in the thesis on which this book is based
(Androutsopoulos 1996).

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.2 (268)

 Chapter 7

.. Moens

Moens’ work on temporal linguistic phenomena (Moens 1987; Moens & Steed-
man 1988) has been highly influential in the area of tense and aspect theories;
some ideas from Moens’ work were mentioned in Chapter 2. As an application
of his theory, Moens also developed a simplistic nlitdb (Moens 1987; Moens
1988). This is mainly intended to illustrate his tense and aspect theory, rather
than constitute a detailed exploration of issues related to nlitdbs. Hence, the
system is based on a very limited, and largely undocumented, dcg grammar
(Pereira & Warren 1980) that maps English questions to Prolog expressions,
and additional Prolog rules that evaluate the resulting expressions against the
Prolog database. There is no clear notion of a meaning representation language,
and the Prolog database is required to record information according to an id-
iosyncratic temporal database model. Nevertheless, Moens’ system is interest-
ing in that it demonstrates how additional time-related information, that is
normally not included in temporal databases, can be useful when processing
English questions; this is discussed in the following paragraphs.

Apart from purely temporal information, i.e., information showing when
various events took place, Moens’ database model also stores information
about what he calls episodes. According to Moens, an episode is a sequence of
‘contingently’ related events. The term ‘contingency’ seems to have two possi-
ble meanings: it may denote a consequence relation (event A was a consequence
of event B), or it may refer to events that constitute preparatory steps towards
the satisfaction of a common goal. Moens argues that contingency informa-
tion of this kind is necessary, if certain time-related linguistic mechanisms are
to be handled appropriately. For example, as discussed in Section 2.5.4, the En-
glish present perfect often carries the implication that some consequence of
the past situation holds at the present. The contingency information in Moens’
database allows the possible consequences to be identified. In a similar manner,
if landing is viewed as an instantaneous situation comprising only the time-
point where the plane touches down, the progressive BA737 was landing can be
thought of as asserting that a preparatory step of the landing was in progress;
again, the contingency information in Moens’ database allows the preparatory
steps to be identified.

Although Moens argues convincingly that contingency information plays
an important role in temporal linguistic mechanisms, it is often difficult to see
how information of this kind can be used in practical nlitdbs. For example, it
is difficult to represent explicitly in the database all the consequences of each
event. Furthermore, even if all the consequences of each event are represented,

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.3 (269)

Related work and directions for further research 

it is difficult to figure out which consequence the user has in mind when us-
ing the present perfect; see also the discussion in Section 2.5.4. Representing
and reasoning about the preparatory steps of each event is equally challeng-
ing. Consequently, the framework of this book does not employ contingency
information.

Moen’s database model is also interesting in that it provides some sup-
port for imprecise temporal information. One may know, for example, that
two events A and B occurred, and that B was a consequence of A, without
knowing the precise times when A and B occurred. Information of this kind
can be stored in Moens’ database, because in his database model events are
not necessarily associated with times. One can store events A and B as a se-
quence of contingently related events without assigning them specific times;
here ‘contingency’ would denote consequence. Note, however, that if there
is no contingency relation between A and B, and their exact times are un-
known, the database model does not allow the temporal order of A and B to be
stored. Although there has been research on imprecise temporal information
in databases (Brusoni, Console, & Terenziani 1995; Koubarakis 1995), most of
the work on temporal databases assumes that events are assigned specific times.
To remain compatible with this work, the framework of this book has made the
same assumption.

.. Clifford

Clifford (1988; 1990) defined a temporal version of the relational database
model, and showed how a fragment of English questions involving time can
be mapped systematically to logical expressions whose semantics are defined
in terms of a database structured according to his model. Clifford’s approach is
notable in that both the semantics of the English fragment and of the temporal
database are defined within a common model-theoretic framework, based on
Montague semantics (Dowty, Wall, & Peters 1981).

Clifford extended the syntactic coverage of Montague’s ptq grammar to al-
low questions, past, present, and future verb forms, and some temporal adver-
bials and temporal subordinate clauses. In terms of syntactic coverage of time-
related phenomena, Clifford’s grammar is similar to the grammar of Chapter 4.
Both grammars support yes/no questions, questions introduced by who, what,
and which, time-asking questions introduced by when, questions with multiple
interrogatives (e.g., Who inspected what on 1/1/1991?), and assertions, which
are treated as yes/no questions. Clifford’s grammar allows simple future verb
forms, which are not covered by the grammar of Chapter 4, but it does not

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.4 (270)

 Chapter 7

allow progressive or perfect forms, which are partially covered by the gram-
mar of this book. The two grammars allow similar temporal adverbials (e.g.,
in 1991, before 3/5/1990, yesterday), though there are adverbials that are sup-
ported by Clifford’s grammar but not the grammar of this book (e.g., never,
always), and adverbials that are covered by the grammar of this book but not
Clifford’s (e.g., for five hours, in two days). Both grammars support only three
kinds of temporal subordinate clauses, introduced by while, before, and after,
respectively.

Despite the similarities in the syntactic coverage, however, Clifford assigns
to temporal linguistic mechanisms semantics that are generally much shallower
than the semantics of this book. Most notably, he does not employ any form of
aspectual taxonomy. As discussed in Chapter 2, the distinction between aspec-
tual classes pertains to the semantics of most of the English temporal mecha-
nisms. Without an aspectual taxonomy, important semantic differences cannot
be captured; for example, the fact that the simple past of a culminating activity
verb normally implies that the climax was reached, while the simple past of a
point, state, or activity verb carries no such implication; the fact that a punctual
adverbial typically has an inchoative or terminal meaning with a culminating
activity, but an interjacent meaning with a state; or the fact that the simple
present of non-state verbs is typically used with a habitual meaning. The as-
pectual taxonomy of this book allowed us to capture many distinctions of this
kind, which cannot be accounted for in Clifford’s framework. Particular care
was also taken in this book to explain clearly which temporal linguistic mecha-
nisms are supported, which simplifications were introduced in their semantics,
and which phenomena remain to be considered; see Table 2.9 on page 70 for a
summary. This information is difficult to obtain in Clifford’s work.

Following the Montague tradition, Clifford employs an intensional higher
order language, called ils, to represent the meanings of English questions. His
grammar comprises a set of syntactic rules, that determine the syntactic struc-
ture of each sentence, and a set of semantic rules that map syntactic structures
to expressions of ils. For example, (7.1) is mapped to the ils expression of (7.2).

(7.1) When did Liz manage Peter?
(7.2) λi1[[i1 < i] ∧ ∃y[EMP′

*(i1)(Peter) ∧
MGR′(i1)(y) ∧ y(i1) = Liz ∧ AS 1(Peter, y)]]

Unlike top, ils is point-based; i.e., the truth of an ils formula is always eval-
uated with respect to a time-point, rather than an a period (cf. Section 3.1).
In (7.2), EMP′

*(i1)(Peter) means that Peter must be an employee at the time-
point i1. MGR′(i1)(y) means that y must be a partial function from time-points

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.5 (271)

Related work and directions for further research 

to managers, defined for at least the time-point i1. AS 1(Peter, y) requires y to
represent the history of Peter’s managers; i.e., the value y(i1) of y at each time-
point i1 must be the manager of Peter at that time-point. The y(i1) = Liz re-
quires the manager of Peter at i1 to be Liz. Finally, i is the present time-point,
and i1 < i means that i1 must precede i. Roughly speaking, the λ at the begin-
ning of (7.2) plays the role of an interrogative quantifier: it indicates that all the
possible values of i1 are to be reported, such that i1 precedes the present time-
point, Peter is an employee at i1, and Peter’s manager at i1 is Liz. As in the case
of top, the syntax and semantics of ils are clearly defined, which constitutes a
significant improvement over earlier work on nlitdbs (Bruce 1972; De, Pan, &
Whinston 1985; Moens 1987).

In Clifford’s version of the relational model, called hrdm (Historical Rela-
tional Database Model), attribute values are not necessarily atomic. They can
also be sets of symbols that denote time-points, or partial functions from sym-
bols that denote time-points to atomic values. This is illustrated in the emprel
relation below.1

emprel

EMP MGR DEPT SAL lifespan

Peter

[
S2 → Elsie
S3 → Liz

] [
S2 → Hardware
S3 → Linen

] [
S2 → 30K
S3 → 35K

]
{S2, S3}

Liz

[
S2 → Elsie
S3 → Liz

] [
S2 → Toy
S3 → Hardware

] [
S2 → 35K
S3 → 50K

]
{S2, S3}

Elsie

[
S1 → Elsie
S2 → Elsie

] [
S1 → Toy
S2 → Toy

] [
S1 → 50K
S2 → 50K

]
{S1, S2}

The relation above shows that, for example, at the time-point S2 the manager
of Peter was Elsie, while at S3 his manager was Liz. Similarly, at S2 and S3
Peter worked in the hardware and linen departments, respectively. The lifespan
of each tuple shows the time-points the tuple carries information for. hrdm
provides additional time-stamps, not shown here, to cope with cases where the
structure of the database changes (Section 1.5).

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.6 (272)

 Chapter 7

Clifford shows how the semantics of ils expressions can be defined in terms
of an hrdm database; for example, how the semantics of (7.2) can be defined
in terms of information in emprel. This corresponds to the link that has to
be established between top’s model and the underlying bcdm database (Sec-
tion 5.6). Clifford also defines a temporal version of relational algebra (Ullman
1988), a theoretical database query language that dbmss often use internally
to represent the operations that need to be carried out to satisfy the user’s re-
quests. The answer to (7.1) can be found using (7.3), which is an expression in
Clifford’s algebra.

(7.3) ω(σ-WHENEMP=Peter,MGR=Liz(emprel))

The expression σ-WHENEMP=Peter,MGR=Liz(emprel) generates a single-tuple re-
lation, shown below as emprel2, that carries the information of Peter’s tuple
from emprel, restricted to the times when his manager was Liz. The ω opera-
tor returns a set of symbols that denote all the time-points for which there is
information in the relation-argument of ω. In our example, (7.3) returns {S3}.

emprel2

EMP MGR DEPT SAL lifespan

Peter [S3 → Liz] [S3 → Linen] [S3 → 35K] {S3}

Clifford (1990:170) outlines an algorithm for mapping ils expressions to ap-
propriate expressions of his relational algebra. The description of the algo-
rithm, however, is very sketchy and informal, and there is no proof that the
algorithm is correct; i.e., that the generated relational algebra expressions pre-
serve the semantics of the ils expressions. In contrast, the top to tsql2 map-
ping of this book is defined rigorously, and it is provably correct (Chapter 5).
Furthermore, it should be pointed out that Clifford’s database model, although
well defined, is very far away from the current ansi recommendations on how
to support time in sql (Section 1.5), unlike tsql2 and its underlying bcdm
database model. Finally, it is unclear if Clifford’s overall theory was ever used
to implement a prototype nlitdb; in contrast, the prototype of this book is
publicly available, as discussed in Chapter 6.

.. Nelken

Nelken’s work (2001) covers an interesting range of topics related to the seman-
tics of questions, including issues such as the equivalence of questions, or the

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.7 (273)

Related work and directions for further research 

relation between a question and the declarative sentences that constitute pos-
sible answers to it.2 In this section we will focus on the, relatively independent,
part of Nelken’s work that considers English questions to temporal databases.
This is particularly interesting, because it refers to, and at some points criti-
cises, the framework of this book, as it was presented in the thesis on which the
book is based.

In terms of linguistic coverage, Nelken focuses on temporal adverbials,
rather than issues related to the tense and aspect of verbs. His treatment of
temporal adverbials, which is based on the theory of Pratt and Francez (2001),
is particularly strong in sentences with multiple temporal modifiers. In Section
4.16, for example, we considered cases where it would be desirable for the or-
der of temporal modifiers to be reversed, transforming (7.4) to (7.5), so that
the punctual adverbial is attached to the sentence before the period adverbial.

(7.4) J. Adams repaired fault 2 on 2/11/1995 at 5:00 pm.
(7.5) J. Adams repaired fault 2 at 5:00 pm on 2/11/1995.

Building upon the theory of Pratt and Francez, Nelken proposes mechanisms
that first generate semantic representations for all the possible orderings of
the adverbials, and then reject inappropriate orderings using world knowledge
constraints. Nelken (2001:89) illustrates these mechanisms with (7.6), where,
at the semantics level, the universal quantifier of during every month must be
placed within the scope of the existential quantifier of one year, as if during ev-
ery month were attached to the sentence before one year; in Nelken’s semantic
representation, this forces the universal quantifier to range over the months of
a particular year.

(7.6) John worked in marketing one year during every month.

The alternative scoping, whereby John worked in marketing for a year within
each month, is rejected by world knowledge constraints that indicate that
months are parts of years. Temporal subordinate clauses are treated in a sim-
ilar manner; Nelken provides examples with clauses introduced by before and
after. Unlike the framework of this book, Nelken’s work (2001:75) also covers
relative clauses (Section 2.13).

Nelken’s framework is also interesting in that it covers quantification and
negation, issues that were not considered in this book (Section 2.13). Nelken
(2001:77) points out that queries involving quantification or negation are eas-
ier to formulate in natural language than in formal query languages, like sql,
or graphical user interfaces, as argued by Copestake and Sparck Jones (1990).

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.8 (274)

 Chapter 7

Therefore, supporting quantification and negation in nlitdbs is particularly
important.

Unlike the framework of this book, Nelken’s work essentially ignores issues
related to the tense and aspect of verbs. Only simple past questions are con-
sidered, and all the verbs are treated as if they were states. Nelken (2001:75)
claims that the use of aspectual distinctions in nlitdbs is questionable for two
reasons. First, some aspectual distinctions, which may be prevalent in every-
day language use, seem irrelevant to nlitdbs; he uses the imperfective paradox
(Section 1.3) as an example of a fine distinction which he claims is of unclear
practical interest in nlitdbs. Second, Nelken argues that handling aspectual
distinctions requires a more complex data model than those currently adopted
in temporal databases; he points to the occurrence identifiers of this book (Sec-
tion 3.16) and the information in the database that shows if a situation has
reached its inherent climax (Section 5.9) as examples of linguistically moti-
vated additions to data models, which are unlikely to be supported by the tem-
poral databases community. Nelken also points to tsql2’s distinction between
state and event relations as a further example of a distinction related to aspec-
tual classes that was not adopted by subsequent work on temporal databases.
As discussed in Section 5.2.3, however, this was an ill-defined feature of tsql2,
which is probably why it was not adopted in subsequent work.

As already noted in the discussion of Clifford’s work (Section 7.2.2), Chap-
ter 2 has shown that the distinction between aspectual classes pertains to the
semantics of most of the English temporal mechanisms, and that without an as-
pectual taxonomy, important semantic differences cannot be captured. Hence,
although Nelken’s first claim above may be justified in particular database ap-
plications where all the modelled situations are viewed as states, it cannot be
easily accepted in the general case, at least not without appropriate Wizard of
Oz studies (Section 1.2). Regarding Nelken’s second claim above, the partic-
ular examples that he mentions do not seem to require modifications to the
commonly used temporal database models. In fact, when modelling situations
that are viewed as culminating activities, like the inspections or services of the
airport domain (Sections 2.4.5 and 6.5), it seems natural to include in the
database an additional attribute that distinguishes the occurrences of the sit-
uations (e.g., an inspection identifier acting as a key), as well as information
that shows the status of the situation (completed or not); it would be surpris-
ing if real-world databases did not include this information. Nelken, however,
is right in the sense that this book has introduced some additional features to
tsql2 to support its tense and aspect theory (Section 5.3). Although some of
the additional features may prove difficult to support in forthcoming temporal

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.9 (275)

Related work and directions for further research 

dbmss, mostly the (SUBPERIOD) partitioning unit (Section 5.3.2), identifying
cases where additional support is desirable from the underlying dbms is useful,
since it provides feedback to researchers working on temporal databases.

As in the framework of this book, Nelken adopts a two-stage mapping
from English to database language, whereby English questions are initially
mapped to an intermediate meaning representation language. Nelken uses a
two-sorted first-order logic, called LAllen, as his intermediate language.3 LAllen

includes Allen’s (1983) operators, which can express all the possible relations
between two periods. For example, ignoring some details, (7.7) is represented
in LAllen as (7.8).

(7.7) Did John work in marketing?
(7.8) ∃j0 (work(john, marketing, j0) ∧ jpast ⊇ j0 ∧ i © j0)

Unlike top, LAllen does not use Priorean-style temporal operators (Section 1.4).
Instead, each predicate has an extra period-denoting argument, j0 in the case of
work(john, marketing, j0), and relations between the various periods are repre-
sented explicitly using Allen’s operators. The extra argument of the predicates
corresponds to top’s event time, except that it always denotes a maximal pe-
riod where the corresponding situation was true. jpast denotes the period that
covers all the past time, and i, called the ‘time of interest’, corresponds to top’s
localisation time. jpast ⊇ j0 requires a maximal period where John worked in
marketing to fall entirely within the past, and i © j0 requires that maximal pe-
riod to overlap the time of interest. As with top’s localisation time, i can in
principle be used to limit the time of the verb’s tense to a contextually salient
period (Section 3.17).

In a similar manner, Nelken (2001:85) treats nouns that introduce situa-
tions, e.g., recession, construction, as contributing a period that is required to
fall within the time of interest. It would be interesting to investigate if this ap-
proach can be incorporated in the framework of this book (cf. Section 2.7).
Non-temporal nouns introduce predicates with a similar time-denoting argu-
ment. For example, (7.9) is represented in LAllen by (7.10), where j1 is the time
when d was a department; i.e., j1 plays the role of j1v in the corresponding top
formula, shown in (7.11).

(7.9) Which departments did John work in?
(7.10) ∃j1 (department(d, j1)) ∧

∃j0 (work(john, d, j0) ∧ jpast ⊇ j0 ∧ i © j0)
(7.11) ?dv Ntense[j1v, department(dv)] ∧ Past[ev, working(john, dv)]

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.10 (276)

 Chapter 7

Nelken, however, uses the extra time-denoting argument of non-temporal
nouns only as a placeholder for future work on temporal anaphora; he al-
ways applies an existential quantifier on it, as shown in (7.10). In contrast, Sec-
tion 4.9.1 has provided some mechanisms that force the variable of the Ntense
operator in (7.11) to point to either the speech time or the time of the verb’s
tense.

It should be noted that, apart from the differences that derive from the
lack of aspectual taxonomy, Nelken’s semantics of the English temporal mech-
anisms are often different from the semantics of this book. For example, unlike
the corresponding top formula, shown in (7.12), (7.8) leads to a negative an-
swer if there is only one maximal period where John worked in marketing, and
that period does not fall entirely in the past; i.e., if John still works in market-
ing. In contrast, the answer is affirmative if John still works in marketing, but
also worked in marketing during another maximal period that is located en-
tirely in the past. The top formula of (7.12) seems to be closer to the meaning
of (7.7); it simply requires John to have worked in marketing during some past
time, regardless of whether or not he still works in marketing.

(7.12) Past[ev, working(john, marketing)]

Similar comments can be made for Nelken’s semantics of before and after. For
example, in subordinate clauses introduced by after, like after John worked in
marketing, Nelken’s semantics requires the situation of the main clause to take
place after the end of a maximal period of the subordinate clause; in our exam-
ple, after the end of a maximal period where John worked in marketing. As we
saw in Section 2.10.2, however, there are cases where the situation of the main
clause must be allowed to take place after the beginning of a maximal period of
the subordinate clause, as in (7.13).

(7.13) Which flights departed after runway 2 was open?

For the mapping from English to LAllen, Nelken employs Type-Logical Gram-
mar (Morrill 1994; Carpenter 1998), a version of Categorial Grammar
(McGee Wood 1993). Nelken (2001:76–77, 108–109) argues that using Type-
Logical Grammar simplifies the construction of the meaning representation,
because the resulting formulae can be read off directly from the root node of
the parse tree. In contrast, a separate extraction step (Section 4.6) is needed in
the hpsg grammar of Chapter 4 to recover the top formulae from the resulting
hpsg signs; though admittedly less elegant, this does not seem to constitute a
significant disadvantage.

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.11 (277)

Related work and directions for further research 

Turning to his temporal database model and language, Nelken adopts at-
sql as supported by timedb (Section 1.5). Nelken’s database model is very
similar to the database model of this book; following Section 5.3.3, Nelken
(2000b:1077) also includes calendric relations. The main difference between
the two models is that Nelken’s valid-time relations, including intermediate
relations generated during the evaluation of database queries, are automati-
cally coalesced (cf. Section 5.2.3). In effect, the time-stamps of Nelken’s tuples
show only the maximal periods of the corresponding situations; this is largely
a consequence of the fact that all the situations are viewed as states, which en-
dows them with the homogeneity property (Sections 3.6 and 5.3.2). As with
the framework of this book, Nelken focuses on valid time, ignoring transac-
tion time (Section 1.5); the same holds for Moens and Clifford (Sections 7.2.1
and 7.2.2).

Nelken’s mapping from LAllen to atsql is a temporal extension of previously
proposed techniques for translating from first-order predicate logic to sql
(van Gelder & Topor 1991; Abiteboul, Hull, & Vianu 1995).4 Nelken (2001:95)
rightly points out that his mapping is much simpler than the corresponding
mapping from top to tsql2 of Chapter 5. Much of the simplicity of Nelken’s
mapping is due to the fact that LAllen remains very close to traditional first-order
predicate logic, by treating time as an extra argument of predicates and by ex-
pressing directly the relations between the various periods using Allen’s op-
erators. In contrast, top employs Priorean-style operators (Section 1.4), each
intended to correspond roughly to a temporal mechanism of English; conse-
quently, there is a large number of operators, often with complex semantics,
and this gives rise to a large number of often complicated translation rules.
On the other hand, top’s operators lead to more compact formulae, where the
semantic contribution of each temporal linguistic mechanism is easier to see;
compare, for example, (7.8) to (7.12). This is particularly useful when studying
or extending the mapping from English to meaning representation, especially
in sentences with aspectual distinctions, perfect tenses, or subordinate clauses,
where the LAllen expressions would be very difficult to comprehend.

One way to combine in the framework of this book the benefits of the two
approaches is to introduce a second meaning representation language, say bot,
between top and the database language. bot would be similar to LAllen, and
hence the mapping from bot to database language would be straightforward,
as in Nelken’s work. For each top operator, a corresponding translation rule to
bot would be provided; since bot would be a form of logic, this would be sim-
pler than defining a translation rule for all the way from top to the database
language, making it easier to add new top operators for new temporal lin-

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.12 (278)

 Chapter 7

guistic mechanisms. This approach has already been explored to some extent
elsewhere (Androutsopoulos 2000). Its disadvantage is that one has to define
and cope with two separate meaning representation languages.

To demonstrate his theory, Nelken has also built a prototype nlitdb, based
on Carpenter’s Type-Logical Grammar Theorem Prover.5 Roughly speaking,
the latter plays the same role as ale in the system of Chapter 6. Like the proto-
type of this book, Nelken’s nlitdb adopts a simple pipeline architecture, and
would have to be extended with several additional modules if it were to be used
in real-life applications; for example, modules for anaphora resolution and co-
operative responses. Nelken’s prototype is linked to timedb (Section 1.5), and,
hence, the generated atsql queries can be evaluated against a database, unlike
the prototype of Chapter 6.

. Directions for further research

Let us now turn to possible extensions to the work of this book. Most of the
extensions have already been mentioned in previous parts of the book, and,
hence, this section will be rather brief, pointing to relevant previous sections
where appropriate. The author hopes that the discussion below may offer to
researchers and students wishing to work in the area of nlitdbs ideas for
research projects.

Linguistic coverage. Although the theoretical framework of this book covers an
interesting range of temporal linguistic mechanisms, there are still many time-
related linguistic phenomena that it does not support (Table 2.9 on page 70),
and one could explore how some of them could be handled. As discussed in
Sections 1.2 and 2.1, this could be performed in conjunction with Wizard of Oz
experiments, to determine the phenomena that are most prevalent in the tar-
get range of applications. From a theoretical point of view, temporal anaphoric
phenomena (Section 2.12) are among those that seem more interesting. It
would also be particularly interesting to explore if the linguistic coverage of the
framework can be tailored to be easily explainable in the form of a controlled
language (Section 1.2). Another interesting direction would be to develop a
corresponding theoretical framework for a language other than English, and
investigate the degree to which components of this book’s framework, e.g., top
or the aspectual taxonomy of Chapter 2, can be reused.

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.13 (279)

Related work and directions for further research 

Response generation and paraphrases. The framework of this book provides
no response generation facilities (Section 1.2). We have encountered several
cases where cooperative responses would be beneficial (Sections 2.5.1, 2.5.2,
2.5.3, 2.6, 2.9.2, 2.9.3, 2.10.1, 2.10.2, 3.10, and 6.6), and, hence, it would be
particularly interesting to investigate how the framework of this book could be
extended to generate responses of this kind. Facilities to paraphrase ambigu-
ous English questions in order to show their possible meanings would also be
useful, as discussed in Sections 1.2 and 6.2.

A second meaning representation language. As discussed in Section 7.2.3, in-
troducing a second meaning representation language, which would be closer to
traditional first-order predicate logic, between top and the database language
could simplify the mapping from top to database language, and make it eas-
ier to introduce new top operators for new temporal linguistic mechanisms. It
would be interesting to explore this direction, possibly along the lines that have
been suggested elsewhere (Androutsopoulos 2000).

Database language and prototype dbms. Although tsql2 is a good represen-
tative of the various temporal extensions to sql that have been proposed, the
sql/Temporal part of the new sql:1999 standard (Section 1.5) is expected to
differ from tsql2 in many ways. Therefore, it would be particularly interesting
to investigate how the framework of this book could be modified to generate
queries in sql:1999, once the standardisation of sql/Temporal has been com-
pleted. Another strand of work could investigate how the prototype nlitdb
of Chapter 6 could be modified to generate atsql queries; this would allow it
to be linked to the add-ons for commercial dbmss that support atsql (Sec-
tion 1.5). Along with an appropriate tailoring of the linguistic coverage, as dis-
cussed above, this would pave the way for usability tests (Bell & Rowe 1992;
Dekleva 1994; King 1996; Sparck Jones & Galliers 1996). For real-life applica-
tions, it would also be useful to consider how the resulting database queries
could be optimised, as discussed in Section 5.12.

. Summary

This chapter has discussed work on nlitdbs by Moens, Clifford, and Nelken,
as well as possible extensions to the work of this book.

Although Moens’ work on temporal linguistic phenomena has been highly
infuential in tense and aspect theories, his prototype nlitdb is rather simplistic

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.14 (280)

 Chapter 7

in terms of grammar, lacks a clearly defined meaning representation language,
and assumes an idiosyncratic temporal database model. Nevertheless, Moens’
nlitdb is interesting in that it demonstrates how additional information about
episodes, that is normally not included in temporal databases, can be useful
when processing English questions. The work of Clifford and Nelken is closer
to the framework of this book, in the sense that they both adopt more prin-
cipled grammars, and clearly defined meaning representation languages and
temporal database models.

In terms of syntactic coverage of temporal mechanisms, the framework of
this book is similar to Clifford’s. The semantics that Clifford assigns to these
mechanisms, however, are much shallower, and they ignore aspectual distinc-
tions. Clifford’s database model is also very far away from the current ansi
recommendations on how to support time in sql, the mapping from meaning
representation to database language is sketchy, and it is unclear if the theory was
ever used to implement a prototype nlitdb. In contrast, both Nelken’s and the
theory of this book are accompanied by prototype nlitdb implementations.

Nelken adopts atsql, which is closer to the current ansi recommenda-
tions than tsql2 is. This has the additional benefit that atsql is supported
by add-ons for commercial dbmss, and, hence, the database language queries
that his prototype generates can be evaluated against a database, unlike the
prototype of this book. In terms of linguistic coverage, Nelken focuses on tem-
poral adverbials, rather than issues related to the tense and aspect of verbs.
Nelken’s work covers some phenomena that were ignored or not considered
in full detail in this book, like quantification, negation, and multiple tempo-
ral adverbials. On the other hand, as in Clifford’s work, the semantics that
Nelken assigns to temporal linguistic mechanisms are often shallower than the
semantics of this book, and this is often a consequence of the fact that he ig-
nores aspectual distinctions. Nelken’s mapping from meaning representation
to database language is much simpler than the corresponding mapping of this
book. Although this can be partly attributed to the lack of aspectual distinc-
tions, it is also a consequence of the fact that Nelken’s meaning representation
language is closer to traditional first-order predicate logic than top is. Simi-
lar benefits could be obtained in the framework of this book by introducing a
second meaning representation language, similar to Nelken’s, between top and
the database language.

Other possible extensions to the work of this book include extensions to the
linguistic coverage, possibly in conjunction with Wizard of Oz experiments to
determine the linguistic phenomena that are most prevalent in the target range
of applications. Temporal anaphoric phenomena are among those that seem

NLP4[v.20020404] Prn:21/06/2002; 13:58 F: NLP607.tex / p.15 (281)

Related work and directions for further research 

most interesting to investigate, and the same holds for mechanisms to generate
cooperative responses and paraphrases of the user’s questions. It would also be
interesting to develop a corresponding theoretical framework for a language
other than English, investigating the degree to which the work of this book can
be reused. Additional work can be carried out on the database side, to replace
tsql2 by atsql or the forthcoming sql standard for temporal queries, to link
the prototype nlitdb to a dbms, and to optimize the database queries that the
nlitdb generates.

Notes

. The discussion here refers to the latest version of hrdm (Clifford 1990), as opposed to an
earlier version (Clifford & Warren 1983).

. See also Nelken and Francez (1999a; 1999b; 2000a; 2000b; 2001a; 2001b).

. According to Nelken, LAllen is an augmented version of a language with the same name
defined by Toman (1996).

. Nelken actually shows how LAllen expressions can be translated to a form of temporal
relational algebra (Böhlen, Jensen, & Snodgrass 2000), but the expressions of the algebra
map directly to atsql expressions, and his prototype nlitdb uses the corresponding atsql
expressions.

. See http://www.colloquial.com/tlg/.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.1 (283)

References

Abiteboul, S., Herr, L., & Van den Bussche, J. (1999). Temporal connectives versus explicit
timestamps to query temporal databases. Journal of Computer and System Sciences,
58(1), 54–68.

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.
Alexandersson, J. (Ed.). (1999). Proceedings of the Workshop on Knowledge and Reasoning in

Practical Dialogue Systems, 16th International Joint Conference on Artificial Intelligence.
Stockholm, Sweden.

Allen, J. (1995). Natural Language Understanding (2nd edition). Benjamin/Cummings.
Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of

the ACM, 26(11), 832–843.
Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23,

123–154.
Alshawi, H. (Ed.). (1992). The Core Language Engine. MIT Press.
Alshawi, H., Carter, D., Crouch, R., Pulman, S., Rayner, M., & Smith, A. (1992). CLARE – a

contextual reasoning and cooperative response framework for the core language engine.
Final report, SRI International.

Androutsopoulos, I. (1992). Interfacing a natural language front-end to a relational
database. Master’s thesis, Department of Artificial Intelligence, University of
Edinburgh, U.K.

Androutsopoulos, I. (1996). A Principled Framework for Constructing Natural Language
Interfaces to Temporal Databases. Ph.D. thesis, Department of Artificial Intelligence,
University of Edinburgh, U.K.

Androutsopoulos, I. (2000). Temporal meaning representations in a natural language
front-end. In M. Gergatsoulis & P. Rondogiannis (Eds.), Intensional Programming
II – Proceedings of the 12th International Symposium on Languages for Intensional
Programming (pp. 197–213). Athens, Greece. World Scientific.

Androutsopoulos, I. & Aretoulaki, M. (2002). Natural language interaction. In R. Mitkov
(Ed.), Handbook of Computational Linguistics. Oxford University Press. Forthcoming.

Androutsopoulos, I. & Dale, R. (2000). Selectional restrictions in HPSG. In
Proceedings of the 18th International Conference on Computational Linguistics (pp. 15–
20). Saarbrücken, Germany.

Androutsopoulos, I. & Ritchie, G. D. (2000). Database interfaces. In R. Dale, H. Moisl, &
H. Somers (Eds.), Handbook of Natural Language Processing, Chapter 9 (pp. 209–240).
Marcel Dekker.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.2 (284)

 References

Androutsopoulos, I., Ritchie, G. D. & Thanisch, P. (1993). An efficient and portable
natural language query interface for relational databases. In P. W. Chung, G. Lovegrove,
& M. Ali (Eds.), Proceedings of the 6th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems (pp. 327–330).
Edinburgh, U.K. Gordon and Breach.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995a). Experience using TSQL2 in
a natural language interface. In J. Clifford & A. Tuzhilin (Eds.), Recent Advances in
Temporal Databases – Proceedings of the International Workshop on Temporal Databases
(pp. 113–132). Zurich, Switzerland. Springer-Verlag.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995b). Natural language interfaces to
databases – an introduction. Natural Language Engineering, 1(1), 29–81.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1998). Time, tense and aspect in natural
language database interfaces. Natural Language Engineering, 4(3), 229–276.

Barros, F. A., & De Roeck, A. (1994). Resolving anaphora in a portable natural language
front end to a database. In Proceedings of the 4th Conference on Applied Natural
Language Processing (pp. 119–124). Stuttgart, Germany.

Bates, M., Bobrow, R., Ingria, R., & Stallard, D. (1994). The Delphi natural language
understanding system. In Proceedings of the 4th Conference on Applied Natural Language
Processing (pp. 132–137). Stuttgart, Germany.

Bell, J. E., & Rowe, L. A. (1992). An exploratory study of ad hoc query languages to
databases. In Proceedings of the 8th International Conference on Data Engineering (pp.
606–6130). Tempe, Arizona.

Bernsen, N. O., Dybkjaer, H., & Dybkjaer L. (1998). Designing Interactive Speech Systems –
from First Ideas to User Testing. Springer-Verlag.

Blackburn, P., Gardent, C., & de Rijke, M. (1994). Back and forth through time and events.
In D. M. Gabbay (Ed.), Proceedings of the First International Conference on Temporal
Logic (pp. 225–237). Bonn, Germany. Springer-Verlag.

Böhlen, M., Jensen, C. S., & Snodgrass, R. T. (2000). Temporal statement modifiers. ACM
Transactions on Database Systems, 25(4), 407–456.

Böhlen, M. H., Chomicki, J., Snodgrass, R. T., & Toman, D. (1996). Querying TSQL2
databases with temporal logic. In P. M. G. Apers, M. Bouzeghoub, & G. Gardarin
(Eds.), Proceedings of the International Conference on Extended Database Technology (pp.
325–341). Avignon, France.

Böhlen, M. H., Snodgrass, R. T., & Soo, M. D. (1996). Coalescing in temporal databases. In
T. M. Vijayaraman, A. P. Buchmann, C. Mohan, & N. L. Sarda (Eds.), Proceedings of the
22th International Conference on Very Large Data Bases (pp. 180–191). Mumbai, India.

Brent, M. R. (1990). A simplified theory of tense representations and constraints on their
composition. In Proceedings of the 28th Annual Meeting of the Association for Compu-
tational Linguistics (pp. 119–126). Pittsburgh, Pennsylvania.

Briscoe, T. (1997). Robust parsing. In R. Cole, J. Mariani, H. Uszkoreit, G. B. Varile,
A. Zaenen, A. Zampolli, & V. Zue (Eds.), Survey of the State of the Art in Human
Language Technology, Chapter 3.7 (pp. 121–123). Cambridge University Press and
Giardini.

Bruce, B.C. (1972). A model for temporal references and its application in a question
answering program. Artificial Intelligence, 3, 1–25.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.3 (285)

References 

Brusoni, V., Console, L., & Terenziani, P. (1995). Extending temporal relational databases
to deal with imprecise and qualitative information. In J. Clifford & A. Tuzhilin (Eds.),
Recent Advances in Temporal Databases – Proceedings of the International Workshop on
Temporal Databases (pp. 3–22). Zurich, Switzerland. Springer-Verlag.

Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge University Press.
Carpenter, B. (1998). Type-Logical Semantics. MIT Press.
Carpenter, B., & Penn, G. (2001). The Attribute Logic Engine – user’s guide. Version 3.2.1.
Chomicki, J., Toman, D., & Böhlen, M. H. (2001). Querying ATSQL databases with

temporal logic. ACM Transactions on Database Systems, 26(2), 145–178.
claw. (2000). Proceedings of the 3rd International Workshop on Controlled Language

Applications. Seattle, Washington.
Clifford, J. (1988). Natural language querying of historical databases. Computational

Linguistics, 14(4), 10–34.
Clifford, J. (1990). Formal Semantics and Pragmatics for Natural Language Querying.

Cambridge University Press.
Clifford, J., & Warren, D. S. (1983). Formal semantics for time in databases. ACM

Transactions on Database Systems, 8(2), 215–254.
Cole, R., Mariani, J., Uszkoreit, H., Varile, G. B., Zaenen, A., Zampolli, A., & Zue, V. (Eds.).

(1997). Survey of the State of the Art in Human Language Technology. Cambridge
University Press and Giardini.

Comrie, B. (1976). Aspect. Cambridge University Press.
Comrie, B. (1985). Tense. Cambridge University Press.
Cooper, R., Mukai, K., & Perry, J. (Eds.). (1990). Situation Theory and Its Applications.

Center for the Study of Language and Information, Stanford.
Copestake, A., & Sparck Jones, K. (1990). Natural language interfaces to databases. The

Knowledge Engineering Review, 5(4), 225–249.
Crouch, R. S., & Pulman, S. G. (1993). Time and modality in a natural language interface

to a planning system. Artificial Intelligence, 63, 265–304.
Dahlbäck, N., Jönsson, A., & Ahrenberg, L. (1993). Wizard of Oz studies – why and how.

Knowledge-Based Systems, 6(4), 258–266.
Dale, R., Moisl, H., & Somers, H. (Eds.). (2000). Handbook of Natural Language Processing.

Marcel Dekker.
Dalrymple, M. (1988). The interpretation of tense and aspect in English. In Proceedings

of the 26th Annual Meeting of the Association for Computational Linguistics (pp. 68–74).
Buffalo, New York.

Davidson, J., & Kaplan, S. J. (1983). Natural language access to data bases: Interpreting
update requests. Computational Linguistics, 9(2), 57–68.

De, S., Pan, S., & Whinston, A. B. (1985). Natural language query processing in a temporal
database. Data and Knowledge Engineering, 1, 3–15.

De Roeck, A. N., & Lowden, B. G. T. (1986). Generating English paraphrases from formal
relational calculus expressions. In Proceedings of the 11th International Conference on
Computational Linguistics (pp. 581–583). Bonn, Germany.

Dekleva, S. M. (1994). Is natural language querying practical? Data Base (pp. 24–36).
Dowty, D. R. (1977). Toward a semantic analysis of verb aspect and the English

‘imperfective’ progressive. Linguistics and Philosophy, 1, 45–77.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.4 (286)

 References

Dowty, D. R. (1982). Tenses, time adverbs, and compositional semantic theory. Linguistics
and Philosophy, 5, 23–55.

Dowty, D. R. (1986). The effects of aspectual class on the temporal structure of discourse:
Semantics or pragmatics? Linguistics and Philosophy, 9, 37–61.

Dowty, D. R., Wall, R. E., & Peters, S. (1981). Introduction to Montague Semantics. D. Reidel.
Draxler, C. (1991). Accessing Relational and Higher Databases through Database Set

Predicates in Logic Programming Languages. Ph.D. thesis, Department of Computer
Science, University of Zurich, Switzerland.

Dutoit, T. (1997). An Introduction to Text-to-Speech Synthesis. Kluwer.
Enc, M. (1986). Towards a referential analysis of temporal expressions. Linguistics and

Philosophy, 9, 405–426.
Epstein, S. S. (1985). Transportable Natural Language Processing Through Simplicity – the

PRE System. ACM Transactions on Office Information Systems, 3(2), 107–120.
Flickinger, D., Oepen, S., Tsujii, J., & Uszkoreit, H. (Eds.). (2000). Special issue on efficient

processing with HPSG: Methods, systems, evaluation. Natural Language Engineering,
6(1).

Gabbay, D. M., Hodkinson, I., & Reynolds, M. (1994). Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 1. Oxford University Press.

Gabbay, D. M., Reynolds, M. A., & Finger, M. (2000). Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 2. Oxford University Press.

Gazdar, G., & Mellish, C. (1989). Natural Language Processing in Prolog – An Introduction to
Computational Linguistics. Addison-Wesley.

Gertz, M., & Lipeck, U. W. (1995). Temporal integrity constraints in temporal databases.
In J. Clifford & A. Tuzhilin (Eds.), Recent Advances in Temporal Databases – Proceedings
of the International Workshop on Temporal Databases (pp. 77–92). Zurich, Switzerland.
Springer-Verlag.

Gibbon, D., Moore, R., & Winski, R. (1997). Handbook of Standards and Resources for
Spoken Language Systems. Mouton de Gruyter.

Ginzburg, J. (1995a). Questions, Queries, and Facts: A Semantics and Pragmatics for
Interrogatives. Cambridge University Press.

Ginzburg, J. (1995b). Resolving questions, I. Linguistics and Philosophy, 18(5), 459–427.
Ginzburg, J. (1995c). Resolving questions, II. Linguistics and Philosophy, 18(6), 567–609.
Hafner, C.D. (1985). Semantics of temporal queries and temporal data. In Proceedings

of the 23rd Annual Meeting of the Association for Computational Linguistics (pp. 1–8).
Chicago, Illinois.

Harper, M. P., & Charniak, E. (1986). Time and tense in English. In Proceedings of the 24th
Annual Meeting of the Association for Computational Linguistics (pp. 3–9). New York,
NY.

Hinrichs, E. (1986). Temporal anaphora in discourses of English. Linguistics and
Philosophy, 9, 63–82.

Hinrichs, E. W. (1988). Tense, quantifiers, and contexts. Computational Linguistics, 14(2),
3–14.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.5 (287)

References 

Hirschberg, J., Kamm, C., & Walker, M. (Eds.). (1997). Proceedings of the Workshop on
Interactive Spoken Dialog Systems – Bringing Speech and NLP Together. 35th Annual
Meeting of the Association for Computational Linguistics and 8th Conference of the
European Chapter of the Association for Computational Linguistics. Madrid, Spain.

Hirst, G. (1981). Anaphora in Natural Language Understanding: A Survey. Springer-Verlag.
Hobbs, J. R. (1986). Resolving pronoun references. In B. J. Grosz, K. Sparck Jones, &

B. L. Webber (Eds.), Readings in Natural Language Processing (pp. 339–352). Morgan
Kaufmann.

Hwang, C. H., & Schubert, K. (1994). Interpreting tense, aspect and time adverbials: A
compositional, unified approach. In D. M. Gabbay & H. J. Ohlbach (Eds.), Proceedings
of the First International Conference on Temporal Logic (pp. 238–264). Bonn, Germany.
Springer-Verlag.

Jelinek, F. (1997). Statistical Methods for Speech Recognition. MIT Press.
Jensen, C. S., Dyreson, C. E., Böhlen, M., Clifford, J., Elmasri, R., Gadia, S. K., Grandi, F.,

Hayes, P., Jajodia, S., Kaefer, W., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari,
A., Nonen, D., Peressi, E., Pernici, B., Roddick, J., Sarda, N. L., Scalas, M. R., Segev,
A., Snodgrass, R. T., Soo, M. D., Tansel, A., Tiberio, P., & Wiederhold, G. (1998).
A consensus glossary of temporal database concepts. In O. Etzion, S. Jajodia, & S.
M. Sripada (Eds.), Temporal Databases: Research and Practice (pp. 367–405). Springer-
Verlag.

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing – An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall.

Kameyama, M., Passonneau, R., & Poesio, M. (1993). Temporal centering. In Proceedings
of the 31st Annual Meeting of the Association for Computational Linguistics. Columbus,
Ohio.

Kamp, H., & Reyle, U. (1993). From Discourse to Logic – Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Kluer.

Kaplan, S. J. (1982). Cooperative responses from a portable natural language data base
query system. Artificial Intelligence, 19, 165–187.

Kenny, A. (1963). Action, Emotion and Will. Routledge and K. Paul.
Kent, S. (1993). Modelling Events from Natural Language. Ph.D. thesis, Department

of Computing, Imperial College of Science Technology and Medicine, University of
London, U.K.

King, M. (1996). Evaluating natural language processing systems. Communications of the
ACM, 39(1), 73–79.

Kline, N. (1993). An update of the temporal database bibliography. ACM SIGMOD Record,
22(4), 66–80.

Kobsa, A., & Wahlster, W. (Eds.). (1989). User Models in Dialog Systems. Springer-Verlag.
Koubarakis, M. (1995). Databases and temporal constraints: Semantics and complexity. In

J. Clifford & A. Tuzhilin (Eds.), Recent Advances in Temporal Databases – Proceedings of
the International Workshop on Temporal Databases (pp. 93–109). Zurich, Switzerland.
Springer-Verlag.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.6 (288)

 References

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4, 67–95.

Lappin, S., & Leass, H. (1994). An algorithm for pronominal anaphora resolution.
Computational Linguistics, 20(4), 535–561.

Lascarides, A. (1988). A Formal Semantic Analysis of the Progressive. Ph.D. thesis, Centre
for Cognitive Science, University of Edinburgh, U.K.

Lascarides, A., & Oberlander, J. (1993). Temporal connectives in a discourse context.
In Proceedings of the 6th Conference of the European Chapter of the Association for
Computational Linguistics (pp. 260–268). Utrecht, The Netherlands.

Lorentzos, N. A., & Johnson, R. G. (1988). Extending relational algebra to manipulate
temporal data. Information Systems, 13(3), 289–296.

Lowden, B. G. T., Walls, B. R., De Roeck, A. N., Fox, C. J., & Turner, R. (1991). A formal
approach to translating English into SQL. In M. S. Jackson & A. E. Robinson (Eds.),
Aspects of Databases – Proceedings of the 9th British National Conference on Databases
(pp. 110–127). Wolverhampton Polytechnic, England.

Lucas, R. (1988). Database Applications Using Prolog. Halsted Press.
LuperFoy, S., Nijholt, A., & Veldhuijzen van Zanten, G. (Eds.). (1996). Dialogue

Management in Natural Language Systems, 11th Twente Workshop on Language
Technology, Enschede, the Netherlands.

Mays, E. (1986). A temporal logic for reasoning about changing data bases in the
context of natural language question-answering. In L. Kerschberg (Ed.), Expert
Database Systems – Proceedings of the First International Workshop (pp. 559–578).
Benjamin/Cummings.

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of
artificial intelligence. In Machine Intelligence 4 (pp. 463–502). Edinburgh University
Press.

McDermott, D. (1982). A temporal logic for reasoning about processes and plans. Cognitive
Science, 6, 101–155.

McGee Wood, M. (1993). Categorial Grammars. Routledge.
McKenzie, E. (1986). Bibliography: Temporal databases. ACM SIGMOD Record, 15(4),

40–52.
McKenzie, E., & Snodgrass, R. (1990). Schema evolution and the relational algebra.

Information Systems, 15(2), 207–232.
McKenzie, E., & Snodgrass, R. (1991). Evaluation of relational algebras incorporating the

time dimension in databases. ACM Computing Surveys, 23(4), 501–543.
Melton, J., & Simon, A. R. (1993). Understanding the New SQL: A Complete Guide. Morgan

Kaufmann.
Melton, J., Simon, A. R., & Gray, J. (2001). SQL: 1999 – Understanding Relational Language

Components. Morgan Kaufmann.
Mitkov, R. (2002a). Anaphora resolution. In R. Mitkov (Ed.), Handbook of Computational

Linguistics, Chapter 14. Oxford University Press. Forthcoming.
Mitkov, R. (Ed.). (2002b). Handbook of Computational Linguistics. Oxford University Press.

Forthcoming.
Moens, M. (1987). Tense, Aspect and Temporal Reference. Ph.D. thesis, Centre for

Cognitive Science, University of Edinburgh, U.K.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.7 (289)

References 

Moens, M. (1988). Temporal databases and natural language. In C. Rolland, F. Bodart,
& M. Leonard (Eds.), Proceedings of Working Conference on Temporal Aspects in
Information Systems (pp. 171–183). Sophia-Antipolis, France. Elsevier.

Moens, M., & Steedman, M. (1988). Temporal ontology and temporal reference.
Computational Linguistics, 14(2), 15–28.

Morrill, G. V. (1994). Type Logical Grammar – Categorial Logic of Signs. Kluwer.
Mourelatos, A. P. D. (1978). Events, processes, and states. Linguistics and Philosophy, 2,

415–434.
Nelken, R. (2001). Questions, Time, and Natural Language Interfaces to Temporal

Databases. Ph.D. thesis, Department of Computer Science, Technion, Israel.
Nelken, R., & Francez, N. (1999a). The algebraic semantics of questions. In Proceedings of

the Sixth Meeting on Mathematics of Language (pp. 167–182). Orlando, Florida.
Nelken, R., & Francez, N. (1999b). A semantics for temporal questions. In G. J. M. Kruijf

& R. T. Oehrle (Eds.), Proceedings of the 5th Conference on Formal Grammar (pp. 131–
142). Utrecht, The Netherlands.

Nelken, R., & Francez, N. (2000a). A calculus for interrogatives based on their algebraic
semantics. In A. Nijholt, D. Heylen, & G. Scollo (Eds.), Proceedings of the 16th Twente
Workshop on Language Technology and the 2nd Workshop on Algebraic Methods in
Language Processing (pp. 143–160). Iowa City, Iowa.

Nelken, R., & Francez, N. (2000b). Querying temporal databases using controlled
natural language. In Proceedings of the 18th International Conference on Computational
Linguistics (pp. 1076–1080). Saarbrücken, Germany.

Nelken, R., & Francez, N. (2001a). The algebraic semantics of interrogative NPs.
Grammars, 3(2–3).

Nelken, R., & Francez, N. (2001b). Bilattices and the semantics of natural language
questions. Linguistics and Philosophy. To appear.

Parsons, T. (1989). The progressive in English: Events, states and processes. Linguistics and
Philosophy, 12, 213–241.

Parsons, T. (1990). Events in the Semantics of English: A Study in Subatomic Semantics. MIT
Press.

Partee, B. H. (1984). Nominal and temporal anaphora. Linguistics and Philosophy, 7, 243–
286.

Passonneau, R. J. (1988). A computational model of the semantics of tense and aspect.
Computational Linguistics, 14(2), 44–60.

Pereira, F., & Warren, D. H. D. (1980). Definite clause grammars for language analysis –
a survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence, 13, 231–278.

Perrault, C. R., & Grosz, B. J. (1988). Natural language interfaces. In H. E. Shrobe (Ed.),
Exploring Artificial Intelligence (pp. 133–172). Morgan Kaufmann.

Pirie, N., Crabtree, B., Crouch, R., Pulman, S., Moffat, D., Ritchie, G., & Tate, A. (1990). A
natural language interface to an intelligent planning system – system documentation.
Technical Paper 5, Department of Artificial Intelligence, University of Edinburgh.

Pollard, C., & Sag, I. A. (1987). Information-Based Syntax and Semantics – Fundamentals,
volume 1. Center for the Study of Language and Information, Stanford.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.8 (290)

 References

Pollard, C., & Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. University of
Chicago Press and Center for the Study of Language and Information, Stanford.

Pratt, I., & Bree, D. S. (1995). An approach to the semantics of some English temporal
constructions. In Proceedings of the 17th Annual Conference of the Cognitive Science
Society (pp. 118–123). Pittsburgh, Pennsylvania. Lawrence Earlbaum Associates.

Pratt, I., & Francez, N. (2001). Temporal prepositions and temporal generalized quantifiers.
Linguistics and Philosophy, 24(2), 187–222.

Prior, A. (1967). Past, Present and Future. Oxford University Press.
Rayner, Manny. (1993). Abductive Equivalential Translation and its Application to

Natural Language Database Interfacing. Ph.D. thesis, Royal Institute of Technology
and University of Stockholm, Sweden.

Reichenbach, H. (1947). Elements of Symbolic Logic. Collier-Macmillan.
Reiter, E., & Dale, R. (2000). Building Applied Natural Language Generation Systems.

Cambridge University Press.
Richards, B., Bethke, I., van der Does, J., & Oberlander, J. (1989). Temporal Representation

and Inference. Academic Press.
Ritchie, G. D. (1979). Temporal clauses in English. Theoretical Linguistics, 6(1), 87–115.
Shieber, S. M. (1986). An Introduction to Unification-Based Approaches to Grammar. Center

for the Study of Language and Information, Stanford.
Singh, M., & Singh, M. P. (1992). Computing the temporal structure of events in natural

language. In B. Neumann (Ed.), Proceedings of the 10th European Conference on
Artificial Intelligence (pp. 528–532). Vienna, Austria. John Wiley.

Smith, C. S. (1986). A speaker-based approach to aspect. Linguistics and Philosophy, 9,
97–115.

Smith, C. S. (1997). The Parameter of Aspect (2nd edition). Kluwer.
Snodgrass, R. T. (Ed.). (1995). The TSQL2 Temporal Query Language. Kluwer.
Snodgrass, R. T. (2000). Developing Time-Oriented Database Applications in SQL. Morgan

Kaufmann.
Snodgrass, R. T., Böhlen, M. H., Jensen, C. S., & Steiner, A. (1998). Transitioning temporal

support in TSQL2 to SQL3. In O. Etzion & S. Sripada (Eds.), Temporal Databases:
Research and Practice (pp. 150–194). Springer.

Soo, M. (1991). Bibliography on temporal databases. ACM SIGMOD Record, 20(1), 14–23.
Sparck Jones, K., & Galliers, J. R. (1996). Evaluating Natural Language Processing Systems –

An Analysis and Review. Springer.
Spenceley, S. (1989). Imperatives and temporal question answering in an English

language front-end. Master’s thesis, Department of Artificial Intelligence, University
of Edinburgh, U.K.

Sripada, S. M., Rosser, B. L., Bedford, J. M., & Kowalski, R. A. (1994). Temporal database
technology for air traffic flow management. In Proceedings of the First International
Conference on Applications of Databases (pp. 28–41). Vadstena, Sweden. Springer-
Verlag.

Stallard, D., & Bobrow, R. (1993). The semantic linker – a new fragment combining
method. In Proceedings of the ARPA Workshop on Human Language Technology (pp.
37–42). Princeton, New Jersey.

NLP4[v.20020404] Prn:21/06/2002; 14:04 F: NLP6RF.tex / p.9 (291)

References 

Stam, R., & Snodgrass, R. (1988). A bibliography on temporal databases. IEEE Database
Engineering, 7(4), 231–239.

Stirling, L. (1985). Distributives, quantifiers and a multiplicity of events. In Proceedings
of the 2nd Conference of the European Chapter of the Association for Computational
Linguistics (pp. 16–24). Geneva, Switzerland.

Tansel, A., Clifford, J., Gadia, S. K., Jajodia, S., Segev, A., & Snodgrass, R. T. (1993).
Temporal Databases – Theory, Design, and Implementation. Benjamin/Cummings.

Tennant, H. R., Ross, K. M., Saenz, M., Thompson, C. W., & Miller, J. R. (1983). Menu-
based natural language understanding. In Proceedings of the 21st Annual Meeting of the
Association for Computational Linguistics (pp. 151–158). Cambridge, Massachusetts.

ter Meulen, A. (1994). Situated reasoning with temporal anaphora. In D. M. Gabbay &
H. J. Ohlbach (Eds.), Proceedings of the First International Conference on Temporal Logic
(pp. 42–48). Bonn, Germany. Springer-Verlag.

Thomson, A. J., & Martinet, A. V. (1986). A Practical English Grammar (4th edition).
Oxford University Press.

Toman, D. (1996). Point vs. interval-based query languages for temporal databases. In
Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (pp. 58–67). Montreal, Canada.

Tsotras, V. J., & Kumar, A. (1996). Temporal database bibliography update. ACM SIGMOD
Record, 25(1), 41–51.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, volume 1.
Computer Science Press.

van Benthem, J. (1991). The Logic of Time – A Model-Theoretic Investigation into the
Varieties of Temporal Ontology and Temporal Discourse (2nd edn.). Kluwer.

van Gelder, A., & Topor, R. W. (1991). Safety and translation of relational calculus queries.
ACM Transactions on Database Systems, 16(2), 235–278.

Vendler, Z. (1967). Verbs and times. In Linguistics in Philosophy, Chapter 4 (pp. 97–121).
Cornell University Press.

Vila, L. (1994). A survey on temporal reasoning in Artificial Intelligence. AI Com-
munications, 7(1), 4–28.

Vlach, F. (1993). Temporal adverbials, tenses and the perfect. Linguistics and Philosophy,
16, 231–283.

Webber, B. L. (1988). Tense as discourse anaphor. Computational Linguistics, 14(2), 61–73.
Wijsen, J. (1995). Design of temporal relational databases based on dynamic and temporal

functional dependencies. In J. Clifford & A. Tuzhilin (Eds.), Recent Advances in
Temporal Databases – Proceedings of the International Workshop on Temporal Databases
(pp. 61–76). Zurich, Switzerland. Springer-Verlag.

Wu, Y., Jajodia, S., & Wang, X. S. (1998). Temporal database bibliography update. In
O. Etzion, S. Jajodia, & S. M. Sripada (Eds.), Temporal Databases: Research and Practice
(pp. 338–366). Springer-Verlag.

Yip, K. M. (1985). Tense, aspect and the cognitive representation of time. In Proceedings
of the 23rd Annual Meeting of the Association for Computational Linguistics (pp. 18–26).
Chicago, Illinois.

Index

The index points to pages that define or provide

prominent information about the corresponding

concepts. Entries written in lower case italics,

e.g., activity, are HPSG sorts, except when

followed by brackets, e.g., coalesce(), in which case

they are function names. Entries in italics where

only the first letter is in upper case, e.g., After, are

TOP operators. Entries written in upper case

italics, e.g., AFORMS, are names of sets. Entries in

small capitals, e.g., aspect, are HPSG features.

Entries in upper case typewriter font, e.g., AND,

are SQL keywords. Entries in normal capitals,

e.g., HPSG, are acronyms. All other symbols

appear as in the main body of the book.

Symbols
�� 207
�→ 79
• 233, 234
◦ 233, 234
≺ 77
< > 110
� 233, 234
� 78
? 76, 82, 119, 306
?mxl 76, 82, 119, 173, 179, 304
∧ 74, 81, 300

A
accomplishment 10, 20, 21
achievement 10, 20, 21
active voice 69
activity 10, 20, 21
activity 111
activity verb 24, 26, 30
adjunct daughter 156
AFORMS 73
After 74, 93, 206, 303–305
after-point 58

after_op 114
Aktionsarten 10
ALE 109, 241
anaphora 32, 55, 63, 65, 75, 96, 175
AND 189
and 113, 114
application domain 9, 22, 27
arity 184
AS 189
aspect 10
aspect 111, 156
aspect 111
aspect principle 112, 156
aspectual class 10, 20, 21
aspectual criterion 20, 24, 27
aspectual shift 23, 35, 39, 45, 48, 57,

68, 128, 156, 169, 176
assignment to correlation names

205
At 74, 91, 206, 226, 227, 302–304
atomic feature structure 110
atomic formula 73
at_op 114
ATSQL 15, 276
attribute 13, 183
aux 110

B
BCDM 186
Before 74, 93, 206, 303–305
before-point 58
before_op 114
Begin 74, 95, 302
BEGIN 191
begin 114
binding context 203
bitemporal relation 186

 Index

BOT 276, 278
boundedness of time 77
branching time 91
bse 110

C
calendar 191, 198
calendric relation 198
cardinality 67, 184
cat 110
Categorial Grammar 275
chronon 185
climax 10, 22
cnsq_state 111, 163, 169
coalesce() 194
coalescing 14, 188
collective meaning 67
column reference 203, 204
complement daughter 155
complete partitioning 72, 80
compl_partng 117
comps 111
conj 114
conjunction 68, 74, 81, 300
CONS 72
consequent period 45, 100
consequent state 39, 45, 128
constant, in TOP 72
constituent ordering principle 112,

168, 175
cont 110, 139
CONTAINS 192
controlled language 9, 277
convexity 78
cooperative response 8, 31, 32, 40,

49, 52, 56, 60, 62, 92, 278
corners 207
correlation name 190, 200, 204
countable entity 23
CPARTS 72
Culm 74, 88, 178, 224, 300
culm 114
culmact 111
culminating activity 21
culminating activity verb 24, 30

D
D(A), D 184
DA 184
database language 3
database management system 3
DBMS 3
DD 184
denotation 80, 83
det 119
dialogue manager 7
dialogue system 7
discreteness of time 77
disjunction 68, 74
DISTINCT 190
distributive meaning 67
doctor on board problem 243
domain of an attribute 184
DP, D*

P 188
DT 186, 187
duration 114
duration adverbial 50, 51, 53, 98,

160, 178
durative meaning 47, 58, 94, 95
dur_unit 114

E
(ELEMENT) 193
elliptical form 50, 54
End 74, 95, 302
END 191
end 114
episode 267
error 205
et_handle 114
eval() 205, 207, 208
event relation 186
event time (et) 71, 80
exists 119
explicit attribute 186, 195
extraction of TOP formulae 120,

141

F
fcn() 205

Index 

fcons() 78, 207–209, 212
fcparts() 80, 207, 208, 210, 213
fculms() 79, 207, 208, 210, 212
fD() 184, 207, 208
feature structure 109
fgparts() 80, 207, 208, 210, 213
Fills 74, 95
fin 122
finite verb 122
For 74, 98, 300
FORMS 77
formula, in TOP 77
for_op 114
fpfuns() 79, 207–209, 212
free column reference 204
FROM 189
future meaning 24, 27, 32

G
G, GM 80
g(), g

β
o () 80

g(), g
β
o () 80

gappy partitioning 73, 80
gappy_partng 117
Gdb 205
gdb(), (gdb)α〈v1,v2,... 〉 205
generic representative 106, 117, 166
ger 124
gerund 124
GPARTS 73
granularity 185
granule 185

H
habitual meaning 21, 23, 85, 106,

131, 164
hcons() 207, 208, 210, 213
h′cons() 207, 208, 213
hcparts() 207, 208, 211, 217, 218
h′cparts() 207, 208, 216, 217
hculms() 207, 208, 211, 215
h′culms() 207, 208, 215
head 110
head daughter 112, 156

head-complement schema 112
head-feature principle 112
head-subject schema 112
head-subject-complement schema

157
hgparts() 207, 208, 211, 216, 217
h′gparts() 207, 208, 216, 217
homogeneity 82, 197, 276
homonym 23, 165
hpfuns() 207, 208, 210, 214
h′pfuns() 207, 208, 213, 214
HPSG 109
HRDM 270

I
ils 269
imperfective paradox 11, 26
imperfective paradox criterion 26,

30
implicit attribute 186
inchoative meaning 42, 158
inclusive meaning 47, 58, 95
ind 113–115
index 119
index, in HPSG 114
instantaneous period 78
INSTANTS 78
integrity constraint 247
interjacent meaning 42, 158
interp() 217, 218
interrog 119
interrogative quantifier 5, 76, 82
interrog_mxl 119
INTERSECT 192
interval 78, 186
INTERVAL 191, 200
irreflexivity 77
iterative meaning 34, 35, 52

L
LAllen 274
lexical rule 111, 121, 123, 124, 145,

147
lexical sign 109, 110
lexical state 45

 Index

lex_state 111
linearity of time 77
linguistic coverage 9, 19, 69, 277
linguistic front-end 2, 5
λinit 218, 219
literal, in TSQL2 191
loc (l) 110
localisation time (lt) 72, 80

M
main_psoa 114
mass entity 23
maximal period 51, 77, 78, 185
maxpt() 78
meaning representation language 2,

11, 71
minpt() 78
mod 150, 153, 159
model, in TOP 78, 207, 210, 212
Montague semantics 268
mxlpers() 78, 185

N
natural language interaction 1
natural language interface 1, 5
negation 68, 74, 272
next() 77
NLIDB 1
NLITDB 4
nominal anaphora 65
nom_obj 119
none 161
non_temp_ent 115
nosubperiod() 197
(NOSUBPERIOD) 197
now 117
Ntense 74, 96, 141, 180, 301, 302
ntense 114
nucleus 113
NVRELP 188, 189

O
OBJS 78, 184
occr_var 117

occurrence identifier 103
ontology 7, 115
operator 113
optimising TSQL2 code 230, 231

P
paraphrase 8
Part 73, 81, 113, 206
part 114
partitioning of the time-axis 73, 80
partitioning unit 193, 196, 202
partng 114
partng 117
PARTS 73
part_var 114
passive voice 69
Past 74, 86, 225, 226, 301
past continuous 32, 86, 87, 124, 132
past participle lexical rule 124
past perfect 38, 44, 86, 99, 124, 128,

157
past 114
pcoalesce() 195
Perf 74, 99, 301
perf 114
period 78
period adverbial 46, 91, 159, 175,

177
PERIOD 191
(PERIOD) 194
PERIODS, PERIODS* 78
pform 133
PFUNS 72
phon 110
plural form 67
point 111
point criterion 25, 29
point verb 24, 25, 29
point, aspectual class 21
point, in time 77
portability 9
possible world 91
post-processing 7, 141, 142, 151,

164, 170, 173, 178, 207, 242
pow() 79

Index 

powerset 79
prd 111, 133, 137
PRECEDES 192
predicate 73, 113, 222, 299
predicate 113
predicate functor 72
predicative meaning 133, 136, 143,

145, 149
predicative nouns lexical rule 145,

147
preprocessing of user requests 5,

140, 154, 177, 242
Pres 74, 84, 301
pres 114
present continuous 32, 84, 124, 131
present participle lexical rule 124
present perfect 36, 39, 86, 124, 129,

267
prev() 77
principle, in HPSG 112, 139, 156,

168
progressive 111
progressive form 32, 87, 89, 124,

131, 132, 267
progressive state 35, 45
proper subperiod 78
proper superperiod 78
prp 124
psoa 113
psp 124
PTQ 268
PTS 77
punctual adverbial 41, 91, 153, 175

Q
qstore 120, 139
quant 120
quantifier 67, 74, 76, 83, 113, 119,

120, 179, 242, 272
quantifier scoping 68, 113, 242
quants 113

R
reference time 38, 44, 72, 158
relation 13, 183

relation schema 184
relational algebra 271
relational database 184
relational model 13, 183
relative clause 68
response generation 3, 8, 277
restind 119
restr 119
robust parsing 9

S
safety of queries 76
schema, in HPSG 112, 157
SELECT 189
SELECT statement 189
semantic head 139, 156
semantics principle 112, 139
sem_num 117
sign 109
simple past 31, 86, 87, 123, 131, 135
simple past lexical rule 123
simple present 30, 84, 121, 129, 134
simple present criterion 24, 29
simple present lexical rule 121
since 233, 234
slash 172
SNAPSHOT 190
snapshot relation 186
sort hierarchy 110
spec 138, 145
specifier 111
speech recognition 1
speech synthesis 1
speech time (st) 71, 80
spr 111, 137
SQL 3, 4
SQL-92 14, 15, 183, 189
SQL3 15
SQL:1999 15, 278
SREL 189
state 10, 20, 21
state 111
state relation 186
state verb 24, 29
subj 111

 Index

subordinate clause 55, 58, 68, 91, 93,
169

subperiod 78
subperiod 196
(SUBPERIOD) 196
superperiod 78
synsem (ss) 110

T
TELEMS 185
temp_ent 115, 117
temporal adjective 41
temporal adverbial 41, 153, 175, 177
temporal anaphora 7, 32, 55, 63, 65,

75, 96, 105, 175
temporal database 2
temporal element 185
temporal logic 11, 269, 274
temporal noun 40
temporal operator 12, 71
temporal subordinate clause 55, 58,

91, 93, 169
temporal verb 39
tense 10
tense anaphora 32, 66, 105
tense and aspect theory 10
tense coordination 63
term, in TOP 72
terminal meaning 42, 158
TERMS 72
tfirst 77
Tiger 15
time-stamp 13, 186
TimeDB 15, 276, 277
time_spec 114
TIMESTAMP 191
TL 233, 234
tlast 77
TOP 4, 12, 71
TOP formula, in HPSG 112, 119,

120, 141
tr() 218, 219

trans() 218, 219, 221, 222
transaction time 16, 210
transaction-time relation 186
transitivity 77
translation to TSQL2 217, 218, 221,

222
TSQL2 4, 15, 183, 189
tuple 13, 183
tvar 114, 117, 118
Type-Logical Grammar 275, 277

U
unbounded dependency 172
underspecified semantics 6
until 233, 234
user model 8

V
VALID 190, 191
valid time 16, 210
valid-time relation 186
value expression 205
value-equivalent tuples 188
var 114, 115, 117
variable assignment 80
variable, in TOP 72
VARS 72
vε 188
vform 110
VRELP 188, 189

W
wh-formula 76, 119, 226–229
WHERE 189
WHFORMS 76
Wizard of Oz 9, 19, 277

Y
yes/no formula 74, 113
YNFORMS 74

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.1 (299)

A A

TOP to TSQL2 translation rules

. Translation rules for yes/no formulae

In the rules below, it is assumed that π ∈ PFUNS, τ1, . . . , τn ∈ TERMS,
φ′,φ1,φ2 ∈ YNFORMS, β ∈ VARS, κ ∈ CONS, σc ∈ CPARTS, σg ∈ GPARTS,
νqty ∈ {1, 2, 3, . . . }, and that λ is a tsql2 value expression. n, n1, n2 are the
lengths of �φ�, �φ1�, �φ2�, respectively. λinit stands for PERIOD(TIMESTAMP
’beginning’, TIMESTAMP ’forever’). χ is the tsql2 name of the gran-
ularity of chronons (e.g., DAY if chronons correspond to days). α, α1, α2 are
new correlation names, which have never been used before, obtained by calling
a generator of correlation names.

.. π(τ1, . . . , τn)

trans(π(τ1, . . . , τn), λ)
def
=

(SELECT DISTINCT α.1, α.2, . . . , α.n
VALID VALID(α)
FROM (h′pfuns(π, n))(SUBPERIOD) AS α

WHERE . . .
AND . . .
...
AND λ CONTAINS VALID(α))

The dots in the WHERE clause stand for all the strings in S1 ∪ S2:

S1 = {“α.i = h′cons(τi)” | i ∈ {1, 2, 3, . . . , n}, τi ∈ CONS}
S2 = {“α.i = α.j” | i, j ∈ {1, 2, 3, . . . , n}, i < j, τi = τj, τi, τj ∈ VARS}

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.2 (300)

 Appendix A

.. Culm[π(τ1, . . . , τn)]

trans(Culm[π(τ1, . . . , τn)], λ)
def
=

(SELECT DISTINCT α1.1, α1.2, . . . , α1.n
VALID PERIOD(BEGIN(VALID(α1)), END(VALID(α1)))
FROM (h′pfuns(π, n))(ELEMENT) AS α1, (h′culms(π, n)) AS α2

WHERE α1.1 = α2.1
AND α1.2 = α2.2

...
AND α1.n = α2.n
AND . . .

...
AND λ CONTAINS PERIOD(BEGIN(VALID(α1)), END(VALID(α1))))

The dots after α1.n = α2.n in the WHERE clause stand for all the strings in S1∪S2,
where S1 and S2 are as in the translation rule for predicates, except that α is
now α1.

.. φ1 ∧ φ2

trans(φ1 ∧ φ2, λ)
def
=

(SELECT DISTINCT α1.1, . . . , α1.n1, α2.1, . . . , α2.n2

VALID VALID(α1)
FROM trans(φ1, λ) AS α1, trans(φ2, λ) AS α2

WHERE . . .
AND . . .
...
AND VALID(α1) = VALID(α2))

Assuming that �φ1� = 〈τ1
1, . . . , τ1

n1
〉 and �φ2� = 〈τ21, . . . , τ2

n2
〉, the dots in the

WHERE clause are all the strings in S:

S = {“α1.i = α2.j” | i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, τ1i = τ2j , τ1
i , τ2j ∈ VARS}

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.3 (301)

TOP to TSQL2 translation rules 

.. Pres[φ′]

trans(Pres[φ′], λ)
def
=

(SELECT DISTINCT α.1, α.2, . . . , α.n
VALID VALID(α)
FROM trans(φ′, λ) AS α
WHERE VALID(α) CONTAINS TIMESTAMP ’now’)

.. Past[β,φ′]

trans(Past[β,φ′], λ)
def
=

(SELECT DISTINCT VALID(α), α.1, . . . , α.n
VALID VALID(α)
FROM trans(φ′, λ′) AS α)

λ′ is the expression INTERSECT(λ, PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’now’ - INTERVAL ’1’ χ)).

.. Perf [β,φ′]

trans(Perf [β,φ′], λ)
def
=

(SELECT DISTINCT VALID(α), α.1, . . . , α.n
VALID INTERSECT(λ, PERIOD(END(VALID(α)) + INTERVAL ’1’ χ,

TIMESTAMP ’forever’))
FROM trans(φ′, λinit) AS α

)(SUBPERIOD)

.. Ntense[β,φ′]

trans(Ntense[β,φ′], λ)
def
=

(SELECT DISTINCT VALID(α), α.1, . . . , α.n
VALID PERIOD(TIMESTAMP ’beginning’, TIMESTAMP ’forever’)
FROM trans(φ′, λinit) AS α

)(SUBPERIOD)

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.4 (302)

 Appendix A

.. Ntense[now*,φ′]

trans(Ntense[now*,φ′], λ)
def
=

(SELECT DISTINCT α.1, . . . , α.n
VALID PERIOD(TIMESTAMP ’beginning’, TIMESTAMP ’forever’)
FROM trans(φ′, λinit) AS α
WHERE VALID(α) = PERIOD(TIMESTAMP ’now’, TIMESTAMP ’now’)

)(SUBPERIOD)

.. For[σc, νqty,φ′]

trans(For[σc, νqty,φ′], λ)
def
=

(SELECT DISTINCT α.1, . . . , α.n
VALID VALID(α)
FROM trans(φ′, λ) AS α
WHERE INTERVAL(VALID(α), γ) = INTERVAL ’νqty’ γ)

γ is the first element of the pair h′cparts(σc) = 〈γ,Σc〉 (Section 5.9).

.. Begin[φ′]

trans(Begin[φ′], λ)
def
=

(SELECT DISTINCT α.1, . . . , α.n
VALID PERIOD(BEGIN(VALID(α)), BEGIN(VALID(α)))
FROM trans(φ′, λinit)(NOSUBPERIOD) AS α
WHERE λ CONTAINS BEGIN(VALID(α)))

.. End[φ′]

trans(End[φ′], λ)
def
=

(SELECT DISTINCT α.1, . . . , α.n
VALID PERIOD(END(VALID(α)), END(VALID(α)))
FROM trans(φ′, λinit)(NOSUBPERIOD) AS α
WHERE λ CONTAINS END(VALID(α)))

.. At[κ,φ′]

trans(At[κ,φ′], λ)
def
= trans(φ′,INTERSECT(λ, h′cons(κ)))

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.5 (303)

TOP to TSQL2 translation rules 

.. Before[κ,φ′]

trans(Before[κ,φ′], λ)
def
= trans(φ′, λ′)

λ′ is the expression INTERSECT(λ, PERIOD(TIMESTAMP ’beginning’,

BEGIN(h′cons(κ)) - INTERVAL ’1’ χ)).

.. After[κ,φ′]

trans(After[κ,φ′], λ)
def
= trans(φ′, λ′)

λ′ stands for the expression INTERSECT(λ, PERIOD(END(h′cons (κ)) + IN-

TERVAL ’1’ χ, TIMESTAMP ’forever’)).

.. At[σg , β,φ′]

trans(At[σg , β,φ′], λ)
def
=

(SELECT DISTINCT α1.1, α2.1, . . . , α2.n
VALID VALID(α2)
FROM (h′gparts(σg)) AS α1, trans(φ′,INTERSECT(α1.1, λ)) AS α2)

.. Before[σg , β,φ′]

trans(Before[σg , β,φ′], λ)
def
=

(SELECT DISTINCT α1.1, α2.1, . . . , α2.n
VALID VALID(α2)
FROM (h′gparts(σg)) AS α1, trans(φ′, λ′) AS α2)

λ′ stands forINTERSECT(PERIOD(TIMESTAMP ’beginning’, BEGIN(α1.1)

- INTERVAL ’1’ χ), λ).

.. After[σg , β,φ′]

trans(After[σg , β,φ′], λ)
def
=

(SELECT DISTINCT α1.1, α2.1, . . . , α2.n
VALID VALID(α2)
FROM (h′gparts(σg)) AS α1, trans(φ′, λ′) AS α2)

λ′ is INTERSECT(PERIOD(END(α1.1) + INTERVAL ’1’ χ, TIMESTAMP

’forever’), λ).

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.6 (304)

 Appendix A

.. At[σc, β,φ′]

trans(At[σc, β,φ′], λ)
def
=

(SELECT DISTINCT α1.1, α2.1, . . . , α2.n
VALID VALID(α2)
FROM (Σc) AS α1, trans(φ′,INTERSECT(α1.1, λ)) AS α2)

Σc is the second element of the pair 〈γ,Σc〉 = h′cparts(σc) (Section 5.9).

.. Before[σc, β,φ′]

trans(Before[σc, β,φ′], λ)
def
=

(SELECT DISTINCT α1.1, α2.1, . . . , α2.n
VALID VALID(α2)
FROM (Σc) AS α1, trans(φ′, λ′) AS α2)

λ′ is INTERSECT(PERIOD(TIMESTAMP ’beginning’,

BEGIN(α1.1) - INTERVAL ’1’ χ), λ), and Σc is the second element of the
pair 〈γ,Σc〉 = h′cparts(σc).

.. After[σc, β,φ′]

trans(After[σc, β,φ′], λ)
def
=

(SELECT DISTINCT α1.1, α2.1, . . . , α2.n
VALID VALID(α2)
FROM (Σc) AS α1, trans(φ′, λ′) AS α2)

λ′ is INTERSECT(PERIOD(END(α1.1) + INTERVAL ’1’ χ, TIMESTAMP

’forever’), λ), and Σc is the second element of the pair 〈γ,Σc〉 = h′cparts(σc).

.. At[φ1,φ2]

trans(At[φ1,φ2], λ)
def
=

(SELECT DISTINCT α1.1, . . . , α1.n1, α2.1, . . . , α2.n2

VALID VALID(α2)
FROM trans(φ1, λinit)(NOSUBPERIOD) AS α1,

trans(φ2,INTERSECT(VALID(α1),λ)) AS α2

WHERE . . .
...
AND . . .)

The dots in the WHERE clause are as in the translation rule for φ1 ∧ φ2.

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.7 (305)

TOP to TSQL2 translation rules 

.. Before[φ1,φ2]

trans(Before[φ1,φ2], λ)
def
=

(SELECT DISTINCT α1.1, . . . , α1.n1 α2.1, . . . , α2.n2

VALID VALID(α2)
FROM trans(φ1, λinit)(NOSUBPERIOD) AS α1, trans(φ2, λ′) AS α2

WHERE . . .
...
AND . . .)

λ′ is the expression INTERSECT(PERIOD(TIMESTAMP ’beginning’,

BEGIN(VALID(α1)) - INTERVAL ’1’ χ), λ). The dots in the WHERE

clause are as in the translation rule for At[φ1,φ2].

.. After[φ1,φ2]

trans(After[φ1,φ2], λ)
def
=

(SELECT DISTINCT α1.1, . . . , α1.n1 α2.1, . . . , α2.n2

VALID VALID(α2)
FROM trans(φ1, λinit)(NOSUBPERIOD) AS α1, trans(φ2, λ′) AS α2

WHERE . . .
...
AND . . .)

λ′ stands for the expression INTERSECT(PERIOD(END(VALID(α1)) + IN-

TERVAL ’1’ χ, TIMESTAMP ’forever’), λ). The dots in the WHERE

clause are as in the translation rule for At[φ1,φ2].

. Translation rules for wh-formulae

Below it is assumed that β1, . . . , βk ∈ VARS, and that φ′ ∈ YNFORMS, with
�φ′� = 〈τ1, . . . , τn〉. λinit stands for PERIOD(TIMESTAMP ’beginning’,

TIMESTAMP ’forever’). α, α1, α2 are new correlation names, which have
never been used before, obtained by calling a generator of correlation names.

NLP4[v.20020404] Prn:21/06/2002; 14:18 F: NLP6AP.tex / p.8 (306)

 Appendix A

.. ?β1 . . . ?βk φ
′

trans(?β1 . . . ?βk φ
′, λinit)

def
=

(SELECT DISTINCT SNAPSHOT α.ω1, . . . , α.ωk

FROM trans(φ′, λinit) AS α)

For every i ∈ {1, 2, 3, . . . , κ}, ωi = min({j | j ∈ {1, 2, 3, . . . , n} and τj = βi}).

.. ?mxlβ1 ?β2 . . . ?βk φ
′

trans(?mxlβ1 ?β2 . . . ?βk φ
′, λinit)

def
=

(SELECT DISTINCT SNAPSHOT VALID(α2), α2.2, α2.3, . . . , α2.k
FROM (SELECT DISTINCT ’dummy’, α1.ω2, α1.ω3, . . . , α1.ωk

VALID α1.ω1

FROM trans(φ′, λinit) AS α1

)(NOSUBPERIOD) AS α2)

ω1, . . . ,ωk are as in the translation rule for ?β1 . . . ?βk φ
′.

In the series NATURAL LANGUAGE PROCESSING (NLP) the following titles have
been published thus far, or are scheduled for publication:

1. BUNT, Harry and William BLACK (eds.): Abduction, Belief and Context in Dialogue.
Studies in computational pragmatics. 2000.

2. BOURIGAULT, Didier, Christian JACQUEMIN and Marie-Claude L'HOMME (eds.):
Recent Advances in Computational Terminology. 2001.

3. MANI, Inderjeet: Automatic Summarization. 2001.
4. MERLO, Paola and Suzanne STEVENSON (eds.): The Lexical Basis of Sentence

Processing: Formal, computational and experimental issues. 2002.
5. JACKSON, Peter and Isabelle MOULINIER: Natural Language Processing for Online

Applications. 2002.
6. ANDROUTSOPOULOS, Ion: Exploring Time, Tense and Aspect in Natural Language

Database Interfaces. 2002.

