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Preface

Most data mining and machine learning algorithms are designed to deal

with “static” data, which is stored entirely in a database system and

which does not change significantly over time. Many such algorithms even

ignore the arrival ordering of observations as irrelevant to the knowledge

discovery process. With these assumptions being sufficiently accurate in

some applications, an increasing amount of systems and sensors produce

massive, high-speed streams of ever-changing data generated by dynamic

processes. The high volume and velocity of such data streams require real

time or near real time processing due to the volatility of the incoming

observations, which can be stored for a limited, if any, time only. Dynamic

data streams can be found in a variety of fields including weathermonitoring,

traffic control, stock trading, cyber security, and more recently, Internet of

Things (IoT). Mining real-world time series and streaming data creates a

need for new technologies and algorithms, which are currently being devel-

oped and tested by data scientists worldwide.

This volume is a continuation of our previous editorial project — Data

Mining in Time Series Databases (World Scientific, 2004), which discussed

the aspects and challenges introduced to the tasks of data mining and

knowledge discovery by adding the time dimension to databases. The pur-

pose of the current volume is to present the significant progress made over

the last decade in pre-processing, mining, and utilization of streaming data.

Data stream mining researchers are working on multiple tasks such as find-

ing the most efficient representation of streaming data, developing privacy-

preserving methods for data stream mining, incremental pre-processing of

continuous time series and data streams in parallel to the data mining pro-

cess, handling delayed information, mining entity-related time series, and

developing online monitoring systems. Our book covers the state-of-the-art

research in some of these areas. Specific topics discussed by the authors of

this volume are described below.

vii
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viii Preface

Chapter 1 by Albert Bifet, Jesse Read, Geoff Holmes, and Bernhard

Pfahringer describes Massive Online Analytics (MOA), an open source soft-

ware environment for implementing algorithms and running experiments for

online learning from evolving data streams. MOA is designed to deal with

the challenging problem of scaling up the implementation of state-of-the-

art algorithms to Big Data. The chapter discusses several change detection

techniques implemented in MOA along with classification and clustering

algorithms for streaming data. The current plans for extending MOA by

its core team and the community developers conclude this chapter.

Chapter 2 by Douglas Cardoso, Felipe França, and Joao Gama deals

with the problem of data stream mining under limited computational

resources. To reduce the computation costs, they propose to use Weightless

Artificial Neural Networks (WANNs), which contrary to standard ANNs,

have no weights on their links. The authors present a learning algorithm

based on the WiSARD (Wilkes, Stonham and Aleksander Recognition

Device) methodology and apply it to the data stream clustering task.

Finally, they indicate that many more potential applications of the

WiSARD model to data streams still need to be explored.

In Chapter 3, Dariusz Brzezinski and Jerzy Stefanowski discuss another

challenging problem — classification of non-stationary data streams where

one of the target classes is represented by much less instances than other

classes. Due to the evolving nature of non-stationary data streams, their

class imbalance situation may change over time along with a change in

decision boundaries known as a concept drift. The chapter describes

recent advances in the field of imbalanced data streams classification.

Besides presenting the current state-of-the-art in ensemble algorithms

for imbalanced streams, the authors stress the limitations of existing

approaches and outline new research directions.

Chapter 4 by Andreas Nienkötter and Xiaoyi Jiang deals with consen-

sus learning for sequence data, especially strings. In multiple classifier

combination, consensus methods produce a result, which best represents

the different classifier predictions and thus removes errors and outliers in

the input ensemble. As indicated by the chapter authors, strings provide

a simple and yet powerful representation scheme for time series and other

types of sequential data. A typical data-mining task is to represent a set

of similar objects by means of a single prototype (median). The chapter

briefly describes several procedures for computing median strings. Exper-

imental results are reported to demonstrate the median concept and to

compare some of the discussed algorithms.
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Preface ix

In Chapter 5, Mark Last, Maxim Stoliar, and Menahem Friedman

present a clustering-based methodology for efficient classification of

stationary document streams. They propose an active learning algorithm,

which obtains a continuous stream of unlabeled documents and clusters

them incrementally so that each incoming document is inserted into an

existing cluster or used to start a new cluster of its own. Occasionally,

an expert is called to label some clusters for the classification mechanism.

The evaluation experiments on two benchmark corpora show that active

learning combined with clustering can reduce the labeling costs by increas-

ing the percentage of automatically categorized documents over time.

Chapter 6 by Remon Cornelisse and Sunil Choenni illustrates the impor-

tance of domain knowledge in the interpretation and extraction of knowl-

edge from data streams. The authors use examples of time series from the

completely diverse fields of cyber security, astronomy, and criminal justice.

The chapter focus is on the first two stages of the knowledge discovery

process — data selection and data pre-processing.

Finally, Chapter 7 by Mohsin Munir, Sebastian Baumbach, Ying Gu,

Andreas Dengel, and Sheraz Ahmed provides a comprehensive overview

of data stream and time series analytics used by various industries for

improving healthcare services, enhancing home security, increasing crop

yield, expediting goods delivery, reducing equipment downtime, avoiding

diseases, and other purposes. Most of these solutions are utilizing the

streaming/time-series data coming from IoT enabled devices. The authors

suggest that the existing solutions can be further enhanced by means of

advanced machine learning techniques like the deep learning.

As becomes evident from the chapters of this book, time series and

streaming data keeps presenting new challenges to data scientists in

academia and industry. Most data streams are characterized by all the

four famous V’s of Big Data (Volume, Variety, Velocity, and Veracity), often

combined with the fifth V — the Volatility of the dynamic environment.

The contributors of this volume have provided their insights on some

state-of-the-art solutions for mining Big Streaming Data as well as on the

topics for future research in this exciting area.

Mark Last

Horst Bunke

Abraham Kandel

July 2017
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Fast Big Data is being produced at high-velocity in real-time. To effec-
tively deal with this type of streaming data produced in real time, we
need to be able to adapt to changes on the distribution of the data being
produced, and we need to do it using the minimum amount of time and
memory. The Internet of Things (IoT) is a good example and motivation
of this type of streaming data produced in real time.

Massive Online Analytics (MOA) is a software environment for im-
plementing algorithms and running experiments for online learning from
evolving data streams. MOA is designed to deal with the challenging
problem of scaling up the implementation of state of the art algorithms
to real world dataset sizes. MOA includes classification and clustering
methods. It contains collection of offline and online methods as well
as tools for evaluation. MOA supports bi-directional interaction with
WEKA, the Waikato Environment for Knowledge Analysis, and is re-
leased under the GNU GPL license.

1
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1. Introduction

Nowadays, data is generated at an increasing rate from sensor applica-

tions, measurements in network monitoring and traffic management, log

records or click-streams in web exploring, manufacturing processes, call

detail records, email, blogging, twitter posts and others. In fact, all data

generated can be considered as streaming data or as a snapshot of streaming

data, since it is obtained from an interval of time.

In the data stream model, data arrive at high speed, and an algorithm

must process them under very strict constraints of space and time. MOA

is an open-source framework for dealing with massive, potentially infinite,

evolving data streams.

A data stream environment has different requirements from the tradi-

tional batch learning setting. The most significant are the following:

Requirement 1 Process an example at a time, and inspect it only once

(at most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time.

Figure 1 illustrates the typical use of a data stream classification algo-

rithm, and how the requirements fit in a repeating cycle:

(1) The algorithm is passed the next available example from the stream

(Requirement 1).

(2) The algorithm processes the example, updating its data structures. It

does so without exceeding the memory bounds set on it (requirement

2), and as quickly as possible (Requirement 3).

(3) The algorithm is ready to accept the next example. On request it is

able to predict the class of unseen examples (Requirement 4).

As data stream mining is a relatively new field, evaluation practices are

not nearly as well researched and established as they are in the traditional

batch setting. The majority of experimental evaluations use less than one

million training examples. In the context of data streams this is disappoint-

ing, because to be truly useful at data stream classification the algorithms

need to be capable of handling very large (potentially infinite) streams of

examples. Demonstrating systems only on small amounts of data does not

build a convincing case for capacity to solve more demanding data stream

applications [1].
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(1) Input

Requirement

1

(2) Learning

Requirements

2&3

(3) Model

Requirement

4

Learning

Examples

Prediction

Fig. 1. The data stream classification cycle.

MOA permits evaluation of data stream learning algorithms on large

streams, in the order of tens of millions of examples where possible, and

under explicit memory limits. Any less than this does not actually test

algorithms in a realistically challenging setting.

Other Machine Learning frameworks as Weka, RapidMiner or scikit-

learn were not designed for data stream mining. In those frameworks, data

is considered static, and can be stored in main memory. MOA was designed

specifically for the data stream setting, with the challenging capabilities of

adapting to changes and processing data without storing it.

2. Concept Drift

Dealing with data streams evolving over time, our models need to adapt

to changes on the data. To do that, we need to know when it is the best

moment to adapt them. This is why it is important to detect changes, in a

fast and accurate way, so that we can update or replace our current models

when it is more appropriate.

A change detector or drift detector is an algorithm that having as input a

stream of instances, outputs an alarm if it detects change on the distribution

of the data, and optionally a prediction of the next instance to come. In

general, the input to this algorithm is a sequence x1, x2, . . . , xt, . . . of data
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items whose distribution varies over time in an unknown way. The outputs

of the algorithm are, at each time step, an estimation of some important

parameters of the input distribution, and a signal alarm indicating that

distribution change has recently occurred.

There are many different algorithms to detect change in streams. We

start looking at the classical ones used in statistical quality control, and

then we look at more recent ones such as ADWIN.

2.1. The CUSUM Test

The cumulative sum (CUSUM algorithm), which was first proposed in 1954

[2], is a change detection algorithm that gives an alarm when the mean of

the input data is significantly different from zero. The CUSUM input εt
can be any filter residual, for instance the prediction error from a Kalman

filter.

The CUSUM test is as follows:

g0 = 0

gt = max (0, gt−1 + εt − υ)

if gt > h then alarm and gt = 0

The CUSUM test is memoryless, and its accuracy depends on the choice of

parameters υ and h.

2.2. The Page Hinckley Test

The CUSUM test is a stopping rule. Other stopping rules exist. For exam-

ple, the Page Hinckley test, also presented in [2]. The Page Hinckley Test

is as follows, when the signal is increasing:

g0 = 0, gt = gt−1 + (εt − υ)

Gt = min(gt)

if gt −Gt > h then alarm and gt = 0

In the case that the signal is decreasing, instead of Gt = min(gt), we should

use Gt = max(gt) and Gt − gt > h as the stopping rule. As the CUSUM

test, the Page Hinckley test is memoryless, and its accuracy depends on

the choice of parameters υ and h.
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2.3. Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [3] controls

the number of errors produced by the learning model during prediction. It

compares the statistics of two windows: the first contains all the data, and

the second contains only the data from the beginning until the number of

errors increases. Their method doesn’t store these windows in memory. It

keeps only statistics and a window of recent errors.

The number of errors in a sample of n examples is modelled by a bino-

mial distribution. For each point t in the sequence that is being sampled,

the error rate is the probability of misclassifying (pt), with standard devi-

ation given by st =
√
pt(1− pt)/t. They assume that the error rate of the

learning algorithm (pt) will decrease while the number of examples increases

if the distribution of the examples is stationary. A significant increase in

the error of the algorithm, suggests that the class distribution is changing

and, hence, the actual decision model is considered to be inappropriate.

Thus, they store the values of pt and st when pt + st reaches its minimum

value during the process (obtaining ppmin and smin). And it checks when

the following conditions trigger:

• pt + st ≥ pmin + 2 · smin for the warning level. Beyond this level, the

examples are stored in anticipation of a possible change of context.

• pt+st ≥ pmin+3 ·smin for the drift level. Beyond this level the concept

drift is considered to be real, the model induced by the learning method

is reset and a new model is learnt using the examples stored since the

warning level triggered. The values for pmin and smin are reset too.

This approach demonstrates good behavior detecting abrupt changes

and gradual changes when the gradual change is not very slow, but it has

difficulties when the change is slowly gradual. In that case, the examples

will be stored for a long time, the drift level can take too much time to

trigger and the examples in memory can be excessive.

2.4. ADWIN

ADWIN (ADaptive sliding WINdow) [4] is a change detector and estimation

algorithm. It solves, in a well-specified way, the problem of tracking the

average of a stream of bits or real-valued numbers. ADWIN keeps a variable-

length window of recently seen items, with the property that the window

has the maximal length statistically consistent with the hypothesis “there

has been no change in the average value inside the window”.
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More precisely, an older fragment of the window is dropped if and only

if there is enough evidence that its average value differs from that of the

rest of the window. This has two consequences: one, change is reliably

detected whenever the window shrinks; and two, at any time the average

over the existing window can be used as a reliable estimate of the current

average in the stream (barring a very small or recent change that is not yet

statistically significant).

The inputs to ADWIN are a confidence value δ ∈ (0, 1) and a (possibly

infinite) sequence of real values x1, x2, x3, . . . , xt, . . . The value of xt is

available only at time t. Each xt is generated according to some distribu-

tion Dt, independently for every t. We denote with μt the expected value

of xt when it is drawn according to Dt. We assume that xt is always in

[0, 1]; rescaling deals with cases where a ≤ xt ≤ b. No further assumption

is being made about the distribution Dt; in particular, μt is unknown for

all t.

ADWIN is parameter- and assumption-free in the sense that it automat-

ically detects and adapts to the current rate of change. Its only parameter

is a confidence bound δ, indicating how confident we want to be in the algo-

rithm’s output, inherent to all algorithms dealing with random processes.

It is important to note that ADWIN does not maintain the window ex-

plicitly, but compresses it using a variant of the exponential histogram

technique [5]. This means that it keeps a window of length W using only

O(logW ) memory and O(logW ) processing time per item, rather than the

O(W ) one expects from a näıve implementation.

3. Classification

Classification is one of the most widely used data mining techniques. In

very general terms, given a list of groups (often called classes), classification

seeks to predict to which group a new instance may belong. The outcome

of classification is typically either the identification of a single group or the

production of a probability distribution of likelihood of membership of each

group. A spam filter is a good example, where we want to predict if new

emails are considered spam or not. Twitter sentiment analysis is another

example, where we want to predict if the sentiment of a new incoming tweet

is positive or negative.

More formally, the classification problem can be formulated as follows:

given a set of instances of the form (x, y), where x = x1, . . . , xk is a vector

of attribute values, and y is a discrete class from a set of nC different
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classes, the classifier builds a model y = f(x) to predict the classes y of

future examples. For example, x could be a tweet and y the polarity of its

sentiment; or x could be an email message, and y the decision whether it

is spam or not.

Evaluation is one of the most fundamental tasks in the stream data min-

ing process, since it helps to decide what techniques are more appropriate

to use for a specific data stream mining problem. The main challenge is to

know when a method is outperforming another method only by chance, or

if there is a statistical significance to that claim. Some of the methodologies

applied are the same as in the case of non-dynamic data, where all data

can be stored in memory. However, mining evolving data streams has new

challenges and uses new evaluation methodologies. One thing worth noting

before we continue is that almost all of the discoveries made in data mining

and particularly classification assume that data is IID (Independent, Iden-

tically, Distributed). Thus a stationary distribution is randomly producing

data, in no particular order and the underlying distribution generating the

data is not changing. In a dynamic-data environment no part of IID re-

mains valid. It is often the case, for example, that for certain time-periods

the labels or classes of instances are correlated, intrusion detection has a

majority of periods containing instance class labels designated no-intrusion

and then shorter much less frequent periods of intrusion. This is another

aspect of data stream mining that would benefit from further research.

For evolving data streams, the main difference with traditional data

mining evaluation, is in how to perform the error estimation. Resources

are limited and cross-validation may be too expensive.

The evaluation procedure of a learning algorithm determines which ex-

amples are used for training the algorithm, and which are used for testing

the model output by the algorithm.

In traditional batch learning the problem of limited data is overcome by

analyzing and averaging multiple models produced with different random

arrangements of training and test data. In the stream setting the problem

of (effectively) unlimited data poses different challenges.

When considering what procedure to use in the non-distributed data

stream setting, one of the unique concerns is how to build a picture of

accuracy over time. Two main approaches arise:

• Holdout: when data is so abundant, that it is possible to have test

sets periodically, then we can measure the performance on these holdout

sets. There is a training data stream that is used to train the learner
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continuously, and small test data sets that are used to compute the

performance periodically.

• Interleaved Test-Then-Train or Prequential: when data is not

abundant, and there are no test sets, then each individual example can

be used to test the model before it is used for training, and from this

the accuracy can be incrementally updated. The model is always being

tested on examples it has not seen.

Holdout evaluation gives a more accurate estimation of the accuracy of

the classifier on more recent data. However, it requires recent test data

that it is difficult to obtain for real datasets. There is also the issue of

ensuring coverage of important change events, if the holdout is during a less

volatile period of change then it might give an over-estimate of classifier

performance. Gama et al. [6] propose to use a forgetting mechanism for

estimating holdout accuracy using prequential accuracy: a sliding window

of size w with the most recent observations, or fading factors that weigh

observations using a decay factor α. The output of the two mechanisms is

very similar (every window of size w0 may be approximated by some decay

factor α0).

In a distributed data stream setting, we have classifiers that can be

trained at the same time. The approaches in this setting are the follow-

ing [7]:

• k-fold distributed split-validation: when there is abundance of data

and k classifiers. Each time a new instance arrive, it is decided with

probability 1/k if it will be used for testing. If it is used for testing,

it is used by all the classifiers. If not, then it is used for training and

assigned to only one classifier. Doing that, each classifier sees different

instances, and they are tested using the same data.

• 5×2 distributed cross-validation: when data is less abundant, and

we want to use only 10 classifiers. We have 5 groups of 2 classifiers,

and for each group, each time a new instance arrive, it is decided with

probability 1/2 which of the two classifiers is used to test; the other

classifier of the group is used to train. All instances are used to test or

to train, and there is no overlapping between test instances and train

instances.

• k-fold distributed cross-validation: when data is scarce and we

have k classifiers. Each time a new instance arrive, it is used for testing

in one classifier selected randomly, and trained using the others. This

is the equivalent evaluation to k-fold distributed cross-validation.
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The decision tree is a very popular data mining technique since it is

very easy to interpret and visualize the model it builds. It consists of a tree

structure, where each internal node corresponds to an attribute that splits

into a branch for each attribute value, and leaves correspond to classification

predictors, usually majority class classifiers. Figure 2 shows an example.

Contains Domain Has Time

“Money” type attach. received spam

yes com yes night yes

yes edu no night yes

no com yes night yes

no edu no day no

no com no day no

yes cat no day yes

Time

Contains “Money”

YES

Yes

NO

No

Day

YES

Night

Fig. 2. A data set that describes e-mail features for deciding if it is spam, and a decision
tree build using this data set.

Decision tree accuracy performance can be improved, using other clas-

sifiers at the leaves, such as Naive Bayes, or using ensembles of classifiers,

as we will see later on.

The basic way to build a tree is the following, starting by creating a

root node at the beginning node = root, and then doing the following:

(1) Assign A as the best decision attribute for node.

(2) For each value of A, create new descendant of node.

(3) Sort training instances to leaf nodes.

(4) If training instances are perfectly classified, then STOP, else iterate

over new leaf nodes.
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Two common measures are used to select the best decision attribute:

• Information Gain: computed as the decrement in entropy

Information Gain = Entropy(before Split) − Entropy(after split)

where Entropy is a measure of the uncertainty associated with a random

variable defined as Entropy = −∑c pi · log pi.
• Gini impurity Gain: computed using the Gini impurity measure instead

of the entropy

Gini Index =

c∑
pi(1 − pi) = 1−

c∑
p2i

The Gini index is a measure of the statistical dispersion associated with

a random variable.

3.1. The Hoeffding Tree

In the data stream setting, where we can not store all the data, the main

problem of building a decision tree is the need of reusing the examples to

compute the best splitting attributes. Hulten and Domingos [8] proposed

the Hoeffding Tree or VFDT, a very fast decision tree for streaming data,

where instead of reusing instances, we wait for new instances to arrive. The

most interesting feature of the Hoeffding tree is that it builds an identical

tree with a traditional one, with high probability if the number of instances

is large enough, and that it has theoretical guarantees about that.

The pseudo-code of VFDT is shown in Figure 3. The Hoeffding Tree

is based on the Hoeffding bound. This inequality or bound justifies that a

small sample can often be enough to choose an optimal splitting attribute.

Suppose we make n independent observations of a random variable r with

range R, where r is an attribute selection measure such as information gain

or Gini impurity gain. The Hoeffding inequality states that with probability

1− δ, if the true mean r of r is at least E[r] − ε, then

ε =

√
R2 ln 1/δ

2n

Using this fact, the Hoeffding tree algorithm, can determine, with high

probability the smallest number n of examples needed at a node when

selecting a splitting attribute.

The Hoeffding Tree maintains in each node the statistics needed for

splitting attributes. For discrete attributes, this is the same information as

needed for computing the Naive Bayes predictions: a 3-dimensional table
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HoeffdingTree(Stream, δ)

1 � Let HT be a tree with a single leaf(root)

2 � Init counts nijk at root

3 for each example (x, y) in Stream

4 do HTGrow((x, y), HT, δ)

HTGrow((x, y), HT, δ)

1 � Sort (x, y) to leaf l using HT

2 � Update counts nijk at leaf l

3 if examples seen so far at l are not all of the same class

4 then

5 � Compute G for each attribute

6 if G(Best Attr.)−G(2nd best) >
√

R2 ln 1/δ
2n

7 then

8 � Split leaf on best attribute

9 for each branch

10 do� Start new leaf and initialize counts

Fig. 3. The Hoeffding Tree algorithm.

that stores for each triple (xi, vj , c) a count ni,j,c of training instances with

xi = vj , together with a 1-dimensional table for the counts of C = c. The

memory needed depends on the number of leaves of the tree, but not on

the size of the data stream.

A theoretically appealing feature of Hoeffding Trees not shared by other

incremental decision tree learners is that it has sound guarantees of per-

formance. Using the Hoeffding bound one can show that its output is

asymptotically nearly identical to that of a non-incremental learner using

infinitely many examples.

Domingos et al. [8] improved the Hoeffding Tree algorithm with an ex-

tended method called VFDT, with the following characteristics:

• Ties: when two attributes have similar split gain G, the improved

method splits if the Hoeffding bound computed is lower than a cer-

tain threshold parameter τ .

G(Best Attr.)−G(2nd best) <

√
R2 ln 1/δ

2n
< τ
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• To speed up the process, instead of computing the best attributes to

split every time a new instance arrives, it computes them every time a

number nmin of instances has arrived.

• To reduce the memory used in the mining, it deactivates the least

promising nodes that have lower pl × el where

– pl is the probability to reach leaf l

– el is the error in the node l

– It is possible to initialize the method with an appropriate decision

tree. Hoeffding Trees can grow slowly and performance can be

poor initially so this extension provides an immediate boost to

the learning curve.

A way to improve the classification performance of the Hoeffding Tree

is to use Naive Bayes learners at the leaves instead of the majority class

classifier. Gama et al. [9] were the first to use Naive Bayes in Hoeffding Tree

leaves, replacing the majority class classifier. However, Holmes et al. [10]

identified situations where the Naive Bayes method outperformed the stan-

dard Hoeffding tree initially but is eventually overtaken. To solve that,

they proposed a hybrid adaptive method that generally outperforms the

two original prediction methods for both simple and complex concepts.

The Hoeffding Adaptive Tree [11] is an extension of the Hoeffding Tree

that uses ADWIN as a change detector, to adapt the tree structure of

the decision tree to the changes in the distribution of the learning data.

Users can use the Hoeffding Adaptive Tree easily without needing to set

parameters that depend on the scale of the data change.

3.2. Ensemble Methods

Ensemble methods are combinations of several models whose individual

predictions are combined in some manner (e.g., averaging or voting) to

form a final prediction. When tackling non-stationary concepts, ensembles

of classifiers have several advantages over single classifier methods: they are

easy to scale and parallelize, they can adapt to change quickly by pruning

under-performing parts of the ensemble, and they therefore usually also

generate more accurate concept descriptions.

Bagging, boosting and stacking are traditional ensemble methods for

non-streaming environments. Usually ensemble methods outperform single

classifiers at the cost of more time and memory resources.
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Bagging is one of the simplest ensemble methods to implement.

Non-streaming bagging [12] builds a set of M base models, training each

model with a bootstrap sample of size N created by drawing random sam-

ples with replacement from the original training set. Each base model’s

training set contains each of the original training examples K times where

P (K = k) follows a binomial distribution:

P (K = k) =

(
n

k

)
pk(1− p)n−k =

(
n

k

)
1

n

k (
1− 1

n

)n−k

This binomial distribution for large values of n tends to a Poisson(1) dis-

tribution, where Poisson(1)= exp(−1)/k!. Using this fact, Oza and Rus-

sell [13, 14] proposed Online Bagging, an online method that instead of

sampling with replacement, gives each example a weight according to Pois-

son(1). Figure 4 shows the pseudocode of this ensemble method.

Online Bagging(M)

Input: M - number of classifiers in the ensemble

1 Initialize base models hm for all m ∈ {1, 2, ...,M}
2 for each example (x, y) in Stream

3 do for m = 1, 2, ...,M

4 do Set w = Poisson(1)

5 Update hm with the current example with weight w

6 anytime output:

7 return hypothesis: hfin(x) = argmaxy∈Y

∑T
t=1 I(ht(x) = y)

Fig. 4. Oza and Russell’s Online Bagging for M models.

Example 1. LetD be a dataset of 4 instances : A, B, C, D. Imagine that we

have 5 classifiers, and we run a non-streaming bagging, performing sampling

with replacement. The inputs for each classifier will be the following:

Classifier 1: B, A, C, B

Classifier 2: D, B, A, D

Classifier 3: B, A, C, B

Classifier 4: B, C, B, B

Classifier 5: D, C, A, C
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And this is equivalent to the following sorted inputs:

Classifier 1: A, B, B, C: A(1) B(2) C(1) D(0)

Classifier 2: A, B, D, D: A(1) B(1) C(0) D(2)

Classifier 3: A, B, B, C: A(1) B(2) C(1) D(0)

Classifier 4: B, B, B, C: A(0) B(3) C(1) D(0)

Classifier 5: A, C, C, D: A(1) B(0) C(2) D(1)

So, to perform bagging in a data streaming setting, we just need to

assign each new instance that arrives a weight of Poisson(1).

When data is evolving over time, it is important that models adapt

to the changes in the stream and evolve over time. ADWIN bagging [15]

is the online bagging method of Oza and Russell with the addition of the

ADWIN algorithm as a change detector and as an estimator for the weights

of the boosting method. When a change is detected, the worst classifier of

the ensemble of classifiers is removed and a new classifier is added to the

ensemble.

A more powerful adaptive bagging exists that extends ADWIN bagging,

called leveraging bagging [16]. It leverages the performance of bagging, with

two randomization improvements: increasing resampling and using output

detection codes. Figure 5 shows the pseudocode of this method.

Leveraging Bagging(M)

Input: M - number of classifiers in the ensemble

1 Initialize base models hm for all m ∈ {1, 2, ...,M}
2 Compute for each classifier m and class y a binary output

code matrix μm(y)

3 for each example (x, y) in Stream

4 do for m = 1, 2, ...,M

5 do Set w = Poisson(λ)

6 Update hm with the current example

with weight w and binary mapped class μm(y)

7 if ADWIN detects change in error of one of the classifiers

8 then Replace classifier with higher error with a new one

9 anytime output:

10 return hypothesis: hfin(x) = argmaxy∈Y

∑T
t=1 I(ht(x) = μt(y))

Fig. 5. Leveraging Bagging for M models.
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Resampling with replacement is done in Online Bagging using Pois-

son(1). There are other sampling mechanisms:

• Lee and Clyde [17] uses the Gamma distribution (Gamma(1,1)) to ob-

tain a Bayesian version of Bagging. Note that Gamma(1,1) is equal to

Exp(1).

• Bulhman and Yu [18] propose subagging, using resampling without

replacement.

Fig. 6. Poisson distribution.

Leveraging bagging increases the weights of this resampling using a

larger value λ to compute the value of the Poisson distribution. The Poisson

distribution is used to model the number of events occurring within a given

time interval.

Figure 6 shows the probability function mass of the distribution of Pois-

son for several values of λ. The mean and variance of a Poisson distribution

is λ. For λ = 1 we see that 37% of the values are zero, 37% are one, and 26%
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are values greater than one. Using a weight of Poisson(1) we are taking out

37% of the examples, and repeating 26% of the examples, in a similar way to

non streaming bagging. For λ = 6 we see that 0.25% of the values are zero,

45% are lower than six, 16% are six, and 39% are values greater than six.

Using a value of λ > 1 for Poisson(λ) we are increasing the diversity of the

weights and modifying the input space of the classifiers inside the ensemble.

However, the optimal value of λ may be different for each dataset.

A second improvement is to add randomization at the output of the en-

semble using output codes. Dietterich and Bakiri [19] introduced a method

based on error-correcting output codes, which handles multiclass problems

using only a binary classifier. The classes assigned to each example are

modified to create a new binary classification of the data induced by a

mapping from the set of classes to {0,1}. A variation of this method by

Schapire [20] presented a form of boosting using output codes.

In leveraging bagging, we assign to each class a binary string of length

n and then build an ensemble of n binary classifiers. Each of the classifiers

learns one bit for each position in this binary string. When a new instance

arrives, we assign x to the class whose binary code is closest. We can view

an error-correcting code as a form of voting in which a number of incorrect

votes can be corrected.

Leveraging bagging uses random output codes instead of deterministic

codes. In standard ensemble methods, all classifiers try to predict the same

function. However, using output codes each classifier will predict a different

function. This may reduce the effects of correlations between the classifiers,

and increase diversity of the ensemble.

Random output codes are implemented in the following way: we choose

for each classifier m and class c a binary value μm(c) in a uniform, inde-

pendent, and random way. We ensure that exactly half of the classes are

mapped to 0. The output of the classifier for an example is the class which

has more votes of its binary mapping classes. Table 1 shows an example

for an ensemble of 6 classifiers in a classification task of 3 classes.

Leveraging bagging is an extension of ADWIN bagging and uses the same

strategy to deal with concept drift. Algorithm 5 shows the pseudo-code for

Leveraging Bagging. First it builds a matrix with the values of μ for each

classifier and class. For each new instance that arrives, it gives it a random

weight of Poisson(k). It trains the classifier with this weight, and when

a change is detected, the worst classifier of the ensemble of classifiers is

removed and a new classifier is added to the ensemble. To predict the class

of an example, it computes for each class c the sum of the votes for μ(c) of
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Table 1. Example matrix of random output
codes for 3 classes and 6 classifiers.

Class 1 Class 2 Class 3

Classifier 1 0 0 1
Classifier 2 0 1 1
Classifier 3 1 0 0
Classifier 4 1 1 0
Classifier 5 1 0 1
Classifier 6 0 1 0

all the ensemble classifiers, and outputs as a prediction the class with the

most votes.

3.3. Classification in MOA

MOA contains stream generators, classifiers and evaluation methods. Fig-

ure 7 shows the MOA graphical user interface. However, a command line

interface is also available.

Considering data streams as data generated from pure distributions,

MOA models a concept drift event as a weighted combination of two pure

distributions that characterizes the target concepts before and after the

drift. Within the framework, it is possible to define the probability that

instances of the stream belong to the new concept after the drift. It uses

the sigmoid function, as an elegant and practical solution [15, 21].

MOA contains the data generators most commonly found in the liter-

ature. MOA streams can be built using generators, reading ARFF files,

joining several streams, or filtering streams. They allow for the simula-

tion of a potentially infinite sequence of data. The following generators

are currently available: Random Tree Generator, SEA Concepts Genera-

tor, STAGGER Concepts Generator, Rotating Hyperplane, Random RBF

Generator, LED Generator, Waveform Generator, and Function Generator.

MOA contains several classifier methods such as: Naive Bayes, Deci-

sion Stump, Hoeffding Tree, Hoeffding Adaptive Tree [11], Hoeffding Op-

tion Tree [22], Bagging, Boosting, Bagging using ADWIN, Bagging using

Adaptive-Size Hoeffding Trees [15] and Leveraging Bagging [16].

For example, a non-trivial example of the EvaluateInterleavedTestThen-

Train task creating a comma separated values file, training the Hoeffd-

ingTree classifier on the WaveformGenerator data, training and testing on

a total of 100 million examples, and testing every one million examples, is

encapsulated by the following command line:
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Fig. 7. MOA graphical user interface.

java -cp.:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask\

"EvaluateInterleavedTestThenTrain -l HoeffdingTree \

-s generators.WaveformGenerator \

-i 100000000 -f 1000000" > htresult.csv

MOA is easy to use and extend. A simple approach to writing a new

classifier is to extend moa.classifiers.AbstractClassifier, which will

take care of certain details to ease the task.

4. Clustering

Clustering is an unsupervised learning task that mines unlabeled data. It is

useful, when we have unlabeled data, and we want to find relevant groups

in the data. Clustering consists in the distribution of a set of instances

into non-known groups according to some common relations or affinities.

The main difference with classification is that the groups are not-known

before starting the learning process. There are many examples of clustering:
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market segmentation of customers, or finding social network communities

are two examples.

We can see clustering as an optimization problem, where we want to

optimize a cost function. Some clustering methods needs the k parameter

to know the quantity of clusters to find in the data, and other methods

does not have any restriction in the number of clusters to find in the data.

The k-means clustering method is one of the most used methods in

clustering, due to its simplicity. The k-means algorithm starts selecting

k centroids in a random way. After that there are two main steps: first

assign to each instance the nearest point, and second, recompute the cluster

centroids using these new assignments. This is done in a iterative way,

until a stopping criterion is accomplished, mainly based in the sum of the

distance to the centroids. k-means is not a streaming method as it requires

to do several passes over the data.

Streaming methods for clustering have two phases, an on-line and an off-

line phase. In the on-line, a set of micro-clusters is computed and updated

in a very fast way, and in the off-line phase, a classical batch clustering

method as k-means is performed using the micro-clusters computed in the

on-line phase. The on-line phase is doing only one pass over the data, and

the off-line phase is doing several passes, but not over all the data, only

over the set of micro-clusters, usually a small set of less than 200 points.

4.1. Clustering in MOA

MOA contains also an experimental framework for clustering data streams,

so that it will be easy for researchers to run experimental data stream

benchmarks. The features of MOA for stream clustering are:

• data generators for evolving data streams (including events such as

novelty, merge, etc. [23]),

• an extensible set of stream clustering algorithms,

• evaluation measures for stream clustering,

• visualization tools for analyzing results and comparing different set-

tings.

For stream clustering we added new data generators that support the

simulation of cluster evolution events such as merging or disappearing of

clusters [23].
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Fig. 8. Visualization tab of the clustering MOA graphical user interface.

MOA contains several stream clustering algorithms such as the following

ones:

• StreamKM++ [24]: It computes a small weighted sample of the data

stream and it uses the k-means++ algorithm as a randomized seeding

technique to choose the first values for the clusters. To compute the

small sample, it employs coreset constructions using a coreset tree for

speed up.

• CluStream [25]: It maintains statistical information about the data

using micro-clusters. These micro-clusters are temporal extensions of

cluster feature vectors. The micro-clusters are stored at snapshots in

time following a pyramidal pattern. This pattern allows to recall sum-

mary statistics from different time horizons.

• ClusTree [26]: It is a parameter free algorithm automatically adapting

to the speed of the stream and it is capable of detecting concept drift,
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novelty, and outliers in the stream. It uses a compact and self-adaptive

index structure for maintaining stream summaries.

• Den-Stream [27]: It uses dense micro-clusters (named core-micro-

cluster) to summarize clusters. To maintain and distinguish the po-

tential clusters and outliers, this method presents core-micro-cluster

and outlier micro-cluster structures.

• D-Stream [28]: This method maps each input data record into a grid

and it computes the grid density. The grids are clustered based on the

density. This algorithm adopts a density decaying technique to capture

the dynamic changes of a data stream.

• CobWeb [29]. One of the first incremental methods for clustering data.

It uses a classification tree. Each node in a classification tree repre-

sents a class (concept) and is labeled by a probabilistic concept that

summarizes the attribute-value distributions of objects classified under

the node.

MOA contains measures for analyzing the performance of the clustering

models generated. It contains measures commonly used in the literature as

well as novel evaluation measures to compare and evaluate both online and

offline components. The available measures evaluate both the correct as-

signment of examples [30] and the compactness of the resulting clustering.

The visualization component (cf. Figures 8 and 9) allows to visualize the

stream as well as the clustering results, choose dimensions for multi dimen-

sional settings, and compare experiments with different settings in parallel.

Beside providing an evaluation framework, the second key objective is

the extensibility of the benchmark suite regarding the set of implemented

algorithms as well as the available data feeds and evaluation measures.

Figure 8 shows a screenshot of our visualization tab. For this screen-

shot two different settings of the CluStream algorithm [25] were compared

on the same stream setting (including merge/split events every 50000 ex-

amples) and five measures were chosen for online evaluation (CMD, F1,

Precision, Recall and SSQ). The upper part of the GUI offers options to

pause and resume the stream, adjust the visualization speed, choose the

dimensions for x and y as well as the components to be displayed (points,

micro- and macro clustering and ground truth). The lower part of the GUI

displays the measured values for both settings as numbers (left side, in-

cluding mean values) and the currently selected measure as a plot over the

arrived examples (right, F1 measure in this example). For the given setting

one can see a clear drop in the performance after the split event at roughly

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch01 page 22

22 A. Bifet et al.

Fig. 9. Option dialog for the RBF data generator (by storing and loading settings
benchmark streaming data sets can be shared for repeatability and comparison).

160000 examples (event details are shown when choosing the corresponding

vertical line in the plot). While this holds for both settings, the left configu-

ration (red, CluStream with 100 micro clusters) is constantly outperformed

by the right configuration (blue, CluStream with 20 micro clusters).

5. Conclusions

MOA is a classification and clustering system for massive data streams with

the following characteristics:

• benchmark streaming data sets through stored, shared, and repeatable

settings for the various data feeds and noise options, both synthetic

and real,
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• set of implemented algorithms for comparison to approaches from the

literature,

• open source tool and framework for research and teaching similar to

WEKA.

MOA is written in Java. The main benefits of Java are portability,

where applications can be run on any platform with an appropriate Java

virtual machine, and the strong and well-developed support libraries. Use

of the language is widespread, and features such as the automatic garbage

collection help to reduce programmer burden and error.

MOA can be found at:

http://moa.cms.waikato.ac.nz/

The website includes a tutorial, an API reference, a user manual, and

a manual about mining data streams. Several examples of how the soft-

ware can be used are available. The sources are publicly available and are

released under the GNU GPL license.

The core team and the community developers of MOA plan to con-

tinue extending MOA by adding more classification methods, outlier de-

tection, multi-label and multi-target learning, and frequent pattern mining

methods.
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[4] A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive
windowing. In SIAM International Conference on Data Mining (2007).

[5] M. Datar, A. Gionis, P. Indyk, and R. Motwani, Maintaining stream statis-
tics over sliding windows, SIAM Journal on Computing. 14(1), 27–45 (2002).

[6] J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream
learning algorithms. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 329–338 (2009).

[7] A. Bifet, G. D. F. Morales, J. Read, G. Holmes, and B. Pfahringer. Efficient
online evaluation of big data stream classifiers. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Sydney, NSW, Australia, August 10–13, 2015, pp. 59–68 (2015).

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch01 page 24

24 A. Bifet et al.

[8] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 71–80 (2000).

[9] J. Gama and P. Medas, Learning decision trees from dynamic data streams,
Journal of Universal Computer Science, 11(8), 1353–1366 (2005).

[10] G. Holmes, R. Kirkby, and B. Pfahringer. Stress-testing hoeffding trees. In
PKDD, pp. 495–502 (2005).
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Learning from data streams can only be realized by systems which are
not only effective but also efficient. That is, knowledge discovery in this
context is impossible without being aware of the computational resources
available. Weightless artificial neural networks (WANNs) are based on
an alternative principle to iterative optimization of weights employed
by most mainstream artificial neural network models and related tools.
WANNs explicitly manage knowledge pieces, which are stored by RAM
nodes. Such foundational difference reflects on the adaptability of these
models to streaming inputs: in such scenario, the application of weight-
less models can be considered more natural than the same for their
weighted counterparts, with an ample control over learning capability
as well as resources consumption. This chapter details a WANN-based
approach for mining data streams, which allows the maintenance of an
up-to-date data summary which can be used for several purposes. The
insights and original ideas which power such model are explained as well,
enabling novel applications and further development of them.

26
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1. Introduction

Because of technological facts of our time as social networks, Internet of

Things, ubiquitous sensing and others, data generation processes became

faster and more numerous, while also acting as unbounded data sources. In

order to extract knowledge from such data, using classic machine learning

methods to process a data sample is possible. However, as fast as more

data is generated, knowledge previously obtained becomes obsolete. In this

scenario, classical methods could learn from scratch every time a new batch

of observations becomes available. Unfortunately, this strategy has some

weaknesses:1

• it can be hard to decide how large these batches should be;

• if the batches are too small, the lack of training data could harm

the learning process;

• on the other hand, if they are too large, they may feature concept

drift which could also have a negative effect on learning;

• learning from scratch can be very time consuming, what may not

be compatible with data input rate.

In the context being considered, data temporality is a key concept. How-

ever, classical machine learning and data mining techniques do not take such

aspect into account. This explains why their application in this case would

expectedly fail. Hence, instead of approaching such learning task consider-

ing as input a sequence of data sets, using a single data stream in the same

regard is the better alternative. This implies processing temporal data as

it is, and not as if such time dimension was not present. Consequently,

this also implies moving away from classical learning tools and relying on

true stream-oriented methods, which would uninterruptedly extract up-to-

date information from data. This way, data processing is realized with a

greater granularity and responsiveness to changes in the underlying data

distribution.

Methods developed to deal with data streams should meet efficiency

constraints imposed by the characteristics of their data sources:2 input

data is assumed to be infinitely large, so that it should be processed incre-

mentally instead of as a single batch; because data input rates can be very

high, buffering observations unrestrictedly is forbidden; as a scalability re-

quirement, the computational cost of processing a single observation should

not be related to the number of observations already processed. The obser-

vation of such requirements led to the development of data stream mining
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systems which are not only effective with respect to knowledge extraction,

but they are also fast enough to be scalable as desired.3 Moreover, these

systems also employ efficient memory management policies, usually based

on sampling or summarization techniques.4

Considering these challenges,5 Wilkes, Stonham and Aleksander Recog-

nition Device (WiSARD) was brought into play as powerful, flexible, multi-

purpose learner. This artificial neural network (ANN) model provides the

means for pattern recognition working as a lazy learner, memorizing and

matching small information pieces extracted from its inputs. The original

and most frequent use of this model is standard classification. However,

it has been used for other tasks: unsupervised learning,6,7 rule induction,8

generative modeling9 and natural language processing10,11 are some recent

examples of these applications. Such flexibility inspired the idea of explor-

ing its adaptation to feed from streaming data. It was also considered that

this could enable to reproduce its previous uses in such new and increasingly

popular scenario.

Other interesting characteristics of this model for the intended devel-

opment include its native high-speed functioning, which does not rely on

iterative optimization of any form. Instead, learning is realized record-

ing the occurrence of values obtained from randomly mapping the training

observations to a high-dimensional binary feature space. This way, each ob-

servation is processed individually, and learning is not affected by the input

order of observations in a training set. Moreover, learning and recognition

can be interleaved with no restriction. Such high-level granularity and sta-

bility could enable proper learning even if concept drift happens, responding

to such events in a reasonable way. Moreover, the explicit memorization

architecture of this model allows a fine control over its space complexity,

what is crucial to handle possibly large volumes of streaming data. It is

also valid to notice that most ANN models lack these characteristics, what

supports choosing WiSARD over other options.

In order to accomplish the targeted stream-oriented learning process, it

was considered necessary to change two aspects of WiSARD functioning.

The first of these aspects regards decremental learning. That is, since data

is continuously flowing, this model should incrementally learn from the most

recent observations while outdated knowledge is discarded. Disposing ex-

pired information is important not only because of efficiency, since storage

is limited while data is not. Besides this, there is no point in maintaining

knowledge that is not up-to-date, which could be mistaken as current, hurt-

ing model predictive capabilities. The second aspects is WiSARD defective
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operation when dealing with unbalanced data collections. It is impossible

to guarantee that during the entire stream processing there would be a

similar number of examples of all classes to be learned. Thus, it would be

necessary to enable proper learning even under this unfavorable condition.

This chapter presents ideas to address these two points.

This is the outline of the remaining sections: Section 2 presents the

WiSARD model, detailing its functioning, how it was inspired and compar-

ing its functioning to other well known statistical andmachine learning tools;

Section 3 describes how decremental learning could be accomplished while

preserving the characteristics of the base learner; Section 4 details a counter-

measure to data imbalance with minimum impact on WiSARD algorithmic

complexity; Section 5 presents an application of the proposed framework for

clustering; at last, some concluding remarks are provided in Section 6.

2. The WiSARD Model

Artificial neural networks are statistical tools whose design was inspired by

nervous systems of living beings, created to emulate some of the learning

capability of their biological counterparts. There exists a great variety of

ANN models, which have different characteristics and are used for several

purposes: function approximation, signal processing, classification, cluster-

ing, time series prediction and others. But all these models share a basic

design principle: each of them is defined as a collection of units, called

nodes or neurons, which are combined according to the model definition,

working collectively.

Biological neurons operate as signal processing units: they receive stim-

uli through its dendrites, which are organized as a tree; these stimuli are

combined during the traversal of the dendritic tree; resulting signals of such

combination reach the soma, where a response for such inputs is generated;

this response is forwarded trough the axon to muscles, glands or other neu-

rons whose dendrites are connected to this axon by synapses. Figure 1

illustrates these components of a generic neuron.

The most popular mathematical abstraction of biological neurons was

originally proposed by McCulloch and Pitts.12 In such model, the synapses

are substituted by edges, connecting the nodes of the neural network. The

stimuli the neuron receives is substituted by the input of numerical val-

ues. These values are multiplied by numerical weights associated to the

edges they traverse. At last, the sum of these multiplications is input to

some function, whose outcome is used as the output of the neuron. Such
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Dendrites

Axon

Soma

Figure 1: A sketch of a biological neuron.a

modeling is reasonable from both biological and mathematical points of

view. Various ANN models rely on the modification of weights of its edges

by the superposition of the effects of the observations which compose the

training sample.

Weightless ANNs 13 are memory-based alternatives to weights-based

ones. All links of these networks have no weight, acting as the simplest

communication channels, exercising no effect on data traffic. Therefore,

their nodes are responsible for the learning capability these networks ex-

hibit. These nodes operate as memory units, keeping small portions of

information, which are combined when a query regarding the knowledge

the system possess needs to be answered. These information pieces are the

outcome of mapping the data used as knowledge source.

The biological inspiration of these nodes is the influence of dendritic

trees on neuron functioning. In the first abstraction described, such trees

were modeled as a weighted edges, which multiply the neuron inputs before

the application of the activation function on their summation. Although

practical, this is a rough simplification of how these trees operate. As a

matter of fact, the input signals of biological neurons, which can be of

two types (excitatory or inhibitory), are combined by the dendritic tree

before reaching the neuron soma, where they prompt the generation of a

new signal. This action can be naturally compared to the definition of a

boolean key used to access a index of boolean values. In fact, this is how

the most basic neurons of weightless ANN models work.

The WiSARD5 is a weightless ANN. The way it works is quite simple:

it implements a mapping-and-memorization scheme in a collection of nodes

organized in a single layer; the outputs these nodes can provide are lim-

ited to 0 or 1; these outputs are aggregated through ordinary summation.

aAdaptation of image licensed under Creative Commons Attribution-Share Alike 3.0
Unported. Source: http://en.wikipedia.org/wiki/Neuron
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For classification, this model provides for each class a value in the interval

[0, 1], representing how well the provided observation matches the acquired

knowledge regarding the classes. For binary classification, it is straightfor-

ward to transform a two-values answer provided by WiSARD to a single

value as an output from a Multilayer Perceptron: the subtraction of the two

given values is enough for this. However, the answer format of WiSARD is

more informative: for example, a small difference between two values close

to 1 possibly is an evidence that both classes could be the true class of the

input observation; but the same difference between values close to 0 could

be an evidence that none of the classes are good guesses.

The values which compose an answer obtained from WiSARD are com-

puted from structures called discriminators. Each discriminator is respon-

sible for storing the knowledge regarding a class, as well as assessing the

matching between the class it represents and any observation whose true

class has to be predicted. How a discriminator learns about its respective

class is described in Algorithm 1. In a sentence, it records in its nodes

the values resulting from mapping the observations in the training sample.

Mind some notation introduced here: the discriminator of class ẏ is rep-

resented by Δẏ; the jth node of Δẏ is represented by Δẏ,j ; the number of

nodes which compose each discriminator is represented by δ.

1: for all Δẏ,j, the network nodes do

2: Δẏ,j ← ∅ � All nodes operate as sets, and are initially empty

3: for all pairs (�xi, yi), the training sample do

4: Let addressing(�xi) = (a1 a2 · · · aδ) be a vector mapped from �xi

5: for all addresses aj in addressing(�xi) do

6: Δyi,j ← Δyi,j ∪ {aj} � Adding address aj to node Δyi,j

Algorithm 1: A description of WiSARD training procedure.

There are several analogies between hardware systems and WiSARD.

Consequently, some parts of its structure are named using terms which

belong to this domain. For example, its nodes are called RAM nodes, a

direct reference to their memory-like operation, different from the functional

nodes of the weights-based networks. Like physical RAM modules, their

content is retrieved or altered using addresses, defined by an addressing

procedure. Despite this nomenclature, RAM nodes work identically to sets,

well-known mathematical structures, and are commonly implemented using
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hash tables. Likewise, addresses can be seen as habitual vectors, obtained

from mapping the observations.

After training, a WiSARD instance can rate the matching between any

known class ẏ and an observation �x as shown in Expression (1a). At last,

an observation �x is classified according to Expression (1b).

matching(�x, ẏ) =
1

δ

∑
i

1Δẏ,i(addressing i(�x))
b; (1a)

ŷ = argmax
ẏ

matching(�x, ẏ). (1b)

There is an extra level of generalization implied by the matching com-

putation. Consider that a discriminator Δ+ was trained using the observa-

tions of a set X+ = {. . . , �xi, . . . }. For a given observation �x, Expression (2)

holds: �x perfectly matches Δ+ (i.e., matching(�x,+) = 1) iff all addresses

of �x match addresses of observations in X+. Thus, the combination of

addresses obtained from different observations allow the recognition of ob-

servations which do not belong to the training sample.

∀i, ∃�x′∈X+
addressing i(�x

′) = addressing i(�x) ⇐⇒ matching(�x,+) = 1.

(2)

Mathematically, WiSARD addressing procedure can be described as a

composite function g ◦ f : Rn → {0, 1}δ×β, such that:

• f : Rn → {0, 1}n×γ is any encoding function14,15 which provides

binary representations of the observations;

• g : {0, 1}n×γ → {0, 1}δ×β is a random mapping defined prior to

training, described as �A 
→ �B,Bi,j = Ai′,j′ , for arbitrary i, j, i′, j′.

Variable γ, which controls encoding resolution, and β, the length of the

addresses, are model parameters. If data is originally binary, an identity-

like function can be used for encoding: that is the case for black-and-

white images, the kind of data for which WiSARD was originally developed.

Otherwise, for example, if all data features are scaled to interval [0, 1], the

zero-padded-unary encoding function, Expression (3a), can be used.

f(�x) = (h(x0), h(x1), · · · , h(xn)), (3a)

h(y) = ([�γy� ≥ 1], [�γy� ≥ 2], · · · , [�γy� ≥ γ])c. (3b)

bThe indicator function: 1A(x) = 1 if x ∈ A; otherwise, 1A(x) = 0.
c�x� represents the nearest integer of real number x.
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For a training sample X , the time complexity of WiSARD training pro-

cedure, Algorithm 1, is O(|X | δ β). That is, for each of the |X | observations,
δ node updates are realized, and the cost of each of these updates can be

conservatively equated to the definition of a key of β bits. It can be noticed

that there is no dependence between such cost and the dimensionality of

the observations. However, this dependence can be established according

to how addressing is performed. In turn, a single prediction according to

Expression (1b) requires O(|Ẏ | δ β) steps, where |Ẏ | represents the number

of known classes.

The discriminator nodes register the occurrence of addresses which are

β-bits strings. There are 2β possible values for these strings. This can

be used to asymptotically define the memory complexity of a WiSARD

discriminator: O(δ β 2β). This bound can be considered too “pessimist”,

since it is quite uncommon for a node to register O(2β) addresses: first, such

condition presumes that |X | ≥ O(2β), while in commonly used WiSARD

setups, |X | � 2β; second, it also presumes that the number of distinct

addresses to be obtained from observations in X will be of the order of

2β , but this is hardly feasible, because in practice observations input to

the same discriminator, as examples of a given class, are expected to have

addresses in common. A better bound, although still very conservative, is

O(|X | δ β).

3. Decremental Learning

As originally defined, an instance of the WiSARD model would be able to

gradually process a data stream: this comes from the fact that WiSARD

training is performed incrementally. However, based on such feature, the

content of its nodes could be expanded up to the point of saturation.9 That

is, the pattern the discriminator represents would become too general, mak-

ing recognition meaningless. In order to avoid reaching such undesirable

condition, discarding stored addresses which are no longer useful is nec-

essary. In this sense, such usefulness should be defined according to data

temporality: an address needs to be kept as long as it contributes to the

representation of current knowledge. Such contribution can be verified by

occurrence of some observation which also provides this already stored ad-

dress. Consequently, it becomes necessary to register how recently each

address was matched, so that their disposal could happen based on such

record.
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The most straightforward way to implement this idea is to consider the

existence of a dictionary D, which maps addresses to time stamps. As

some incoming observation �x is processed on instant t, this dictionary is

updated as follows: Dj,aj ← t, for each component aj of addressing(�x) =

(a1 a2 · · · aδ). Including this operation in WiSARD training procedure

does not alter the computational complexity of the model, since it repre-

sents a constant increase of its time and space costs. This way, on every

instant during stream processing, each stored address would be related to

a time stamp representing its recency.

Despite such modification, no address would be discarded since it was

not defined the criteria to rule an address as outdated. A simple criteria

is to consider as expired any address whose respective time stamp is below

some given threshold. Such threshold should be updated while the stream

is processed: otherwise, it would become useless as the values of the time

stamps increase over time. An idea in this regard is to assume that at

instant t, this threshold is t−ω, where ω is an additional model parameter.

Such idea can be directly related to the sliding window aging model,16 so

that the window length is ω. This way, whenever Dj,aj < t − ω for any

pair (j, aj), each discriminator ẏ should be updated as follows: Δẏ,j ←
Δẏ,j \ {aj}.

After deciding how outdated addresses are ruled as so, trying to identify

these elements among all others is naturally the next step. A naive approach

for this is to verify the expiration status of all entries of the dictionary D,

one by one. Such action would be prohibitively expensive, as it can be com-

pared to processing each of the ω observations in the sliding window once

again, and should be performed every time an novel observation is received.

A better strategy is to considerD a least recently used (LRU) dictionary, so

that its entries are sorted based on how recently they were updated. This

reduces to a minimum the cost of determining which entry of D should

be first considered for disposal. Although the cost of maintaining such

structure is not negligible, it is indisputably more efficient than the afore-

mentioned naive approach. The combination of the ideas just described

represent one solution for the accomplishment of decremental learning by

WiSARD, as shown in Algorithm 2.

One possible variation of this given solution regards the substitution of

sliding window threshold t − ω by the definition of the maximum number

of elements of D. Therefore, whenever the number of entries of D reaches

this maximum, adding a new entry requires discarding an existing one, as

well as its respective RAM nodes addresses. This is an interesting alterna-
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1: for all triples (�xi, yi, ti), the streaming observations do

2: while min D < t− ω do

3: j, aj = argmin
j,aj

Dj,aj

4: for all ẏ ∈ Ẏ do

5: Δẏ,j ← Δẏ,j \ {aj}
6: Delete Dj,aj

7: Let addressing(�xi) = (a1 a2 · · · aδ) be a vector mapped from �xi

8: for all addresses aj in addressing(�xi) do

9: Δyi,j ← Δyi,j ∪ {aj} � Adding address aj to node Δyi,j

10: Dj,aj ← t

Algorithm 2: A stream-oriented WiSARD training procedure.

tive to using a fixed-size window to decide about the disposal of outdated

knowledge. Instead, limiting the number of elements in D leads to the im-

plicit definition of an adaptive window. Such window becomes larger when

input data is repetitive, what can represent stream stability, and shrinks

otherwise. Furthermore, this allows setting a hard limit to memory usage,

what can be useful in certain cases.

The can be variations of the original solution to learn decrementally.

For example, instead of recording when an address was last matched, the

dictionary D could register the last time the addresses were written. Con-

sequently, instead of being indexed by pairs (j, aj), the keys of D would

be triples (ẏ, j, aj), in which ẏ represents a discriminator. Treating each

discriminator separately looks reasonable considering that the same pair

(j, aj) can contribute in very distinct ways to the up-to-date definitions of

two different patterns. That is, in a given instant during stream processing,

the triple (ẏ, j, aj) could be about to expire while (ẏ′, j, aj) was just written.
On the downside, depending on overlaps between patterns, this idea could

be significantly more expensive with respect to space complexity.

4. Learning from Unbalanced Streams

For the targeted stream-oriented version of WiSARD, proper handling un-

balanced data is as important as the efficient disposal of outdated knowl-
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edge. That is, both aspects need to be considered in order to avoid satu-

ration, a condition in which WiSARD learning and predictive capabilities

are nullified. With respect to data imbalance, saturation is a consequence

of the memorization-and-matching mechanism employed by this model, as

shown by the following reasoning:

(1) learning is realized storing binary features (i.e., addresses), while pat-

tern recognition happens matching the stored addresses to those ob-

tained from unlabeled observations;

(2) a pattern with numerous and varied examples has a greater chance of

comprising a large collection of addresses;

(3) thus, it is more probable to relate an unlabeled observation to this

pattern than to one with few training examples;

(4) in the worst case, any observation would be related to the pattern with

most examples, whose respective discriminator would be saturated.

It is also interesting to notice that imbalance level can fluctuate during

the entire stream length, what represents an extra challenge in order to

solve this matter. A primitive attempt to counter imbalance while using

WiSARD for data streams mining17 assumed that the chance of a discrimi-

nator to be saturated increases monotonically over time. However, because

learning happens not only incrementally but also decrementally, the collec-

tion of features comprised by a discriminator can become larger but can

also shrink during stream processing. Therefore, the ideal approach for

handling imbalance should be adaptive, based on the extent of the content

of each discriminator.7

Based on this reasoning, the cardinality of a discriminator is defined

as in Expression (4a). Still in this regard, Expression (4b) is called nor-

malized matching rate and targets countering saturation considering the

cardinality in its computation. It can be noticed that the denominator

of matching∗(k, �x) is the geometric mean of the size of the nodes of Δk,

what is consistent with way the sets of addresses are combined for gener-

alization and pattern recognition. Moreover, the cardinality of a discrim-

inator is asymptotically equivalent to the area of the feature space itself
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encompasses: |Δk| ∼
∫
matching(k, �x) dn�x.

|Δk| =
⎛
⎝∏

j

|Δk,j |
⎞
⎠ ; (4a)

matching∗(k, �x) =
matching(k, �x)

(|Δk|)1/δ . (4b)

Replacing the original matching rate with its just described normal-

ized variant does not increase the computational complexity of the system.

Therefore, there is no reason to avoid its use because of efficiency. This

way, its adoption could only be rejected if this could have a negative effect

on WiSARD predictive capability. Fortunately, it can be perceived that

its participation on matching computation is equivalent to a regularization

term, penalizing a discriminator according to how general, or vague is the

pattern it represents. In this regard, the following example comes in handy:

if matching(ẏ, �x) = matching(ẏ′, �x) but |Δẏ| > |Δẏ′ |, predicting that �x is

an example of the pattern represented by ẏ′ is sensible; after all, the perti-

nence to both discriminators is the same, despite the fact that ẏ′ is a more

strict pattern; this way, even if matching(ẏ, �x) > matching(ẏ′, �x) choosing

ẏ′ over ẏ could still be valid.

The perspective of the cardinality of a discriminator as a regularization

term for normalized matching rate definition allows further developments.

For example, consider that regularization terms are usually attached to

some weighting factor. This fact can motivate the addition of a factor of

such kind to WiSARD matching rate definition. Another reason for such

modification is the additional flexibility provided by this parameter. That

is, the influence of cardinality on matching computation can be more or less

necessary, depending on the circumstances. After all, regular WiSARD pro-

vided interesting results despite not considering such participation at all.

The outcome of this last reflection is Expression (5), named adjusted match-

ing rate. Its calculation depends on an additional model parameter μ, the

cardinality weight. Setting μ = 0 reduces adjusted matching rate to original

matching calculation, while setting μ = 1 leads to the normalized matching

rate. As μ grows, it is more probable to choose precise discriminators over

generic, all-encompassing ones.

matching∗μ(k, �x) =
matching(k, �x)

(|Δk|)μ/δ . (5)
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5. Use Case: Clustering

In order to assess the applicability of the ideas just described, it is reported

next the outcome of their use in various clustering tasks. Since WiSARD is

a classifier, first of all its adaptation to unsupervised learning is described.

The resulting method was named WiSARD for Clustering Data Streams,

WCDS. Next, the performance of the WiSARD-based system when clus-

tering 2D toy data sets is presented, as a proof of concept. At last, it is

detailed WCDS use to cluster streaming observations from two large data

sets.

WCDS architecture is similar to that of the original WiSARD, with one

discriminator for each modeled pattern and RAM nodes as basic learning

units. However, WCDS needs to identify unprecedented patterns during

stream processing to create the respective discriminators. WiSARD does

not require this because it learns based on training data ground truth, which

is not available for clustering. In order to solve this matter, the following

policy was established:

(1) for each streaming observation �x, the best matching discriminator Δk,

k = argmaxk matching∗μ(k, �x), is identified;
(2) if matching∗μ(k, �x) < ε (variable ε represents any tiny value, as 10−100),

a new discriminator is created to represent the novel pattern denoted

by �x;

(3) otherwise, the best matching discriminator Δk records �x.

Another important feature of WCDS is its two-phase functioning.18

That is, instead of trying to define the clusters directly from streaming

data, the online maintenance of a collection of micro-clusters is used as

an intermediate step of this process. These micro-clusters are updated

during data stream processing, and feed an offline clustering procedure to

generate high-level clusters. During WCDS offline functioning, the discrim-

inators were aggregated according to a batch average-linkage agglomerative

clustering algorithm. In this regard, Expression (6) was used to evaluate

discriminators similarity.

s(Δa,Δb) =
1 +

∑
i |Δa,i ∩Δb,i|

1 +
∑

i |Δa,i ∪Δb,i| . (6)

In the first set of experiments, WCDS obtained the clusters feeding from

synthetic, bidimensional data sets, whose number of observations are in the

range from over three hundreds to just over three thousands. No temporal

information was considered during data processing. The five data sets used
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in this first set of experiments come from two publicly available data sets

repositories: Jain, a ‘two-moons’-like data set, and Aggregation, with 7

clusters in varied shapes, come from a collection found in the Web;d Com-

plex8 and Complex9, which feature, respectively, 8 and 9 clusters in varied

shapes can also be found in the Internet.e Such variety of characteristics

poses an interesting test of learning adaptability.

The results of this first task are depicted in Fig. 2. WCDS was tested

using the following parameter setup: δ = 200 and unary encoding with

γ = 200; since no aging was considered, ω =∞ and μ = 0; the β parameter

was adjusted to each data set, and its value is indicated together with the

obtained results. The targeted number of clusters was considered to be

known a priori. As shown, the clusters in all four tested scenarios were

successfully determined. The worst result regarded the Complex8 data

set, but they still led to a performance level over 0.9 with respect to the

V-measure clustering validation index.19

(a) Jain (β = 50) (b) Aggregation (β = 55)

(c) Complex8 (β = 70) (d) Complex9 (β = 80)

Figure 2: Clusters defined by WCDS for 2D toy data sets.

dhttp://cs.joensuu.fi/sipu/datasets/
ehttps://github.com/deric/clustering-benchmark
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In the just described experiments, input data was processed as a sin-

gle batch, targeting the definition of clusters just once. Alternatively, the

observations can be considered as a stream of items, which can be used

to establish current clusters according to data temporality. The next two

experiments explore scenarios featuring streaming data. Both are based on

regular data sets, whose elements are processed gradually. Current clusters

were defined and evaluated every 1000 observations. This allowed to verify

system sensitivity and responsiveness to concept drift.

This first test with data streams uses the KDD Cup 99 data set.f It

is composed of 494,021 observations divided in 23 classes, which were pro-

cessed in their original order. WCDS used the following setup: β = 70, δ =

50, γ = 50, μ = 1 and ω = 1000. Figure 3 presents the results of the ex-

periment with this data set. Observing the entropy plot, it can be noticed

that during the intermediate section of the data stream there is a single

class, what explains the null entropy in such period. Another interesting

fact is the inverse relation between entropy and clustering quality which is

also evidenced in this graph.

Figure 3: Results for the KDD Cup 99 data set.

The second test is based on the Forest Cover Type (FCT) data set,20

which is also popularly used for data streams clustering benchmarking. Its

581,012 observations are elements of 7 classes. They are described by 10

numeric attributes, besides those of other types which were not considered.

The results of this experiment are depicted in Fig. 4. WCDS used the same

settings of the KDD Cup 99 experiment. The greater entropy levels of

the FCT data set compared to those of the KDD Cup 99 data set are an

fhttp://kdd.ics.uci.edu/databases/kddcup99/

 

http://kdd.ics.uci.edu/databases/kddcup99/


December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch02 page 41

Weightless Neural Modeling for Mining Data Streams 41

evidence of the bigger challenge the first represents compared to the last

one. The small fluctuations of the V-measure values can be related to such

higher entropy.

Figure 4: Results for the Forest Cover Type data set.

6. Conclusion

Learning from data streams is a research subject of major relevance nowa-

days. Accomplishing such goal is quite challenging, since it requires not only

gathering meaningful information for the definition of high-level knowledge,

but also meeting some efficiency targeting real-time processing of large vol-

umes of streaming data. WiSARD can be seen as a valuable tool in this

regard: it is flexible enough power applications in numerous scenarios, while

having its low algorithmic complexity as one of its most patent features.

This chapter provided some general guidelines for the adaptation of this

model to feed from streaming data. Although some of its features can be

used in this new context with no modification, it was shown that at least

two aspects require careful reconsideration. The chapter discusses each of

these aspects, providing some novel insights about the operation of this

model which can be further developed. The subject addressed here is far

from being exhausted: there is still much more to explore regarding data

streams and the WiSARD model.
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Stream classification is a challenging research field in which algorithms
are required to process data online, use minimal resources, and react
to concept changes. The task of mining incoming instances becomes
even more demanding when the classifier is required to cope with imbal-
anced data — situations when one of the target classes is represented by
much less instances than other classes. This chapter gives an overview
of research on imbalanced stream classification. We present dedicated
ensemble algorithms designed to cope with concept changes, discuss chal-
lenges posed by imbalanced class distributions along with assorted dif-
ficulty factors, and give an outlook on how class imbalance and concept
changes can interact.

1. Introduction

Supervised classification is one of the most widely studied tasks in machine

learning, data mining, statistics, and pattern recognition. Given a set of

labeled training data, the task is to learn a relationship between values of

attributes describing examples and a target class label.1 This discovered re-

lationship can then be used as a classifier to assign class values to unlabeled

instances.

Numerous approaches to classification have already been proposed.1,2

Out of these proposals, ensembles of classifiers have been proven to be par-

ticularly efficient at increasing predictive accuracy and decomposing more

complex problems into easier sub-problems. An ensemble, also called a mul-

tiple classifier, is a set of individual component classifiers whose predictions

44
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are combined to assign a class label to a new instance. A good combina-

tion of classifiers requires that they are diversified, and many approaches

to fulfill this criterion have been introduced.3

Most classification algorithms have been proposed for batch learning

from static datasets that can be processed multiple times. However, the

development of information technology and new applications have led to

processing huge volumes of more complex data. In many domains, such as

sensor networks, financial data prediction, mobile device tracking or net-

work monitoring, data items arrive continuously in the form of data streams.

Compared to mining static data, the task of learning from data streams

introduces unprecedented challenges, especially with respect to computa-

tional resources, as well as restrictions on making predictions in short time.

Besides new processing requirements, another important challenge is that

algorithms learning from streams often act in dynamic non-stationary en-

vironments, where the data and target concepts change over time in a

phenomenon called concept drift .4 Examples of real-life concept drifts in-

clude spam categorization, weather predictions, monitoring systems, finan-

cial fraud detection, and evolving customer preferences.5

As standard algorithms for supervised classification are not capable of

meeting challenges presented by evolving data streams, several new algo-

rithms have been proposed.6,7 Out of a myriad of proposals, ensemble meth-

ods play an important role in reacting to many types of concept drift. Due

to their modular architecture they are flexible to incorporate new data by ei-

ther introducing a new component into the ensemble or updating knowledge

of existing components. Moreover, voting weights of component classifiers

can be tuned with respect to recent data elements.8

Many practical applications make learning classifiers from streams even

more challenging by introducing additional data complexities. One of such

additional challenges is class imbalance, i.e., a situation when one of the

target classes is highly underrepresented. Class imbalance is an obstacle

even for learning from static data, as standard learning algorithms are

usually biased toward better recognition of the majority classes and have

difficulties in correctly classifying new objects from the minority class. Since

several years, the class imbalance problem has been studied in this static

data framework and many new algorithms have already been introduced;

for their comprehensive review see recent monographs and surveys.9–11

However, the classification of imbalanced data is a relatively new re-

search topic in the stream mining community. An evolving and imbalanced

stream is a more demanding classification framework than a static dataset.
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Due to the evolving nature of data streams, it is possible that the imbalance

ratio and the notion of a minority class may change over time. A more com-

plex scenario will occur when these changes are accompanied by concept

drifts such as moving decision boundaries or other changes in class example

distributions. Making predictions becomes even more ambitious when mul-

tiple minority classes occur in the stream and novel classes may appear.12

Additionally, class imbalance introduces challenges to classifier performance

measures and evaluation procedures used in stream mining.13,14

This chapter describes recent advances that have been made in the field

of imbalanced data streams classification. In our opinion, it is still an open

research task which requires novel studies and whose analysis may lead

to many interesting results. Besides presenting current state-of-the-art in

ensemble algorithms for imbalanced streams, we would like to draw the

reader’s attention to the limitations of existing approaches and position

new research directions.

The remainder of the chapter is organized as follows. Section 2 gives a

more formal presentation of data stream classification and discusses basic

approaches to coping with concept drift. In Section 3, we describe the class

imbalance problem and other data difficulty factors connected with imbal-

anced class distributions. Section 4 reviews the state-of-the-art in imbal-

anced stream classifiers, whereas Section 5 showcases potential interactions

between class imbalance and concept drift. Finally, Section 6 concludes the

chapter with an outlook on potential future research directions in the field.

2. Data Streams

Before analyzing challenges posed by imbalanced streams, let us explain

the basic concepts and definitions concerning data stream classification.

A data stream can be defined as a sequence of labeled examples {xt, yt}
for t = 1, 2, . . . , T , where x is a vector of attribute values and y is a class

label (y ∈ {K1, . . . ,Kl}).15 When a new example xt arrives it is classified

by a classifier, which predicts its class label. Most studies6,7 consider a

completely supervised framework where after some time the true class label

yt is available and can be used to update the classifier.a

Since data streams can be potentially unbounded, the entire sequence

of examples cannot not be made available to a classifier at once. Moreover,

aWe note that there are several works concerning active learning and delayed labeling
in stream mining, however, as they do not concern imbalanced data, we focus solely on
the completely supervised framework.
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it is usually assumed that the time required to process a single instance

and the average memory usage should remain constant throughout the life

of a stream classifier.6 This forces data stream algorithms to process data

in smaller fragments, either online or in blocks (also called data chunks).

In the first approach, algorithms process single examples appearing one by

one in consecutive moments in time, while in the other approach, examples

are available only in larger sets called data blocks B1, B2, . . . , Bj . Blocks

are usually of equal size and the construction, evaluation, or update of

classifiers is done when all examples from a new block are available.

The distinction between online and block processing also refers to clas-

sifier evaluation procedures. Contrary to batch learning scenarios, it is

assumed that due to the size and speed of data streams repeated runs over

the data are not necessary to estimate classifier performance on labeled test-

ing examples. Furthermore, due to their computational costs, re-sampling

techniques such as cross-validation or bootstrapping are deemed too ex-

pensive for streams.15 As a result, simpler error-estimation procedures are

used, yet ones that build a picture of performance over time, either after

each example or consecutive blocks. The most popular of such procedures

involves interleaving testing with training. In practice, this means that each

individual example (or block of examples) is first used to test the classifier

before it is used for training.16 If concept drifts are expected, this scheme

is usually modified to calculate evaluation measures using only the most

recent data, rather than the entire stream. Such incremental assessment

with forgetting is often denoted as prequential evaluation.

As it was mentioned in the introduction, alongside restrictions concern-

ing processing time and memory usage data streams are characterized by

their potential to change over time, a phenomenon that is often referred to

as concept drift .4 More formally, if in each point in time t, every example is

generated by a source with a joint distribution P t(x, y) over the data and

all examples are generated by the same distribution, we say that concepts

in data are stable. However, if for two distinct points in time t and t+Δ an

x exists such that P t(x, y) �= P t+Δ(x, y), then concept drift occurs.6 Al-

though different component probabilities of P t(x, y) may change,4 in case

of supervised classification most studies are mainly interested in real drift,

that is changes in posterior probabilities of classes P (y|x). Nevertheless, it

is worth noticing that changes of imbalance ratios over time are also changes

in class distributions P (y) and, therefore, can be considered a special case

of virtual drift. Concept drifts introduce further difficulties to data stream

processing and force classifiers to forget outdated examples and adapt to
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new concepts. The task of actively recognizing and reacting to drifts is par-

ticularly challenging, as changes can occur suddenly, gradually, or reoccur

after some time.17

The aforementioned challenges inspired a range of novel classifiers de-

signed specifically to cope with evolving streams of data. These classi-

fiers can be divided into active (trigger-based) approaches, which introduce

changes in classifiers when drifts are detected, and passive (adaptive) ap-

proaches, which continuously update the classifier regardless of whether

drifts occur in the data stream or not.4

Trigger-based approaches include drift detectors that analyze incoming

examples and indicate the need for rebuilding a classifier. Drift detectors

are usually implemented using statistical tests based on sequential analysis,

process control charts, or monitoring differences between two distributions.4

Detectors based on sequential analysis check whether the classification er-

ror calculated on the most recent instances is significantly different from its

value calculated on a range of older instances. In drift detectors based on

control charts each classifier prediction is treated as a Bernoulli trail. Then,

the number of classification errors can be modeled with a binomial distri-

bution, which in turn can be tested for significantly improbable changes.18

Finally, several approaches use a reference window which is compared with

a sliding window of the most recent examples. If the distributions over

these two windows are significantly different, a change is signaled, suggest-

ing that only examples from the sliding window should be used to create a

new model.19

Adaptive methods operate in a different manner — they try to update

the classifier without explicit change detection. One general approach to

adapt classifiers to evolving streams includes using a sliding window, which

moves over processed examples and ensures that only the most recent data

is used to train a classifier. Some techniques use windows of a fixed size,

however, this introduces the problem of choosing a proper size for a given

stream (larger window sizes are more useful for slower concept drifts, but

fail whenever sudden drifts occur). Alternatively, dynamic adjusting of the

window size can also be applied.20–22 Apart from windowing approaches,

several innately incremental classifiers have been proposed. Probably the

most representative of such classifiers is the Very Fast Decision Tree (VFDT

or Hoeffding Tree)23 algorithm, which induces a decision tree from a data

stream incrementally, without the need for storing examples after they have

been used to update the tree. Hoeffding Trees work similarly to classic tree

induction algorithms and differ mainly in the selection of the split attribute,
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which is done without viewing all the examples but guarantees the right

split with a user-specified probability. Although the original VFDT algo-

rithm did not take into account concept drifts, currently there exist several

modifications of the algorithm that involve a forgetting mechanism.6

However, the majority of studies on time-changing data streams involve

the use of ensemble classifiers. Due to their modular construction, en-

sembles are capable of adapting to changing streams by introducing new

components created using batches of incoming examples, updating existing

component classifiers, or changing weights in the aggregation phase. De-

pending on the way component classifiers are created and updated, data

stream ensembles are categorized into block-based and online approaches.

Block-based ensembles re-evaluate components with fixed-size blocks of

incoming instances and usually replace the worst component with a new

candidate classifier trained on the most recent examples. The first of such

block-based ensembles was the Streaming Ensemble Algorithm (SEA),24

which used a heuristic replacement strategy based on accuracy and diver-

sity. Using these two factors, after each block of examples SEA reevaluates

a set of decision trees and substitutes the weakest classifier with a new

decision tree trained on examples from the most recent block. Following

a similar scheme, many other bock-based ensembles were put forward, e.g.

the Accuracy Weighted Ensemble,25 Learn++NSE,26 or the Accuracy Up-

dated Ensemble.17

Referring to online ensembles, one of the first proposed algorithms was

the Weighted Majority Algorithm,27 which combines the predictions of a

set of component classifiers and updates their weights when they make

false predictions. Another popular online ensemble is Online Bagging,28 a

generalization of batch bagging known from static environments, proposed

by Oza and Russell. It uses incremental learners as component classifiers

and mimics bootstrap sampling by using single examples multiple times

according to the Poisson distribution. Other reference online ensembles

include: the DDD algorithm,29 Dynamic Weighted Majority (DWM),30 or

the Online Accuracy Updated Ensemble.31 A broader categorization and

discussion on ensemble classifiers for evolving data streams can be found in

recent surveys.7,32,33

The aforementioned concepts and algorithms focus on three main chal-

lenges posed by data stream classification: limited time, memory restric-

tions, and concept changes. In the following section, we discuss other diffi-

culty factors that can make classification problems even more challenging.
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3. Class Imbalance and Data Difficulty Factors

The class imbalance problem typically concerns binary classification or bi-

narized multi-class problems, where one class (called a minority class) is

under-represented in comparison to the remaining classes (majority class).

Correct recognition of the minority class is of key importance and misclas-

sification of minority examples is more severe than incorrectly predicting

the majority class. We recall that standard classification algorithms tend

to focus on majority classes and, therefore, give unsatisfactory results in

imbalanced domains.9

It is worth noting that imbalanced data constitute a challenge not only

when constructing a classifier, but also when evaluating its performance.

Indeed, an overall classification accuracy is not the best criterion character-

izing performance of a classifier as it is biased toward recognizing examples

from the majority classes. Since good recognition of minority examples

is preferred, measures other than classification accuracy were defined on

the basis of the confusion matrix. To strike a balance between majority

and minority class performance, many researchers consider sensitivity and

specificity. Sensitivity (also called recall) is the ratio of correctly recognized

examples from the minority class, whereas specificity is the ratio of exam-

ples correctly excluded from the majority classes. Kubat and Matwin34

proposed to aggregate these measures through a geometric mean (G-mean).

A popular alternative, called the F-measure, involves aggregating precision

and recall using the harmonic mean. Furthermore, in case of scoring clas-

sifiers the area under the Receiver Operator Characteristic curve (AUC)

is typically exploited; Japkowicz and Shah35 present a comprehensive re-

view of these and other measures dedicated for evaluating classifiers on

imbalance data.

Recent studies show that the problem of class imbalance is usually ac-

companied by additional difficulty factors. In some problems characterized

by high imbalance, standard classifiers were found sufficiently accurate,36

whereas series of experimental evaluations have proven that, when there

is a clear separation between classes, the minority class can be sufficiently

recognized regardless of the high imbalance ratio.37 These and other stud-

ies have led to conclusions that the global class imbalance ratiob is not

necessarily the only, or even the main, problem causing the degradation

bGlobal imbalance ratio is usually expressed as either Nmin:Nmaj or Nmin/N , where
Nmaj , Nmin, N are the number of majority, minority, and total of examples in the
dataset, respectively.

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch03 page 51

Ensemble Classifiers for Imbalanced and Evolving Data Streams 51

of classification performance. Therefore, focusing only on the global ratio

may be insufficient for improving classification performance.38–42 Following

these opinions, in this chapter we draw our attention to other characteris-

tics of instance distributions in the attribute space. These characteristics

are often called data complexity or data difficulty factors. Although these

data factors should affect learning also in balanced domains, when they

occur together with class imbalance the deterioration of classification per-

formance is amplified and affects mostly (or sometimes only) the minority

class. Researchers usually distinguish the following data difficulty factors:

decomposing the minority class into rare sub-concepts, overlapping between

classes, and presence of outliers, rare instances, or noise. Examples of these

complexity factors are illustrated in Fig. 1.

(a) Compact homogeneous mi-
nority class

(b) Minority class decomposed
into three subclusters

(c) Minority class with large
overlapping (borderline) region

(d) Minority class composed of
two sets of rare cases (upper-
right) and four outliers

Fig. 1. Examples of minority class distributions with different difficulty factors. Mi-
nority examples are depicted as black circles, majority examples as white circles.
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The influence of class decomposition has been noticed by Japkowicz

et al.38,43 Their experimental studies with mainly artificial datasets have

clearly demonstrated that the degradation of classification performance has

resulted from the decomposition of the minority class into many sub-parts

containing very few examples, rather than from changing the global im-

balance ratio. They have also argued that the minority class often does

not form a compact homogeneous distribution of the single concept, but

is scattered into many smaller sub-clusters surrounded by majority exam-

ples. Such sub-clusters of minority examples often play the role of small

disjuncts ,43 which are harder to learn and cause more classification errors

than larger sub-concepts.

Other factors related to the class distribution are linked to high over-

lapping between regions of minority and majority class examples in the

attribute space. This difficulty factor has already been recognized as partic-

ularly important for standard, balanced, classification problems, however,

its role is more influential for the minority class. For instance, a series of ex-

perimental studies of six popular classifiers on synthetic data have pointed

out that increasing overlapping has been more influential than changing the

class imbalance ratio.39,44 The authors of these studies have also shown that

the local imbalance ratio inside the overlapping region is more influential

than the global ratio.

Yet another complexity factor which influences degradation of classi-

fier performance on imbalanced data is the presence of minority examples

inside distributions of the majority class. In standard machine learning,

such examples are often treated as noise. However, experiments presented

in a study by Napierala et al.45 have shown that single minority examples

located inside the majority class regions cannot be always treated as noise

since their proper treatment by informed preprocessing may improve clas-

sifiers. In more recent papers40,41 Napierala and Stefanowski distinguished

between safe and unsafe examples. Safe examples are the ones located in

homogeneous regions populated by examples from one class only. Other

examples are unsafe and they are more difficult to learn from. Unsafe

examples were further categorized into borderline (placed close to the deci-

sion boundary between classes), rare cases (isolated groups of few examples

located deeper inside the opposite class), and outliers. Napierala and Ste-

fanowski also argue that rare examples or outliers could represent very small

but valid sub-concepts of which no other representatives could be collected

for training. Therefore, they cannot be considered as noisy examples which

typically would be removed or re-labeled. The same authors introduced an
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approach40,41 to automatically identify the aforementioned types of exam-

ples in real world data sets by analyzing class labels of examples in the local

neighborhood of a considered example. Finally, other studies42 emphasize

that several of the aforementioned data factors usually occur together in

real world imbalanced data sets.

Various methods to handle class imbalance have already been pro-

posed.9–11 In general, they are categorized into data level and algorithm

level approaches.

Methods within the first category are classifier-independent. They are

applied in a preprocessing step and attempt to modify the class distribution

inside the training data toward a more balanced one.11 The simplest data

preprocessing techniques are random over-sampling, which replicates exam-

ples from the minority class, and random under-sampling, which randomly

eliminates examples from the majority classes until a required degree of bal-

ance between classes is reached. However, the simplest re-balancing may

not be sufficient to improve learning classifiers. The focused (also called in-

formed) methods, which consider internal characteristics of regions around

minority class examples, are often exploited, see e.g. SMOTE 46 and its ex-

tensions, one-side-sampling, NCR, or SPIDER.45 The most popular among

the informed methods is SMOTE, which considers each example from the

minority class and generates new synthetic examples along the lines be-

tween the selected example and some of its randomly selected k-nearest

neighbors from the minority class. A comprehensive review of re-sampling

methods for imbalanced data can be found in a survey by Branco et al.10

The second category, algorithm level methods, involves specific solutions

dedicated to improving a given classifier. They usually include modifica-

tions of the learning algorithm, its classification strategy, or adaptation to

the cost sensitive framework. Within the algorithm level approaches, en-

sembles are also quite often applied. These new proposed solutions usually

either employ preprocessing methods before learning component classifiers

or embed the cost-sensitive framework in the ensemble learning process.47,48

Most of these ensembles are based on known strategies from bagging, boost-

ing, random forests, or their variants to cost learning.

For instance, the most efficient generalizations of bagging apply random

or informed preprocessing to change balance between classed in bootstrap

samples. Under-bagging approaches randomly reduce the number of the

majority class examples in each bootstrap sample to the cardinality of the

minority class. The best performing Roughly Balanced Bagging approxi-

mates these numbers from the negative binomial distribution.49,50 On the
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other hand, in over-bagging the minority examples are additionally resam-

pled to bootstraps.51

4. Classifiers for Imbalanced Streams

The number of classifiers which address imbalanced and evolving data

streams is fairly limited. Most of them are adaptations of ensembles for

evolving streams extended by simple re-sampling mechanisms known from

static data mining, like under-bagging or over-bagging. Moreover, the em-

ployed re-sampling techniques are parametrized based on the global im-

balanced ratio. In general, ensembles for imbalanced streams could be

categorized in three ways, based on:

• processing streams in data blocks or online;

• using under-sampling or over-sampling;

• adaptive or drift-detector-based classifiers.

One of the first proposals by Gao et al.52 divides the stream into blocks

B1, B2, . . . , Bj . Each block Bj contains Nmin
j minority class examples and

Nmaj
j majority examples. Nmin

j is assumed to be much smaller than Nmaj
j .

The main idea while building a new classifier from a given block is to take

all minority examples from the previous blocks (Bk, k < j) and under-

sample the majority examples from the current block (with respect to a

given global imbalance ratio). Such sampling gives a new temporary subset

Ts. Subsequently, m datasets are generated from Ts in the following way:

each majority example is randomly propagated into exactly one of m sets

(completely disjoint) while minority examples are propagated to all of these

m sets. From each of the m sets a component classifier is built and added

to the ensemble, where predictions of these components are combined using

simple voting. In general, this idea resembles the simplest under-bagging

solutions known from static batch data.50,51

To accommodate a potentially infinite data stream, Gao et al. propose

to sample minority examples from only a limited number of the most recent

blocks, using either fixed (each block contributes equally) or fading (the

more recent blocks contribute more instances) strategy. However, as all

of the minority examples are used to learn each classifier, this method is

limited to situations with a stable definition of the minority class.

Based on a critical discussion of the proposal of Gao et al., Chen and He

proposed the Selectively Recursive Approach (SERA).53 Instead of using all

minority class examples, SERA selectively looks for a limited number of the
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most similar examples to instances of the minority class inside the current

block. The best n examples are found based on the Mahalanobis distance

and combined with all majority class examples in a given block. After

selecting the most relevant examples the authors propose to construct either

a single new classifier or a bagging ensemble (this has also led to a slightly

different variant in Multiple Selectively Recursive Approach54). Unlike the

proposal of Gao et al., SERA can be considered an over-sampling approach.

In their further work, Chen and He extend the idea of sampling exam-

ples from previous blocks to the Recursive Ensemble Approach (REA).55

The first novelty in REA is balancing the current block by adding those

minority instances from previous blocks which are nearest neighbors of the

minority examples in the current training block. Following the authors’

motivations, this approach should perform better than previous proposals

when the minority class is decomposed into smaller sub-concepts. Another

extension involves using a non-linear weighting function for each component

classifier in the ensemble’s voting aggregation. These functions are based

on mean square errors calculated on the the new block of testing examples.

According to experimental results, REA and SERA provide more accurate

predictions than the proposal of Gao et al.53,55

Lichtenwalter and Chawla proposed another extension of the work by

Gao et al., where instead of propagating all minority class examples, they

also propagate misclassified majority class instances.56 With this approach,

the authors seek to better define the boundary between the classes, thereby,

increasing the performance of ensemble members. Their other novel contri-

bution is the adaption of the Hellinger distance (a skew-insensitive metric)

to measure similarities between two data blocks and, thus, to implicitly

check if a concept drift has taken place. This information is then used to

weight ensemble members during the aggregation of their predictions with

a linear block-dissimilarity weighting function.

Another use of Hellinger distances was presented by Hoens and

Chawla.57 First they criticize the simple temporal similarity commonly

used to propagate examples, and promote the selection of old instances

that are drawn from the most similar distribution as the new minority

class examples. They solve this task by reclassifying old blocks with a vari-

ant of the Naive Bayes classifier constructed from the recent blocks. Then,

they provide a modification to the Heuristic Updatable Weighted Random

Subspaces algorithm (HUWRS), where each component classifier is built

on a different set of features and combined with the aforementioned idea of

using Hellinger distances.
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Furthermore, Ditzler and Polikar58 considered extending their

Learn++.NSE algorithm for the case of class imbalance. This combines

their previous approach to learning in non-stationary scenarios with the

idea of bagging, where under-sampling is performed in each bag. Compo-

nent classifiers are weighted based on their performance on both minority

and majority classes, thus, preventing significant loss of accuracy on major-

ity examples. However, one must point out that this approach assumes a

well-defined minority class and cannot handle dynamically changing proper-

ties of classes. These authors also studied a different variant which employs

oversampling of the minority class.

Another idea of selective sampling in block-based ensembles was con-

sidered by Zhang et al.59 They propose to use the k-means algorithm to

form clusters of majority examples in the current training block and then

calculate their centroids. The number of these clusters is set to be equal

to the number of minority examples in the current block. Then, a current

training set is constructed by taking all minority examples along with cen-

troids of the clusters and used to build a new classifier which is added to

an ensemble. The current component classifiers are evaluated on the re-

cent block with the AUC measure and these results are used for estimating

the weight of components and selecting best classifiers to be included in

the ensemble. The same authors proposed another approach called ECSDS

(Ensemble Classifier for Skewed Data Streams), which additionally aims at

reducing the learning time by limiting the number ensemble updates.

A much smaller body of work is dedicated to learning ensembles online,

instance by instance. One of the main motivations for online solutions for

imbalanced data follows observations that these algorithms may react to

drifts faster than block-based classifiers, where the update is delayed to

the end of the block. The simplest idea of updating component classifiers

online depending of the imbalance ratio was discussed by Nguyen et al.60

More advanced online approaches to imbalanced and drifting streams

were proposed by Wang et al.61,62 Unlike previously discussed papers,

these authors considered variations of the imbalance ratio over time. Fur-

thermore, they noticed that the role of classes may evolve, for example, the

majority class may become the minority over time.

First, Wang et al.61 proposed two basic extensions of online bagging —

its oversampling and undersampling variants. In the first version when the

incoming example belongs to the minority class, it increases the chance

of adding its copies to component classifiers by changing the parameter of
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the Poisson distribution in online bagging. The value of this parameter is

related to the imbalance ratio. In the same way the chance for selecting

copies of the majority class is reduced in the undersampling based variant.

To cope with dynamically changing imbalance ratios and potential switch-

ing of class roles, the authors propose a dedicated concept drift detector.

Its output directly influences the parameter of the Poisson distribution in

oversampling or undersampling. A further modification of this idea, called

WEOB, used a combination of both under and oversampling in order to

chose the better strategy for the current state of the stream. An adaptive

weighting combination scheme was proposed to accommodate this hybrid

solution, where weights of these sampling strategies are either computed

as their G-mean values or are only one of them is selected. Recently, a

multi-class extension of this method has also been proposed.12

Finally, two other, less typical, proposals concern ensembles of online

neural networks to handle drifting and imbalanced streams. Ghazikhani

et al.63 embedded elements of cost-sensitive learning into the process of neu-

ral network training. Similarly, the Ensemble of Subset Online Sequential

Extreme Learning Machine (ESOS-ELM) was developed by Mirza et al.,64

where randomized neural networks were trained on balanced subsets of the

stream. However, these proposals do not adapt to changes of the minority

class like the aforementioned approaches of Wang et al.

5. Interactions Between Class Imbalance and

Concept Drift

In this section, we will showcase possible interactions between class imbal-

ance, concept drift, and additional difficulty factors in the form of minority

class sub-clusters. For this purpose, we will analyze experimental evalua-

tions of ensemble classifiers including one of the most popular ensembles

for imbalanced streams — SERA.53

The presented analysis is based on an experimental setup from our re-

cent study on evaluating stream classifiers using AUC calculated incre-

mentally with forgetting.14 Although the cited work focuses mainly on

evaluation measures, parts of the results therein can be used to highlight

difficulties posed by evolving data difficulty factors. The analysis of these

results will serve as a vantage point for positioning lines of future research

in the field of imbalanced stream classification.

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch03 page 58

58 D. Brzezinski & J. Stefanowski

5.1. Experimental Setup

We present experiments involving four classifiers:

• Very Fast Decision Tree (VFDT),6

• Online Bagging (Bag),28

• Accuracy Updated Ensemble (AUE),17

• Selectively Recursive Approach (SERA).53

The Very Fast Decision Tree (VFDT) was chosen as a reference classifier

without any forgetting mechanism. The remaining three algorithms are

ensemble classifiers representing: an online approach (Bag), a block-based

approach with forgetting (AUE), and a dynamic block-based oversampling

method designed for imbalanced streams (SERA).

All the algorithms and evaluation methods were implemented in Java as

part of the MOA framework.65 All ensemble methods (Bag, AUE, SERA)

used 10 Very Fast Decision Trees as base learners, AUE and SERA were

set to create new components every d = 1000 examples.

Classifiers were evaluated using six measures: accuracy, AUC, G-mean,

Cohen’s Kappa, Kappa M, and Recall. These measures can be defined

using a two-class confusion matrix presented in Table 1.

Table 1. Confusion matrix for two-class classification
����������Actual

Predicted
Positive Negative total

Positive TP FN P
Negative FP TN N

total ̂P ̂N n

The TP (True Positive) and TN (True Negative) entries denote the

number of examples classified correctly by the classifier as minority and

majority instances, while the FN (False Negative) and FP (False Posi-

tive) indicate the number of misclassified minority and majority examples,

respectively. Based on these values, the evaluation measures used in the

experiments are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

AUC =

∫ −∞

∞
TPR(T )FPR′(T ) dT = P (XP > XN )

G-mean =

√
TP

TP + FN
· TN

FP + TN
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Kappa =
p0 − pc
1− pc

Kappa M =
p0 − pm
1− pm

Recall =
TP

TP + FN

where XP is the classifier score for a minority instance and XN is the score

for a majority instance, p0 is the accuracy of the tested classifier, pc is the

accuracy of a chance classifier, and pm is the accuracy of a classifier always

predicting the majority class. A detailed description of each evaluation

measure can be found, for example, in a recent publication by Japkowicz

and Shah.35 These measures where calculated prequentially,16 i.e., incre-

mentally with forgetting, using a sliding window of d = 1000 examples.

5.2. Datasets

A key component when assessing the impact of different difficulty factors is

testing classifiers in a controlled environment. Therefore, for this study we

use 11 synthetic datasets created using custom stream generators, which

enabled us to administer the evolution of class imbalance, concepts, and

minority sub-clusters. Additionally, we use two real-world data streams

which showcase both class imbalance and changes over time.

The Ratio datasets are designed to test classifier performance under

different imbalance ratios without drift. Examples from the minority class

create a uniform five-dimensional sphere, whereas majority class examples

are uniformly distributed outside that sphere. The Dis datasets are cre-

ated in a similar manner, but the minority class is fragmented into spherical

sub-clusters (playing the role of small disjuncts). Datasets Dis2, Dis3, Dis5
have 2, 3, and 5 clusters, respectively. In the AppDis datasets, every stream

begins with a single well-defined cluster, and additional clusters are added

as the stream progresses. New disjuncts appear suddenly in majority class

space after 40 k (AppDis2,3,5), 50 k (AppDis3,5), 60 k, and 70 k (AppDis5)

examples. In static data mining, the problem of small disjuncts is known

to be more problematic than class imbalance per se,38 however, to the best

of our knowledge this issue has not been tackled in stream classification.

Finally, datasets MinMaj, GradualRC, and SuddenRC contain class ratio

changes over time. In MinMaj, the majority class abruptly becomes the mi-

nority; such a virtual drift relates to a problem recently discussed by Wang
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et al.62 SuddenRC was created using a modified version of the SEA gener-

ator,24 and contains three sudden class ratio changes (1:1/1:100/1:10/1:1)

appearing every 25 k examples. Analogously, GradualRC uses a modified

Hyperplane generator,25 and simulates a continuous ratio change from 1:1

to 1:100 throughout the entire stream. SuddenRC has attributes with val-

ues ranging from 0 to 10, whereas all the remaining synthetic datasets have

attribute values uniformly distributed in the range [−1, 1]. The two real

world dataset used are KDDCup and PAKDD.66,67 It is worth noting that we

used the smaller version of the KDDCup dataset and transformed it into a

binary classification problem, by combining every class other than “NOR-

MAL” into one “ATTACK” class. The characteristics of all the datasets

are given in Table 2.

Table 2. Characteristic of datasets

Dataset #Inst #Attrs Class ratio Noise #Drifts Drift type

Ratio5050 100 k 5 1:1 0% 0 none

Ratio1090 100 k 5 1:9 0% 0 none
Ratio0595 100 k 5 1:19 0% 0 none
Ratio0199 100 k 5 1:99 0% 0 none
Dis2 100 k 5 1:9 0% 0 none
Dis3 100 k 5 1:9 0% 0 none
Dis5 100 k 5 1:9 0% 0 none
AppDis2 100 k 5 1:9 0% 1 sudden
AppDis3 100 k 5 1:9 0% 2 sudden
AppDis5 100 k 5 1:9 0% 4 sudden
MinMaj 100 k 5 1:19/19:1 0% 1 sud. virt.
GradualRC 100 k 3 1:1 → 1:100 5% 1 grad. virt.
SuddenRC 100 k 3 1:1/1:100/1:10/1:1 10% 3 rec. virt.
KDDCup 494 k 41 ∼1:4 - - unknown
PAKDD 50 k 30 ∼1:4 - - unknown

5.3. Results

We experimentally compared classifier evaluations using accuracy, AUC,

G-mean, Cohen’s Kappa, Kappa M, and Recall.14 Here we focus on the in-

teractions between difficulty factors and their effect on different classifiers.

To facilitate the presentation of results, we will mostly concentrate on plots

depicting classifier performance using the G-mean measure; more detailed

results are available in publications by Brzezinski and Stefanowski.14 Fig-

ure 2 presents selected plots, which characterize different difficulty factors.
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Fig. 2. Comparison of classifier performance over time (dataset: measure(s)).

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch03 page 62

62 D. Brzezinski & J. Stefanowski

Figures 2(a) and 2(b) compare classifier performance on a balanced and

imbalanced stream. We can see that class imbalance alone, without any

drift, makes the classification task more challenging, but only for some

time. Since the concept does not change, VFDT and ensemble classifiers

are capable of successfully adapting new knowledge about the minority

class. As SERA was designed for such static imbalanced scenarios, it is

not surprising that it learns the minority concept much quicker than the

remaining classifiers.

Looking at Figs. 2(c) and 2(d), one can notice how sudden and gradual

ratio changes can affect classifiers. We can see that oversampling examples

from previous blocks can slightly mitigate gradual ratio changes, but does

not help in any way during sudden drift. This raises the question of detect-

ing class ratio changes, a topic that has only recently been recognized62,68

and still requires more studies.

Figures 2(e) and 2(f) show that static minority sub-clusters are only a

slightly more difficult case of static class imbalance (see Fig. 2(b)), whereas

appearing sub-concepts are much more challenging. It is also worth noting

that SERA has difficulties in adapting to new minority clusters because

it over-samples minority examples by selecting the most similar ones from

previous data chunks, which become outdated when the minority class is

split. Figure 2(g) compares classifier performance on a real dataset, which

most probably contains a single, well-defined minority concept, which is

successfully oversampled by SERA.

Finally, Fig. 2(h) raises the issue of changing majority-minority class

assignments. The evolving nature of data streams forces researchers to

question many common assumptions made by static imbalanced learning

approaches, such as one-time identification of the minority class. For drift-

ing data, the minority class has to be periodically identified and analyzed,

prior to any over- or under-sampling. As Fig. 2(h) shows, the results of this

seemingly trivial task strongly depend on the used performance measure.

Accuracy, κ, and κm are sensitive to minority-majority class swaps, and one

can notice strong drops in these performance measures. Recall and G-mean,

on the other hand, focus on the improving minority class predictions and

increase without dropping. Finally, AUC shows that ranking performance

of the classifier, and thus the predicted class boundaries, practically did not

change. This plot constitutes an example of the complementary properties

of various performance measures, and shows the impact they can have on

processing drifting imbalanced streams.

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch03 page 63

Ensemble Classifiers for Imbalanced and Evolving Data Streams 63

6. Outlook

The literature review and experimental analysis presented in this chapter

show the vast number of research problems related to mining imbalanced

and evolving data streams. Popular block-based and incremental ensembles

can react to changes over time, but recognize minority class concepts much

slower than specialized oversampling approaches such as SERA. However,

over- or under-sampling methods alone are not capable of coping with the

myriad of possible interactions between class imbalance and concept drift.

Sudden class ratio changes or appearing minority sub-clusters require novel

change reaction mechanisms, since current drift detectors are mostly de-

signed for balanced data. As showcased in the experimental analysis, this

in turn raises the broader question of using evaluation measures suited for

imbalanced streams. Although some of these issues have recently started

to gain attention,14,62 solutions to these problems are still to be found.

Moreover, the intersection of class imbalance and data stream mining

still holds many problems that have not been explored. Current research

concentrates on binary classification, while recent studies12 show that in

multi-class problems one can expect concept drifts in the form of appear-

ing novel minority classes. Moreover, the evolving nature of data streams

has still not been studied in the context of data difficulty factors recently

recognized in static classification of imbalanced data.41 The same way as

sub-clusters can suddenly appear they could also appear gradually, reoccur,

or move within the attribute space. Class overlapping could also change

over time, for example, the borderline region between two classes could

grow, shrink, or change its shape. Notions of rare cases and outliers are

another set of difficulty factors that still have not been properly introduced

to data stream mining. All the mentioned complexities provide a fertile

ground for research on adaptive systems.

We hope that this chapter will not only serve as reference for current

state-of-the-art in classifiers for imbalanced and drifting data streams, but

will also inspire new works in this field. New adaptive ensembles capable of

dealing with various difficulty factors are still sought for. Similarly, evalu-

ation measures and drift detectors tailored for various drifts in imbalanced

streams are still to be studied. However, to make these advancements possi-

ble, potential types of drift between difficulty factors have to be recognized.

We believe that these issues are of vital importance, because, as research in

the field of class imbalance has shown, data complexities have a much more

profound impact on classifier performance than class imbalance alone.
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Learning a prototype from a set of given objects is a core problem in
machine learning, data mining, and pattern recognition. A commonly
used approach to consensus learning is to formulate it as an optimization
problem in terms of generalized median computation. Sequential data
can be effectively represented by strings. In this chapter we discuss how
the median concept can be applied to strings. We introduce the notion
of median string and provide related theoretical results. Then, we give
a brief review of algorithmic procedures for computing median strings.
Experimental results will be reported to compare some of the shown
algorithms.

1. Introduction

Learning a prototype from a set of given objects is a core problem in ma-

chine learning, data mining, and pattern recognition and has numerous

applications.1 Prototypes are often used to index large-size data so that

queries can be efficiently answered by only considering those prototypes.

Another example is multiple classifier combination, where a change of al-

gorithm parameters or the use of different algorithms can lead to distinct

results, each with small diverse errors. Consensus methods produce a final

result which best represents the different results and thus removes errors

and outliers in the input ensemble.

Strings provide a simple and yet powerful representation scheme for

sequential data. In particular time series can be effectively represented by

strings. A large number of operations and algorithms have been proposed

to deal with strings.2–7 Some of them are inherent to the special nature of

69
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strings such as the shortest common superstring and the longest common

substring, while others are adapted from other domains.

String algorithms have found numerous applications in a broad range of

fields including computer vision, language processing, speech recognition,

and molecular biology. In data mining, clustering and machine learning, a

typical task is to represent a set of (similar) objects by means of a single

prototype. In particular, a commonly used approach to consensus learn-

ing is to formulate it as an optimization problem in terms of generalized

median computation. This median concept is useful in various contexts.

It represents a fundamental quantity in statistics. In sensor fusion, multi-

sensory measurements of some quantity are averaged to produce the best

estimate. Averaging the results of several classifiers is used in multiple

classifier systems in order to achieve more reliable classifications. Interest-

ing applications of the median concept have been demonstrated in deal-

ing with rankings,8 3D rigid structures,9 rotation,10 clustering,11 graphs,12

shape,13 atlas construction,14 binary feature maps,15 geometric features

(points, lines, or 3D frames),16 brain models,17 anatomical structures,18

and facial images.19 In this chapter we discuss the adaptation of the me-

dian concept to the domain of strings.

This chapter is an updated version of the previous paper20 including

recent developments. The outline of the chapter is as follows. We first

formally introduce the median string problem in Section 2 and provide

some related theoretical results in Section 3. Sections 4 and 5 are devoted to

algorithmic procedures for computing set median and generalized median

strings. In Section 6 we report experimental results to demonstrate the

median concept and to compare some of the considered algorithms. Finally,

some discussions conclude this chapter.

2. Median String Problem

Assuming an alphabet Σ of symbols, a string x is simply a sequence of

symbols from Σ, i.e., x = x1x2 . . . xn, where xi ∈ Σ for i = 1, ..., n. Given

the space U of all strings over Σ, we need a distance function d(p, q) to

measure the dissimilarity between two strings p, q ∈ U . Let S be a set of

N strings from U . The essential information of S is captured by a string

p̄ ∈ U that minimizes the sum of distances of p̄ to all strings from S, also

called the consensus error ES(p):

p̄ = argmin
p∈U

ES(p), where ES(p) =
∑
q∈S

d(p, q).
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The string p̄ is called a generalized median of S. If the search is constrained

to the given set S, the resultant string

p̂ = argmin
p∈S

ES(p)

is called a set median of S. For a given set S, neither the generalized median

nor the set median is necessarily unique. This definition was introduced by

Kohonen.21 Note that different terminology has been used in the literature.

In some works the set median string and the generalized median string are

termed center string and Steiner string,4 respectively, while in others the

generalized median was called consensus sequence.22

A different possibility is mentioned by Kohonen21 too. This is the par-

allel of mean from elementary statistics. Here we would like to search for

p′ that minimizes ∑
q∈S

d2(p′, q).

Martinez-Hinarejos et al.23 returned to this definition and investigated the

possibility of using mean instead of median. Generally, this variant can be

interpreted as a special instance of the generalized median problem using

d2 as the distance function.

Several string distance functions have been proposed in the literature.

The most popular one is doubtlessly the Levenshtein edit distance. Let

A = a1a2 . . . an and B = b1b2 . . . bm be two words over Σ. The Levenshtein

edit distance d(A,B) is defined in terms of elementary edit operations which

are required to transform A into B. Usually, three different types of edit

operations are considered, namely (1) substitution of a symbol a ∈ A by a

symbol b ∈ B, a �= b, (2) insertion of a symbol a ∈ Σ in B, and (3) deletion

of a symbol a ∈ A. Symbolically, we write a → b for a substitution,

ε → a for an insertion, and a → ε for a deletion. To model the fact that

some distortions may be more likely than others, costs of edit operations,

c(a → b), c(ε → a), and c(a → ε), are introduced. Let s = l1l2 . . . lk
be a sequence of edit operations transforming A into B. We define the

cost of this sequence by c(s) =
k∑

i=1

c(li). Given two strings A and B, the

Levenshtein edit distance is given by d(A,B) = min{c(s) | s: sequence of

edit operations transforming A into B }. To illustrate the Levenshtein edit

distance, let us consider two words A = median and B = mean built on the

English alphabet. Examples of sequences of edit operations transforming

A into B are:
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• s1 = d→ a, i→ n, a→ ε, n→ ε

• s2 = d→ a, i→ ε, a→ ε

• s3 = d→ ε, i→ ε

Under the edit cost c(a → ε) = c(ε → a) = c(a → b) = 1, a �= b, s3
represents the optimal sequence with the minimum total cost 2 for trans-

forming median into mean among all possible transformations. Therefore,

we observe d(median,mean) = 2. The most popular algorithm to com-

pute the Levenshtein distance was proposed by Wagner and Fisher24 by

means of dynamic programming. Since then, many improvements or other

algorithms have appeared.2,4,5

Further string distance functions are known from the literature, for in-

stance, normalized edit distance,25 Hamming distance, maximum posterior

probability distance,21 feature distance,21 and others.26,27 The Levenshtein

edit distance is by far the most popular one. Actually, some of the al-

gorithms we discuss later are tightly coupled to this particular distance

function.

3. Theoretical Results

In this section we summarize some theoretical results related to median

strings. The generalized median is a more general concept and usually a

better representation of the given strings than the set median. From a prac-

tical point of view, the set median can be regarded an approximate solution

of the generalized median. As such it may serve as the start for an iterative

refinement process to find more accurate approximations. Interestingly, we

have the following result (see Gusfield4 for a proof):

Theorem 1. Assume that the string distance function satisfies the triangle

inequality. Then ES(p̂)/ES(p̄) ≤ 2− 2/|S|.

That is, the set median has a consensus error relative to S that is at most

2− 2/|S| times the consensus error of the generalized median string.

Independent of the distance function we can always find the set median

of N strings by means of 1
2N(N − 1) pairwise distance computations. This

computational burden can be further reduced by making use of special

properties of the distance function (e.g., metric) or resorting to approximate

procedures. Section 4 will present examples of these approaches.

Compared to set median strings, the computation of generalized me-

dian strings represents a much more demanding task. This is due to the
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huge search space which is substantially larger than that for determining

the set median string. This intuitive understanding of the computational

complexity is supported by the following theoretical results. Under the two

conditions:

• every edit operation has cost one, i.e., c(a → b) = c(ε → a) =

c(a→ ε) = 1,

• the alphabet is not of fixed size,

de la Higuera and Casacuberta28 proved that computing the generalized me-

dian string is NP-hard for an unbounded alphabet. Sim and Park29 proved

that the problem is NP-hard for finite alphabet and for a metric distance

matrix. Furthermore, Nicolas and Rivals showed the same hardness even

for a binary alphabet.30 Another result comes from computational biology.

The optimal evolutionary tree problem there turns out to be equivalent to

the problem of computing generalized median strings if the tree structure is

a star (a tree with n+1 nodes, n of them being leaves). Wang and Jiang31

proved that in this particular case the optimal evolutionary tree problem is

NP-hard. The distance function used is problem dependent and does not

even satisfy the triangle inequality. All these theoretical results indicate

the inherent difficulty in finding generalized median strings. Not surpris-

ingly, the algorithms we will discuss in Section 5 are either exponential or

approximate.

4. Fast Computation of Set Median Strings

The naive computation of set median requires O(N2) distance computa-

tions. Considering the relatively high computational cost of each individ-

ual string distance, this straightforward approach may not be appropriate,

especially in the case of a large number of strings. The problem of fast set

median search can be tackled by making use of properties of metric distance

functions or developing approximate algorithms. Several solutions32,33 have

been suggested for fast set median search in arbitrary spaces. They apply

to the domain of strings as well.

4.1. Exact Set Median Search in Metric Spaces

In many applications the underlying string distance function is a metric

which satisfies:

(1) d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q,
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(2) d(p, q) = d(q, p),

(3) d(p, q) + d(q, r) ≥ d(p, r).

A property of metrics is:

|d(p, r) − d(r, q)| ≤ d(p, q), ∀p, q, r ∈ S, (1)

which can be utilized to reduce the number of string distance computations.

The approach proposed by Juan and Vidal32 partitions the input set

S into subsets Su (used), Se (eliminated), and Sa (alive). The set Sa

keeps track of those strings that have not been fully evaluated yet; initially

Sa = S. A lower bound g(p) is computed for each string p in Sa, i.e., the

consensus error of p satisfies:

ES(p) =
∑
q∈S

d(p, q) ≥ g(p).

Clearly, strings with small g values are potentially better candidates for set

median. For this reason the string p with the smallest g(p) value among

all strings in Sa is transferred from Sa to Su. Then, the consensus error

ES(p) is computed and, if necessary, the current best median candidate p

is updated. Then, the lower bound g is computed for all strings that are

alive, and those whose g is not smaller than ES(p) are moved from Sa to

Se. They will not be considered as median candidates any longer. This

process is repeated until Sa becomes empty.

In each iteration, the consensus error for p with the smallest g value is

computed by:

ES(p) =
∑
q∈Su

d(p, q) +
∑

q∈Se∪(Sa−{p})
d(p, q).

Using (1) the term d(p, q) in the second summation is estimated by:

d(p, q) ≥ |d(p, r) − d(r, q)|, ∀r ∈ Su.

Taking all strings of Su into account, we obtain the lower bound:

ES(p) ≥
∑
q∈Su

d(p, q) +
∑

q∈Se∪(Sa−{p})
max
r∈Su

|d(p, r) − d(r, q)| = g(p). (2)

The critical point here is to see that all the distances in this lower bound are

concerned with p and strings from Su, and were therefore already computed

before. When strings in Sa are eliminated (moved to Su), their consensus

errors need not to be computed in future. This fact results in saving of

distance computations. In addition to (2), two other lower bounds within

the same algorithmic framework are given by Juan and Vidal.32 They

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch04 page 75

Consensus Learning for Sequence Data 75

differ in the resulting ratio of the number of distance computations and

the remaining overhead, with the lower bound (2) requiring the smallest

amount of distance computations.

Ideally, the distance function is desired to be a metric, in order to match

the human intuition of similarity. The triangle inequality excludes the case

in which d(p, r) and d(r, q) are both small, but d(p, q) is very large. In

practice, however, there may exist distance functions which do not satisfy

the triangle inequality. To judge the suitability of these distance functions,

other works34 suggest quasimetrics with a relaxed triangle inequality. In-

stead of the strict triangle inequality, the relation:

d(p, r) + d(r, q) ≥ d(p, q)

1 + ε

is required now. Here ε is a small nonnegative constant. As long as ε

is not very large, the relaxed triangle inequality still retains the human

intuition of similarity. Note that the strict triangle inequality is a special

case with ε = 0. The fast set median search procedure32 sketched above

easily extends to quasi-metrics. In this case the relationship (1) is replaced

by:

d(p, q) ≥ max
(d(p, r)
1 + ε

− d(q, r),
d(q, r)

1 + ε
− d(p, r)

)
, ∀p, r, q ∈ S

which can be used in the same manner to establish a lower bound g(p).

4.2. Approximate Set Median Search in Arbitrary Spaces

Another approach to fast set median search makes no assumption on the

distance function and therefore covers non-metrics as well. The idea of this

approximate algorithm is simple. Instead of computing the sum of distances

of each string to all the other strings of S to select the best one, only a

subset of S is used to obtain an estimation of the consensus error.33 The

algorithm first calculates such estimations and then calculates the exact

consensus errors only for strings that have low estimations.

This approximate algorithm proceeds in two steps. First, a random

subset Sr of Nr strings is selected from S. For each string p of S, the con-

sensus error ESr (p) relative to Sr is computed and serves as an estimation

of the consensus error ES(p). In the second step Nt strings with the lowest

consensus error estimations are chosen. The exact consensus error ES(p)

is computed for the Nt strings and the string with the minimum ES(p) is

regarded the (approximate) set median string of S.
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5. Computation of Generalized Median Strings

While the set median problem is characterized by selecting one particu-

lar member out of a given set of strings, the computation of generalized

median strings is inherently constructive. The theoretical results from Sec-

tion 3 about computational complexity indicate the fundamental difficul-

ties we are faced with. In the following we describe various algorithms for

computing generalized median strings. Not surprisingly, they are either of

exponential complexity or approximate.

5.1. An Exact Algorithm and its Variants

An algorithm for the exact computation of generalized median strings under

the Levenshtein distance is given by Kruskal.35 Let ε be the empty string

and Σ′ = Σ ∪ {ε} the extended alphabet. We define:

δ(r1, r2, . . . , rN ) = min
v∈Σ′

[c(v → r1) + c(v → r2) + · · ·+ c(v → rN )].

The operator δ can be interpreted as a voting function, as it determines

the best value v at a given stage of computation. Finding an optimal value

of v requires an exhaustive search over Σ′ in the most general case, but in

practice the cost function is often simple such that a shortcut can be taken

and the choice of the optimal v is not costly.

Having defined δ this way, the generalized median string can be com-

puted by means of dynamic programming in an N -dimensional array, sim-

ilarly to string edit distance computation.24 For the sake of notational

simplicity, we only discuss the case N = 3. Assume the three input strings

be u1u2 . . . ul, v1v2 . . . vm, and w1w2 . . . wn. A three-dimensional distance

table of dimension l ×m× n is constructed as follows:

initialization:+ d0,0,0 = 0;

iteration:

di,j,k = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di−1,j−1,k−1 + δ(ui, vj , wk)

di−1,j−1,k + δ(ui, vj , ε)

di−1,j,k−1 + δ(ui, ε, wk)

di−1,j,k + δ(ui, ε, ε)

di,j−1,k−1 + δ(ε, vj , wk)

di,j−1,k + δ(ε, vj , ε)

di,j,k−1 + δ(ε, ε, wk)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎨
⎩

0 ≤ i ≤ l

0 ≤ j ≤ m

0 ≤ k ≤ n

⎫⎬
⎭

end: if (i = l) ∧ (j = m) ∧ (k = n)
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The computation requires O(lmn) time and space. The path in the dis-

tance table that leads from d0,0,0 to dl,m,n defines the generalized median

string p̄ with dl,m,n being the consensus error ES(p). Note that a general-

ization to arbitrary N is straightforward. If the strings of S are of length

O(n), both the time and space complexity amounts to O(nN ) in this case.

Despite of its mathematical elegance the exact algorithm above is im-

practical because of the exponential complexity. There have been efforts

to shorten the computation time using heuristics or domain-specific knowl-

edge. One such approach assumes that the string of S be quite similar.22

Under reasonable constraints on the cost function (c(a→ ε) = c(ε→ a) = 1

and c(a → b) nonnegative), the generalized median string p̄ satisfies

ES(p) ≤ k with k being a small number. In this case the optimal dynamic

programming path must be close to the main diagonal in the distance table.

Therefore only part of the N -dimensional table needs to be considered.22

The asymptotic time complexity of this restricted search is O(nkN ). While

this remains exponential, k is typically much smaller than n, resulting in a

substantial speedup compared to the full search of the original algorithm.35

An integer linear programming formulation based on both the original dy-

namic programming algorithm and the improved version was provided by

Zou et al.36

We may also use any domain-specific knowledge to limit the search

space. An example is the approach in the context of classifier combination

for handwritten sentence recognition.37 An ensemble of classifiers provide

multiple classification results of a scanned text. Then, the consensus string

is expected to yield the best overall recognition performance. The input

strings from the individual classifiers are associated with additional infor-

mation of position, i.e., the location of each individual word in a sequence

of handwritten words. Obviously, it is very unlikely that a word at the

beginning of a sequence corresponds to a word at the end of another se-

quence. More generally, only words at a similar position in the text image

are meaningful candidates for being matched to each other. Marti and

Bunke 37 make use of this observation in the above case to exclude a large

portion of the full N -dimensional search space from consideration.

5.2. Approximate Algorithms

Because of the NP-hardness of generalized median string computation, ef-

forts have been undertaken to develop approximate approaches which pro-

vide suboptimal solutions in reasonable time. In this section we will discuss

several algorithms of this class.
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Algorithm 1 General framework of greedy algorithms
p̄0 = ε

for (l = 1; ; l++) do

al = argmin
a∈Σ

ES(p̄l−1a)

p̄l = p̄l−1al
if termination criterion fulfilled then

return prefix of p̄l
end if

end for

5.2.1. Greedy Algorithms

The following algorithm was proposed by Casacuberta and de Antonio.38

Starting from an empty string, a greedy algorithm constructs an approxi-

mate generalized median string p̄ symbol by symbol. When we are going

to generate the l-th symbol al(l ≥ 1), the substring a1 . . . al−1(ε for l = 1)

has already been determined. Then, each symbol from Σ is considered as a

candidate for al. All the candidates are evaluated and the final decision of

al is made by selecting the best candidate. The process is continued until

a termination criterion is fulfilled.

A general framework of greedy algorithms is given in Algorithm 1. There

are several possible choices for the termination criterion and the prefix. The

greedy algorithm proposed by Casacuberta and de Antonio38 stops the iter-

ative construction process when ES(p̄l) > ES(p̄l−1). Then, p̄l−1 is regarded

the approximate generalized median string. Alternatively, Kruzslicz39 sug-

gests the termination criterion l = max
p∈S
|p|. The output is the prefix of

p̄l with the smallest consensus error relative to S. For both variants a

suitable data structure 38 enables a time complexity of O(n2N |Σ|) for the
Levenshtein distance. The space complexity amounts to O(nN |Σ|).

In the general framework in Algorithm 1 nothing is stated about how

to select al if there exist multiple symbols from Σ with the same value of

ES(p̄l−1a). Besides a simple random choice, the history of the selection

process can be taken into account to make a more reliable decision.39
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5.2.2. Evolutionary weighted mean approach

The evolutionary weighted mean framework by Franek and Jiang40 is a

method to compute the generalized median of arbitrary objects, and there-

fore can be applied to strings as well.

It is motivated by the lower bound of the generalized median by Jiang

et al.12 The consensus error is defined as (N even):

ES(p̄) =
∑
q∈S

d(p̄, q)

= (d(p̄, p1) + d(p̄, p2)) + · · ·+ (d(p̄, pN−1) + d(p̄, pN )).

Applying the triangle inequality

d(pi, p̄) + d(p̄, pj) ≥ d(pi, pj)

to each pair of distance calculations leads to

ES(p̄) ≥ d(p1, p2) + d(p3, p4) + · · ·+ d(pN−1, pN ),

which is true for each permutation of pi. Therefore,

ES(p̄) ≥ max{d(p1, p2) + · · ·+ d(pN−1, pN ) (3)

| (p1, p2), . . . , (pN−1, pN ) is a partition of S}.
If the lower bound is reached, then the triangle inequality becomes an

equality. This can be imagined as the generalized median lying on the

intersection point of the lines between each pair. This is illustrated in

vector space in Figure 1(a).

This intersection point can be approximated using the so called weighted

mean of the object pairs. The weighted mean p̃ between two objects pi and

pj at ratio α is defined as

d(pi, p̃) = α · d(pi, pj), d(p̃, pj) = (1− α)d(pi, pj). (4)

Geometrically, the weighted mean can be seen as a linear interpolation

between two objects. A function to compute the weighted mean can often

be derived from the distance function itself. The Levenshtein distance for

example can be extended to return a list of edit operations to transform

the first string into the second. A weighted mean is then computed by

applying edit operations one after another until the distance of d(pi, p̃) is

at least α · d(pi, pj).41
If the lines between object pairs do not intersect, then the weighted

mean can be used to compute an approximation of the generalized median,

as illustrated in Figure 1(b).
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Fig. 1. Generalized median in two-dimensional vector space. Red points: initial objects.
Green point: generalized median. black points: weighted means. (a) Generalized median
is on the intersection between pairs of initial points. (b) Lines between pairs do not
intersect in a point.

Algorithm 2 Evolutionary weighted mean framework

Given a string set S = {p1, . . . , pN}
Compute a partition of S into pairs (pi1, pi2) to maximize Equation (3)

for each pair (pi1, pi2) do

Compute w weighted means p̃i by using α = i·d(pi1,pi2)
w+1 , i = 1, . . . , w

p̃ = mini=1,...,w{ES(p̃i)}
S = S ∪ {p̃}

end for

Delete the strings from S with the worst ES(p) until |S| ≤ Nmax.

if the lower bound is matched or convergence is achieved then

return the string from S with the lowest ES(p)

else

Restart the algorithm with the current set S

end if

The evolutionary weighted mean framework shown in Algorithm 2 uses

these properties to compute an approximation of the generalized median.

First, the objects are divided into sets that maximize the pairwise distances.

Then for each pair of objects a number of weighted means are calculated

and the best one is added to the set. In the end, objects with the highest

ES(p) are discarded to prevent the set from growing too much.
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5.2.3. Vector space embedding

Objects

o1
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o5

Euclidean space

Geometric Median

m

Generalized Median

ō

1

2

3

NP-hard�

Fig. 2. Overview of the vector space embedding framework. Direct calculation is often
NP-hard, depending on the distance function. (1) Embed objects into vector space.
(2) Compute the median in vector space. (3) Reconstruct a median object from vectors.

Another method to compute the generalized median of arbitrary objects

is vector space embedding.42 The idea of this algorithm is to not compute

the generalized median of the objects directly, but instead compute it in a

vector space, where this task is much more easily solved. As can be seen in

Figure 2, this process can be divided into three steps:

(1) Embed objects into a vector space.

(2) Compute the generalized median in vector space.

 



December 20, 2017 14:28 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch04 page 82

82 A. Nienkötter & X. Jiang

(3) Reconstruct the median in object space based on its position and neigh-

borhood in vector space.

First, the objects in S = {p1, . . . , pN} are embedded into a vector space

using an embedding function ϕ. Ferrer et al.42 used prototype embedding

for this purpose. For each object pi in the set S, this method computes a

vector xi using k ≤ N prototype objects {P1, ..., Pk} ⊂ S:

xi = ϕ(pi) = (d(pi, P1), d(pi, P2), . . . , d(pi, Pk)) ∈ R
k.

The prototypes are selected to be representative of the set, often by k-

means clustering.42 The generalized median in vector space, which is called

geometric median, is computed in the second step. Since the computation

of the geometric median is again NP-hard, the Weiszfeld algorithm43 is used

to calculate a good approximation in a very short time. In the last step, the

median in object space is reconstructed. This is done using the neighbors

of the geometric median and a weighted mean function44 as described in

Equation (4).

While this method is easy and fast to compute, it generally does not

preserve the distances very well. Therefore, this step can be improved by

using distance-preserving embedding methods45 instead. These methods

compute a much more accurate embedding in reasonable time, by finding

points x1, . . . , xN ∈ R
k such that

δ(pi, pj) ≈ δe(xi, xj), ∀1 ≤ i, j ≤ N

with δe() being the Euclidean distance between two points. They can be

roughly divided into three categories:45

Reference object methods: Methods like FastMap, MetricMap and

SparseMap compute their embedding based on the distance to selected

objects from the original set, similar to prototype embedding

Error minimization methods: These methods propose an error func-

tion on the embedding vectors. The vectors are optimized using these

methods to form an accurate embedding, often by gradient descent.

Examples are MDS, Sammon Mapping, CCA and t-SNE.

Neighborhood graph methods: Methods like MVU, LLE and IsoMap

construct a neighborhood graph for the objects and base their embed-

ding on this graph.

Each of these methods can be used instead of the prototype embed-

ding for an often more accurate result, thereby improving the median

computation.45
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By using the Levenshtein edit distance and the weighted mean function

described in Section 5.2.2, this framework can be applied to compute very

accurate generalized medians of strings.45

5.2.4. Perturbation-based Iterative Refinement

The results of the algorithms above as well as the set median represent

an approximation of the true generalized median string of a set. This

approximate solution p̄ can be further improved by an iterative process of

systematic perturbations. The idea was first suggested by Kohonen,21 but

without algorithmic details. A concrete algorithm for realizing systematic

perturbations is given in .46 For each position i, the following operations

are performed:

(1) Build perturbation

• Substitution: replace the i-th symbol of p̄ by each symbol of Σ in

turn and choose the resulting string x with the smallest consensus

error relative to S.

• Insertion: insert each symbol of Σ in turn at the i-th position of

p̄ and choose the resulting string y with the smallest consensus

error relative to S.

• Deletion: delete the i-th symbol of p̄ to generate z.

(2) Replace p̄ by the one from {p̄, x, y, z} with the smallest consensus error

relative to S.

For the Levenshtein distance one global iteration that handles all positions

of the initial p̄ needs O(n3N |Σ|) time. The process is repeated until there

is no more improvement possible.

Alternative methods to select the best perturbed string are also possible.

Abreu and Rico-Juan47 for example rank each possible edit operation on p̄

by howmuchES(p̄) is affected by it, and iteratively apply the best operation

until there is no more improvement.

5.3. Dynamic Computation of Generalized Median Strings

In a dynamic context we are faced with the situation of a steady arrival

of new data items, represented by strings. At each point of time, t, the

set St of existing strings is incremented by a new string, resulting in St+1,

and its generalized median string is to be computed. Doubtlessly, a trivial

solution consists in applying any of the approaches discussed above to St+1.
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By doing this however, we compute the generalized median string of St+1

from scratch without utilizing any knowledge about St, in particular its

generalized median string. All algorithms for computing generalized me-

dian strings are of such a static nature and thus not optimal in a dynamic

context. Jiang et al.48 propose a genuinely dynamic approach, in which the

update scheme only considers the generalized median string of St together

with the new data item, but not the individual members of St.

The inspiration for the algorithm comes from a fundamental fact in real

space. Under the distance function d(pi, pj) = (pi − pj) · (pi − pj), i.e., the

squared Euclidean distance of pi and pj, the generalized median of a given

set St = {p1, p2, . . . , pt} of t points is the well-known mean:

p̄t =
1

t
·

t∑
i=1

pi.

When an additional point pt+1 is added to St, the resultant new set

St+1 = St ∪ {pt+1} has the generalized median

p̄t+1 =
1

t+ 1
·
t+1∑
i=1

pi =
t

t+ 1
· p̄t + 1

t+ 1
· pt+1,

which is the weighted mean of p̄t and pt+1 satisfying

d(p̄t+1, p̄t) =
1

t+ 1
· d(p̄t, pt+1)

d(p̄t+1, pt+1) =
t

t+ 1
· d(p̄t, pt+1).

On a heuristic basis the special case in real space can be extended to the

domain of strings. Given a set St = {p1, p2, . . . , pt} of t strings and its gen-

eralized median p̄t, the generalized median of a new set St+1 = St ∪ {pt+1}
is estimated by a weighted mean of p̄t and pt+1 with a ratio α ∈ [0, 1],

in the same manner as in Section 5.2.2. In real space α takes the value
1

t+1 . For strings, however, we have no possibility to specify α in advance.

Therefore, we resort to a search procedure. Remember that our goal is to

find p̄t+1 that minimizes the consensus error relative to St+1. To determine

the optimal α value a series of α values 0, 1
k , . . . ,

k−1
k , 1 is probed and the

α value that results in the smallest consensus error is chosen.

6. Experimental Evaluation

In this section we report some experimental results of several methods de-

scribed above. The used datasets are shown in Table 1. The Copenhagen
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Table 1. Evaluated datasets

Dataset Type Number of Number of Strings Number of
Sets in each Set Symbols

CCD real 22 100 11
Darwin artificial 21 40 52
MSNBC real 20 100 17

Chromosome Dataset49 consists of 22 genetic string sets, each containing

100 individual strings of different lengths. Each string encodes selected

parts of a chromosome and is based on an alphabet of 11 different genetic

symbols. The Darwin dataset uses 21 lines of Charles Darwin’s work “On

the Origin of Species”, each of which was artificially modified according to

common probabilities in optical character recognition applications.45,50 To

generate a set, each one line was duplicated 40 times, while each symbol

had a 12% chance to be modified in the process. The modification was a

substitution with a different but optical similar symbol in 87%, a deletion

in 9% and an insertion of a new symbol in 4% of the cases. Since these

lines are written in the English language, 52 symbols are possible with 26

lower and 26 upper case letters. The MSNBC.com anonymous web dataset

is a symbolic time series consisting of consecutive page views by users on

msnbc.com and msn.com for one day. Each time series is represented by

an array of integers, each integer representing a visit to a page of a specific

category like news, weather, business and 14 others. The dataset consists

of 989818 entries of varying length, from which we randomly selected 20

subsets with 100 entries between 30 and 50 visited pages.

For all datasets, we used the Levenshtein edit distance with cost 1 for

deletion, insertion and substitution. The average results of all datasets

using five median algorithms are shown in Figure 3. These methods are the

greedy algorithm (Section 5.2.1), prototype embedding (Section 5.2.3) and

distance-preserving embedding (DPE, Section 5.2.3), evolutionary weighted

mean (EWM, Section 5.2.2) and set median (Section 4). Since neither of

these methods produces an exact result, the minimal possible ES(p̄) is

unknown.

In the case of prototype embedding, DPE and EWM, we did not use

parameters specific for these datasets, but parameters that performed well

in a range of applications instead. As weighted mean function we used the

modified Levenshtein distance described in Section 5.2.2

As can be seen in Figure 3, aside from the MSNBC dataset the greedy

algorithm performs significantly worse than all other methods. This can be
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Fig. 3. Experimental results on three datasets using five approximative algorithms. A
lower result is better.

explained by the simple nature of the algorithm. By only selecting the next

best symbol, it is easy to arrive at a poor local minimum. For example,

if the set consists only of the string “AB”, then the generalized median

is also “AB”. Selecting both “A” and “B” as initial symbol of the greedy

algorithm result in a distance of 1 (assuming cost 1 for all edit operations).

If “B” is selected, then the algorithm stops since the first “A” is never added

afterwards and no improvement can be made by adding more symbols at

the end. This could also explain the much worse performance in the case

of the Darwin dataset. Since there are much more different symbols in this

set, the likelihood to select a suboptimal one is much higher. The greedy

algorithm performs well in the MSNBC dataset since the first category is

“frontpage” which is visited relatively often and is the first visited page

of most users. In our case, this is also the first category that is tested as

an addition to the solution of the greedy algorithm and therefore causes

problems like the ones above not nearly as often as in the other datasets.
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The results of prototype embedding are generally better by a large mar-

gin, but often slightly worse than the set median which is much easier to

calculate. Distance-preserving embedding methods improve this result and

are on average better than the set median. This can be attributed to the

more accurate embedding, which improves the median computation in vec-

tor space and therefore the reconstructed median string.

The evolutionary weighted mean method shows results only slightly

worse than distance-preserving embedding, each of them being the best

method in several string sets of all datasets.

The set median results demonstrate why it is often used as a good

approximation of the generalized median. Even though it is the easiest and

fastest of the shown methods, its results are close behind the results of DPE

and EWM in the tested datasets.

7. Discussions and Conclusion

This chapter deals with consensus learning for sequence data, in particu-

lar strings. Several procedures for computing median strings were briefly

described. Experimental results were reported to demonstrate the median

concept and to compare some of the discussed algorithms.

The majority of the algorithms described in this chapter are based on

the Levenshtein edit distance. The algorithms’ applicability to an arbitrary

string distance function is summarized in Table 2. Note that an extension

to an arbitrary string distance function usually means a computational

complexity different from that for the Levenshtein edit distance.

In the definition of median string, all the input strings have a uniform

weight of one. If necessary, this basic definition can be easily extended to

Table 2. Characteristics of median computation algorithms

Distance function Extension to Handling Handling
Algorithm (original paper) Arbitrary Weighted Closest

Distance Median String

Exact algorithm Levenshtein No Yes No (yes36)
and its variants22,35–37

Greedy algorithms38,39 Levenshtein Yes Yes Yes

Evolutionary Arbitrary distance n/A Yes Yes
weighted mean40

Distance-preserving Arbitrary distance n/A Yes Yes51

embedding42,45

Perturbation-based Arbitrary distance n/A Yes Yes
iterative refinement21,46

Dynamic algorithm48 Levenshtein No Yes No
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weighted median string to model the situation where each string has an

individual importance, confidence, etc. Given the weights wq, q ∈ S, the

weighted generalized median string is simply

p̄ = argmin
p∈U

∑
q∈S

wq · d(p, q).

All the computational procedures discussed before can be modified to han-

dle this extension in a straightforward manner.

The generalized median string represents one way of capturing the es-

sential characteristics of a set of strings. There do exist other possibilities.

One example is the so-called closest string51 or center string defined by:

p∗ = argmin
p∈U

max
q∈S

d(p, q).

It is important to note that the term center string is used by Gusfield4 to

denote the set median string. Under the two conditions given in Section 3,

it is proven by de la Higuera and Casacuberta28 that computing the closest

string is NP-hard. Another result is given by Frances and Litman52 where

the NP-hardness of the closest string problem is proven for the special case

of a binary alphabet (i.e., Σ = {0, 1}) and the Hamming string distance.

The ability of the algorithms to compute the closest string is summarized

in Table 2.

Another issue of general interest is concerned with cyclic strings. Several

methods have been proposed to efficiently compute the Levenshtein distance

of cyclic strings.53–55 It remains an open problem to determine medians of

this kind of strings.
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Automated categorization of textual information is becoming an increas-
ingly important task in the digital world. However, most classification
algorithms build upon manual labeling of text documents, which is a
time-consuming and costly process. In this paper, we present a novel
methodology for clustering-based classification of stationary document
streams using active learning. The proposed active learning clustering-
based classification algorithm (ACCA) obtains a continuous stream of
unlabeled documents. The arriving documents are clustered incremen-
tally so that each incoming document is inserted into an existing cluster
or used to start a new cluster of its own. The number of possible clusters
is unlimited. From time to time, an expert is called to label several clus-
ters for the classification mechanism. With arrival of more documents,
the expert can be called less frequently, since most of the incoming docu-
ments will eventually belong to existing labeled clusters. Our algorithm
is aimed at finding the fastest way of reaching the point where most
arriving documents can be classified automatically without the experts
assistance. The evaluation experiments on two benchmark corpora show
that active learning and clustering can increase the percentage of auto-
matically and accurately categorized documents over time.

1. Introduction

Text categorization, or classification, is a task where texts are assigned

to one or several of a set of predefined categories based on their con-

tent.1 If the texts are newspaper articles, typical categories might be,

for example, economics, politics, sports, and so on. Text classification

92
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applications include automatic email categorization, spam filtering,2 and

web-page classification.3 These applications are becoming increasingly im-

portant in todays information-oriented society.

While many algorithms have been developed in recent years to cope with

text classification, a key difficulty is that they require many labeled exam-

ples to produce a good classifier that can classify text documents with high

accuracy. The labeling in text classification is typically done manually by

reading documents or web pages, which is a time-consuming task. Unfor-

tunately, we cannot eliminate the document labeling process, since without

it a supervised machine learning algorithm will not be able to build an

accurate classifier representing the user interests.

The task addressed in this paper is classification of a stream of incom-

ing documents where there are no labeled documents at the starting point.

Classification is often posed as supervised learning, where a set of labeled

data is used to train a classifier that can be applied to label future ex-

amples. According to Ref. 4, in batch classification algorithms the same

time-consuming and computationally expensive training process has to be

run again in order to adjust the classifier when receiving new data. More-

over, labeling documents is costly and it would be too expensive to employ

experts all the time on labeling every new document found on the web.

In order to reduce the computational effort and the amount of labeled

documents, our methodology uses incremental clustering. Considering a

continuous and stationary document stream, we either assign each arriving

document to an existing cluster or start a new cluster. The number of

possible clusters is unlimited. At some stage, an expert is asked to label

a selected number of clusters. Cluster labeling by the expert is based on

representative documents from that cluster. All documents in each labeled

cluster are assigned the same label.

In this work, we present an active learning algorithm (ACCA) for

clustering-based classification of document streams. Our method requires

no initial training set. Unlike other methods that use clustering for text

categorization and active learning (such as Refs. 4 and 5), our method does

not limit the amount of possible clusters and allows the active learner to

label clusters rather than just single documents. We show that although at

the starting point there are no labeled documents, it is possible to improve

classification accuracy over time by using active learning and to reduce the

amount of documents that need to be labeled. Consequently, we will sub-

mit fewer queries to the experts for labeling documents that belong to new,

unlabeled clusters.
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The rest of this chapter is organized as follows. Section 2

describes the related work on active learning, incremental clustering, and

clustering-based text categorization. Section 3 presents the active learning

clustering-based classification (ACCA) algorithm. Section 4 presents the

experimental settings used for the evaluation of the proposed method and

discusses the results of the evaluation experiments. Section 5 summarizes

this chapter and outlines the directions for future research.

2. Related Work

This section covers the research in several domains, which are relevant

to the proposed method. Sub-section 2.1 describes several approaches to

incremental clustering, including fuzzy-based clustering. Sub-section 2.2

presents active learning and discusses various active learning techniques.

In sub-section 2.3, we cover existing clustering-based classification methods

with and without active learning.

2.1. Incremental Clustering

A method for clustering-based categorization of a continuous document

stream should be able to use its accumulated knowledge at any stage dur-

ing the learning process. This implies that the learned patterns evolve with

every new instance and there is no need of repeatedly processing previous

instances. This sort of clustering is referred to as an incremental cluster-

ing.6 Incremental clustering involves several challenges. The number of

arriving documents at the early stages of a document stream is small mak-

ing it difficult to obtain a high degree of clustering quality. As additional

documents arrive, it might become necessary to re-assign some previously

arrived documents to new clusters. In other words, document streams with

a different arrival order may result in different clustering results. Due to

these and other problems, there is still much work to be done before an

incremental clustering method can be regarded as accurate.7

According to Ref. 8, an important advantage of incremental cluster-

ing algorithms is that it is not necessary to store the entire dataset in the

computer memory. Consequently, the space requirements of incremental

algorithms are very small. In Ref. 8, an example of an incremental algo-

rithm is presented. In the first step of the algorithm, the first document is

assigned to the first cluster. In the next steps, when a new item arrives, it

is assigned either to one of the existing clusters or to a new cluster. The
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cluster assignment of a new document is based on the distance between the

new document and the existing cluster centroids.

In fuzzy clustering, instead of associating an item with a cluster, a mem-

bership function relates a document to a pattern. In Ref. 9, a fuzzy-based

method for incremental clustering of text documents is presented. With

this method, documents are represented as keyphrase vectors, similar to

the vector-space model,10 and the cluster centroid is defined by averaging

the vectors already assigned to this cluster. The centroid must include

all keyphrases that belong to any of the vectors in the cluster. For each

keyphrase, the averaging function takes into account only the documents

containing that particular keyphrase rather than all documents in the clus-

ter. Since the method is an incremental clustering algorithm, incoming

vectors are processed one at a time. Before a new cluster is created, the sim-

ilarity to each cluster centroid is computed treating each of its keyphrases

separately and assigning them importance degrees with respect to the clus-

ter. The document is assigned to the most similar cluster provided that the

distance of the vector to the associated cluster centroid does not exceed a

given threshold. If it exceeds the threshold, a new cluster is created.

The important feature of this method is that the final number of clusters

is determined by the algorithm rather than being limited by the user. The

only requirement is that each cluster will include similar vectors; vectors

that belong to separate clusters will be radically different. In Ref. 11, the

methods presented in Ref. 9 are revised and several crisp and fuzzy meth-

ods based on the cosine similarity principle for clustering without limiting

the final number of clusters are presented. Removing the restriction on the

total number of clusters moderately increases computation costs but it im-

proves the methods performance in classifying incoming vectors as normal

or abnormal, based on their similarity to existing clusters.

2.2. Active Learning

A general principle in machine learning is that the more training data a

learner has, the more accurate it should be. In practice, machine learning

algorithms are trained with very large amounts of training data due to the

fact that not all examples are equally informative. Some possess little or no

information value while others are extremely informative. In active learn-

ing, the learner queries a large data pool for data points that are expected

to be the most informative. Active learners are useful when labeling a data

point is expensive. With active learning, a machine learning algorithm can
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achieve higher accuracy with fewer labelled training instances. An active

learner can present queries to an expert (a human annotator), a query be-

ing a case from the input domain for which the learner does not know the

real label. These queries are the heart of the active learning framework and

allow the learner to control the training data it uses.

A stopping criterion is a potentially important element of interactive

learning algorithms and it is used to decide when to stop the active learning

process. In most cases, a simple stopping criterion allows the expert to

provide a specified number of labels, which is called the labeling budget. In

other approaches, referred to as holdout accuracy approaches, the algorithm

stops when the performance of the classifier reaches a point where the

cost of acquiring new training data is greater than the cost of the errors

made by the current model. The stopping criteria that use the intrinsic

characteristics of the classifiers are preferable since they do not require a

testing set.12

In pool-based active learning, the learner is provided with a set of inde-

pendent and identically-distributed unlabeled instances. At each step, the

active learner chooses an unlabeled instance to request the label from the

expert by means of a querying function. In the case of text categorization

problems, the queries presented to the expert are documents from the do-

main. Since these are comprehensible to the expert, a correct label can be

assigned.13 In the literature, there exist several methods for choosing unla-

beled instances for the expert to label. One of those methods is uncertainty

sampling,13 which uses a selective sampling criterion. It is accomplished by

selecting an instance based on a confidence score in the classification of the

instance. The instances having the lowest confidence scores are supposed

to be the most beneficial for labeling.

The query by committee (QBC) algorithm is an approach to version

space reduction that involves maintaining a committee of models, which are

all trained on the labeled set, but represent competing hypotheses. During

learning, whenever an unlabeled instance is available, the algorithm selects

two random hypotheses from the committee and only queries for the label

of the new instance if the two hypotheses disagree.14 This is a stream–

based selection algorithm where the learner is given access to a stream of

unlabeled examples taken randomly from the input space according to some

unknown distribution. With time, the prediction capabilities of the learner

will improve and it will discard the majority of the examples drawn from

the stream. In the initial stage, the learner queries the expert extensively,

but this effort is reduced over time.
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Reference 15 presents an active learning framework for drifting (non-

stationary) data streams, which builds a new classifier every time it detects

a decrease in the current classifier accuracy. The framework assumes that

no historical data can be stored in memory implying that the expert should

always be available for labeling some of the incoming instances immediately

upon their arrival. The framework expresses the labeling budget as a frac-

tion of all incoming data.

Reference 16 presents a cloud-based scientific workflow platform Clowd-

Flows for online dynamic adaptive sentiment analysis of microblogging

posts. The ClowdFlows platform uses the stream–based active learning

approach, where examples are constantly arriving from a data stream and

the learning algorithm has to decide in real time whether to select an ar-

riving example for labeling or not. In a practical experiment, the arriving

tweets are split into batches of fixed size (100) and a constant portion of

each batch (10 tweets) is selected for manual labeling. The tweets selected

for labeling include 3 most uncertain tweets along with 7 random tweets.

2.3. Clustering-Based Classification

In most text categorization tasks, labeled examples (e.g., documents or

tweets) are costly to obtain, whereas unlabeled examples are much cheaper

to collect. The document–labeling requirement is a key difficulty in text

categorization algorithms, since without many labeled examples it is hard

to produce a good classifier that can classify text documents with high

accuracy. As recent studies indicate, unlabeled data can contribute to the

learning process. That is, the semi-supervised learning approach, which

uses both labeled and unlabeled data for text categorization is better than

supervised learning based on a small set of labeled data alone.

References 4 and 17 propose a text classification algorithm that com-

bines supervised and unsupervised learning. The reasoning behind this ap-

proach is that if some structure exists in the objects, it is possible to take ad-

vantage of this information and to find a short description of the data. The

difference between this algorithm and others is that given a classification

problem, the training and testing examples are both clustered before the

classification step. This is a rather time–consuming and computationally

expensive process. As a possible extension of their work, Ref. 17 suggests

using incremental clustering to handle the arrival of new documents.

In the method proposed by Ref. 18, unsupervised classification is seen

as a preprocessing step that is performed only once. Then, depending on
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the availability of labeled samples, the supervised classification is applied.

Since in real-world problems classes are not generally well separated, it is

possible to have samples from different classes in one cluster or no sample

of a given class in others. To avoid this, the method uses a combination

of multiple clustering methods e.g., EM and k-means. The authors show

that adding more clusters improves the classification performance since the

objects are described in more detail.

Active learning can be used together with clustering to improve the

classification accuracy of an incoming stream of documents or emails as

demonstrated by Ref. 19 who use a two-class active learning methodology

that incorporates active learning and clustering. The algorithm first con-

structs a classifier from a set of cluster representatives and then propagates

the classification decision to other samples via a local noise model. The al-

gorithm of Ref. 19 uses a soft cluster membership technique, which allows

a sample to be related to more than one cluster.

The authors of Ref. 2 present an active semi-supervised learning ap-

proach, which helps spam filters to better detect spam mail. One of the

problems the method is designed to solve is the unwillingness of the users to

label a large amount of emails that the spam filter is uncertain of. To solve

this difficulty, unlabeled emails are clustered and the label of one email in

each cluster, which is assumed to contain only spam or only ham emails, is

determined by the user. Such a label is propagated to similar emails in the

same cluster meaning that now the user does not have to label many emails.

Emails labeled by the user and by label propagation are used to re-train

the spam filter. The remaining emails can be clustered again to repeat the

whole process until the user is unwilling to label additional emails.

Thus, the current methods for clustering-based text categorization, suf-

fer from the following limitations:

• The active learning methods for clustering-based text categorization are

batch methods, which cannot handle labeling of new arriving documents

or update document clusters over time.

• In most text-categorization methods that use clustering, the number of

clusters is limited, which causes impurity problems with some of the

clusters.

• Clustering-based methods that do not limit the number of clusters, such

as Ref. 11, do not utilize active learning mechanisms.
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3. Methodology

This section presents an active learning algorithm for clustering-based clas-

sification of an incoming stream of text documents.

3.1. Methodology Overview

The proposed methodology deals with a stationary stream of unlabeled

documents. Since our algorithm uses clustering to classify new documents

and active learning to significantly reduce the amount of label queries that

the clustering-based classifier requires, we call it Active learning Clustering–

based Classification Algorithm (ACCA).

Each arriving document is inserted into an existing cluster or starts a

new cluster of its own, without limiting the total number of created clusters.

Once in a while, an expert is called and asked to label several clusters based

on their medoid documents. All documents in a cluster are assigned the

label given to its medoid. The same label is also associated with each

new document assigned to that cluster. We assume that as more arriving

documents belong to already labeled clusters, the amount of expert calls

should decrease dramatically.

ACCA uses an incremental clustering approach, as opposed to the

clustering-based classification algorithm of Ref. 17, which uses a static clus-

tering methodology. Moreover, the amount of clusters in their algorithm

is pre-defined, in contrast to ACCA, which does not limit the number of

clusters in advance. The spam detection algorithms presented in Refs. 20

and 2 use active learning like ACCA does. However, these algorithms do

not use incremental clustering and limit the number of clusters that can be

created. In this paper, we show that removing the restriction on the total

number of clusters can improve the classification accuracy of a clustering-

based classifier.

To sum up, the unique properties of the proposed ACCA methodology

for clustering-based classification of stationary document streams include

the following:

• It uses clustering-based active learning to reduce the amount of docu-

ments that need to be labeled by an expert.

• It does not require the expert to be always available for immediate la-

beling of selected incoming documents by occasionally calling the expert

for a batch labeling of several unlabeled clusters.

• It removes the restriction on the total number of clusters to handle mul-
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tiple topics and subtopics.

• It uses incremental clustering to improve the classification accuracy with

each new arriving document.

• It uses an advanced, keyphrase-based representation of text documents.

3.2. Active Learning Clustering-based Classification

Algorithm (ACCA)

The detailed step-by-step description of the ACCA algorithm is provided

below.

Input : The input of the algorithm is a stationary stream of unlabeled

textual documents, which belong to a fixed and known set of classes (e.g.,

‘spam’ and ‘not-spam’ emails). The assumption is that the stream can keep

going forever although in our evaluation experiments we were limited with

the amount of documents in the available datasets.

Output : Each incoming document either is assigned to one of the known

classes (based on the label of its cluster) or is identified as an unknown

type of document (if its cluster has not been labeled yet). These unlabeled

documents are eventually classified by the algorithm after their respective

clusters are labeled by a domain expert.

The algorithm has the following parameters:

• Similarity threshold - can take a value between zero and one. When

the document similarity to the nearest cluster is below this threshold, it

starts a new cluster.

• Clustering method - in our experiments, we used either cosine or fuzzy

cosine clustering methods. These methods are explained below.

• Cluster labeling strategy - we used one of the following strategies for

choosing the clusters to be labeled by the expert: random sampling,

density calculation, cluster size, and radius calculation. These strategies

are explained below.

• Percentage of unlabeled clusters chosen for the expert labeling. We used

the following values in our experiments: 15%, 50% and 100%.

3.2.1. Step 1: Document Representation

We use the GenEx algorithm21 to represent each document by a list of

keyphrases and a vector of their importance weights (scores). In Ref. 21,

the concept of keyphrases is defined. A keyphrase may be a single keyword

or a phrase (n-gram) of 2-3 consecutive words. A keyphrase list is defined by
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Ref. 21 as a short list of phrases (typically 5-15 noun-phrases) that capture

the main topics discussed in a given document. Thus, each document may

be represented by a vector of k keyphrase weights (1 ≤ k ≤ m) where m is

the maximum number of keyphrases in a given document. The score wji of

a keyphrase ti in a document dj is calculated by the GenEx algorithm as

a function of the keyphrase in-document frequency and the location of the

first appearance of each word stem comprising the keyphrase.

3.2.2. Step 2: Document Clustering

At the beginning of the process, there are no documents. As we start

obtaining documents via a document stream, we apply the document rep-

resentation model presented in Step 1 to the incoming documents. The

documents obtained from the stream are clustered upon their arrival. Since

we focus in our work on massive document streams, we may not be aware of

all possible topics and subtopics presented by the incoming documents. To

avoid information loss that may affect the performance during the classifica-

tion phase, we do not limit the number of clusters, similar to the approach

presented in Ref. 9.

In our evaluation experiments, we use two incremental clustering algo-

rithms: Crisp Cosine Clustering (CCC) and Fuzzy-Based Cosine Clustering

(FCC). Both algorithms, which are presented in Ref. 9, process one arriving

vector at a time. When the first document arrives, it forms a new cluster.

Each cluster is represented by its centroid. Both algorithms are partition-

ing clustering algorithms, which produce a flat partition of documents into

clusters.

The Crisp Cosine Clustering (CCC) algorithm defines the cluster cen-

troid c as a normalized vector of the sum of all vectors already in the

cluster C:

c =
∑
j

wji

/∥∥∥∥∥
∑
j

wji

∥∥∥∥∥, dj ∈ C (1)

where the importance weights wji are normalized with respect to the Eu-

clidean norm ‖∑j wji‖ of the centroid. To measure the similarity between

an incoming vector v = (v1, .., vm) and a centroid c = (c1, , cm), as v arrives,

the CCC algorithm normalizes the importance weights of v with respect to

its Euclidean norm ‖v‖ and then calculates the inner product similarity by

Eq. (2), which considers only keyphrases that appear in both vectors:

s = c · v =

m∑
k=1

(ck · vk) (2)

 



December 20, 2017 14:29 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch05 page 102

102 M. Last, M. Stoliar & M. Friedman

The Fuzzy-Based Cosine Clustering (FCC) algorithm assigns to each in-

coming vector v a grade of membership χ(v, c), which is a number between

0 and 1, computed as a function of the ratio ‖v‖/‖c‖ between the Eu-

clidean norm of the document vector and the Euclidean norm of the cluster

centroid. The similarity is then defined as:

s = χ(v, c)(c · v)/(‖v‖ · ‖c‖) (3)

The membership function between v and c is defined as the fraction:

χ(v, c) =

{
9
4α

2(1− α), α ≤ 2
3

1, α > 2
3

(4)

where α = ‖v‖/‖c‖ is the relative size of v with respect to c. The above

membership function is proportional to α as long as α is relatively small

(less than a pre–defined threshold). For all values of α above the threshold,

the function is constant and equal to one. Based on Ref. 11, the threshold

we use in Eq. (4) is 2/3. Consequently, the document-cluster similarity of

vectors, which are much smaller in size than the cluster centroid c (less

than 2/3 of its norm) will be lower than the “crisp” cosine similarity, which

totally ignores the size of the vector v.

Finally, both algorithms (CCC and FCC) assign the vector v to the

cluster that produces the maximum similarity (calculated by Eqs. (2) and

(3), respectively), provided it is above a pre–defined similarity threshold.

If all similarity values are below this threshold, the incoming vector starts

a new cluster. Both algorithms do not limit the number of clusters, leading

to continuous creation of new clusters with arrival of new documents, which

are dissimilar to existing clusters. The new clusters will be small (containing

just one document in the beginning) and thus more pure (homogeneous).

3.2.3. Step 3: Calling the Expert

The arriving documents are clustered using an incremental clustering algo-

rithm (such as CCC or FCC). In the beginning of the document stream,

no cluster has a class label and consequently, all arriving documents are

unlabeled as well. After the arrival of x documents, a domain expert is

called for the first time. The number x is specified by the user based on

the document arrival rate and other constraints. Every time an expert is

called, he/she is asked to label a certain percentage p of unlabeled clusters.

The percentage p is specified by the user, based mainly on the labeling

budget, since assigning a label to each cluster requires reading the content
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of a document, which is the medoid of that cluster. We assume that only

one label can be assigned to each cluster.

The expert is called again after the arrival of another x unlabeled docu-

ments, which do not belong to any of previously labeled clusters. Assuming

that the document stream is stationary and the document arrival rate is

relatively stable, we expect the time intervals between the successive expert

calls to increase over time along with a decrease in the actual number of

clusters the expert is asked to label upon each call. Thus, if there is a fixed

cost associated with each expert call and another fixed cost for each labeled

cluster, the total cost of expert services should decrease over time.

3.2.4. Step 4: Choosing the clusters to label

Every time the expert is called, we ask him to label y unlabeled clusters,

which are then used by the clustering-based classifier. In our experiments,

we have evaluated the following strategies for choosing the clusters to label:

• Random Sampling - With random sampling, the clusters brought to the

expert are chosen randomly from the set of still unlabeled clusters. The

random sampling method is used as a baseline for comparison to all other

methods.

• Cluster Density - Cluster density is defined as an average similarity of

each document to all other documents in a cluster. Density is calculated

by:

density =

∑n
i=1

∑n
j=1 s(xi, xj)

n
(5)

The n parameter in Eq. (5) is the number of documents in a given cluster

and s(xi, xj) represents similarity between documents xi and xj . In

our evaluation experiments, we test if preferring more dense clusters for

the expert labeling may improve the performance of a clustering-based

classifier.

• Cluster Size With this strategy, we bring to the expert the medoids of

the largest clusters that the expert has not labeled yet. By choosing this

strategy, we assume that the clusters already having more documents

than others will continue to obtain more documents from the incoming

stream and thus should be preferred for labeling.

• Cluster Radius - Cluster radius, similar to the cluster density, is defined

as an average distance of the cluster documents to the cluster medoid.
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Radius is calculated the following way:

radius =

∑n
i=1 d(xi,m)

n
(6)

The n parameter in Eq. (6) is the number of documents in a given cluster.

In our evaluation experiments, we test if preferring clusters with a smaller

radius may improve the performance of a clustering-based classifier.

3.2.5. Step 5: Cluster Labeling

For each of y clusters that the expert is asked to label, we calculate the

cluster medoid. The medoid is defined as the most centrally located item in

a cluster, i.e., this is the document, which has the minimal average distance

to all other documents in the cluster. When the expert receives a medoid

and labels it, we assign the same label to all documents in the cluster. When

a new document is assigned to a labeled cluster, it is labeled as having the

class of the cluster. Thus, the expert provides us with knowledge for the

clustering-based classification mechanism.

3.2.6. Step 6: Stopping Criteria

The purpose of active learning is to improve the accuracy of the learner

while remaining sensitive to data labeling costs. It is therefore reasonable

to stop the active learning process if it does not provide a significant im-

provement in the classification performance anymore. In our evaluation

experiments, we seek to determine the fastest way of reaching the point

where the majority of arriving documents can be classified without an ex-

pert, since they are assigned to a labeled cluster, and the difference in classi-

fication performance between successive expert calls is minimal. After that

point, additional expert calls will not be justified and the algorithm can

continue classifying incoming documents on its own, under the assumption

that the arriving data is generated by a stationary process.

4. Evaluation

We have evaluated the proposed method on two document corpora from two

different domains. The goal was to find the best algorithm settings that

will provide the fastest way of reaching the point where nearly all arriving

documents are labeled without the expert’s assistance. We proceed below

with describing in detail the corpora, the data preprocessing operations,

and the experimental setup.
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4.1. Datasets

The first document corpus, the TREC07p email corpus, was used in Ref. 2.

It is available at http://plg.uwaterloo.ca/~gvcormac/treccorpus07/.

This corpus contains all emails delivered to a particular server between

08/04/2007 and 06/06/2007 and it includes desired emails i.e., ham emails,

and spam emails. Out of the 75, 419 mails in the corpus, 25, 220 are ham

and 50, 199 are spam.

The second corpus used in this work consists of a set of 582 terrorist

documents and 21,528 normal documents. The terrorist documents were

downloaded from various militant Jihadi websites in English, while the nor-

mal documents were collected by passive and anonymous eavesdropping on

a small network of university computers used by students from a university

department. The documents are from different periods in time and deal

with various topics. This corpus was previously used in Ref. 3.

4.2. Preprocessing

We cleaned the documents before running the experiments. In the

TREC07p corpus, MIME tags were removed and the documents were left

only with data relevant to their classification. In the course of this process,

we discovered that 4,229 of the documents were either empty or invalid.

These documents were removed and were not used in the experiments.

What remained was a corpus composed of 71,190 email documents of which

25,113 were ham emails and 46,077 spam emails.

To create a vector representation of each document, we used the Extrac-

tor tool which is based on the GenEx algorithm.21 The GenEx algorithm

selects the most important keyphrases in a document and represents each

document as a vector of keyphrase weights. The algorithm determines a

list of keyphrases that represent the main content of a given document un-

der two conditions. The first condition is a vector-size limitation that is

given as an input from the user. In this case, the algorithm chooses the

keyphrases that are most representative of each document (have the high-

est importance weights). The second condition removes from the keyphrase

list the phrases that do not provide information about the document con-

tent such as conjunctions and other stopwords. In our experiments, we

limited the vector size of each document to the maximum of 20 keyphrases.

Since different documents in the same corpus may be represented by com-

pletely different keyphrase vectors, the total size of the corpus vocabulary

is bounded by 20N , where N is the number of corpus documents.

 

http://plg.uwaterloo.ca/~gvcormac/treccorpus07/
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4.3. Experimental Setup

In our experiments, we used the following parameters to determine the best

settings for reaching a point where most incoming documents are classified

correctly by the ACCA algorithm as quickly as possible.

Similarity threshold. The similarity threshold is used to determine

whether the similarity value calculated by formula Eq. (2) is high enough

for a document to be added to the nearest cluster or it should start a new

cluster. This threshold affects the amount and the content of the clusters

labeled and used by the ACCA algorithm. In our experiments, we used the

similarity thresholds of 0.1, 0.15, 0.2 and 0.3. In the preliminary runs of

the algorithm we found that a threshold higher than 0.3 produced a very

large amount of clusters whereas a threshold lower than 0.1 produced too

few clusters.

Clustering algorithm. The clustering algorithm used by ACCA is of a

key importance. It affects the way the clusters are created, the amount of

created clusters, the assignment of documents to clusters, and finally the

cluster labeling process performed by the expert. In our experiments, we

used the following two clustering algorithms (see sub-section 3.2.2):

• Crisp Cosine Clustering.22

• Fuzzy-based Cosine Clustering.9

These clustering algorithms were chosen since they are incremental and

they do not limit in advance the amount of created clusters. In addition,

these and similar algorithms have demonstrated a reasonable performance

for detection of anomalous web documents in our previous work.9,11,22

Cluster Selection Strategy. During the active learning phase of the

ACCA algorithm, the expert obtains a certain amount of clusters to la-

bel. Each cluster is represented by one document, which is the medoid of

that cluster. The clusters to label are chosen using several strategies. In our

experiments, we use the following selection strategies, which were fully dis-

cussed in sub-section 3.2.2 above: random sampling, cluster density, cluster

size, and cluster radius.

Cluster Labeling Percentage. Every time the expert is called, he is asked

to label some percentage of unlabeled clusters. In our experiments, we

tested the values of 15%, 50% and 100% of unlabeled clusters that were

selected for labeling by the expert.

As explained above, the ACCA algorithm has four parameters. Using

combinations of those parameters, we composed a series of experiments.
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The following settings were evaluated:

• Four values of the similarity threshold (0.1, 0.15, 0.2, 0.3)

• Two clustering algorithms (crisp cosine and fuzzy cosine)

• Four clustering strategies (random sampling, density calculation, cluster

size, radius calculation).

• Three values of cluster labeling percentage (15%, 50%, 100%).

Thus, we have conducted 96 experiments per dataset representing the

Cartesian product of these settings (4 · 2 · 4 · 3 = 96) and a total of 192

experiments for both datasets.

4.4. Performance Metrics

We have used the following metrics to measure the quality of the algorithm

results and to find the best combination of parameter settings.

Identification Rate. We refer to identified documents as documents that

at the end of the experiment were assigned to one of the labeled clusters,

regardless of what their real class was. The identification rate of each

experiment was calculated using the following formula:

Identification rate =
Amount of identified documents

Total amount of documents
(7)

False Positive Error Rate. We refer to false positive documents as

ham/non-terror documents that were classified falsely as spam/terror doc-

uments. The False Positive Error Rate of each experiment was calculated

using the following formula:

FalsePositiveErrorRate =
Amount of false positive documents

Amount of identified documents
(8)

False Negative Error Rate. We refer to false negative documents as

spam/terror documents that were classified falsely as ham/non-terror doc-

uments. The False Negative Error Rate of each experiment was calculated

using the following formula:

FalseNegativeErrorRate =
Amount of false negative documents

Amount of identified documents
(9)

Expert Labeling Cost. We define C as the labeling cost of a single expert

call in the following way:

C = a+ y · c (10)

The total cost of one expert visit is represented by C, whereas a is the

fixed cost of the expert’s call and c is the cost of labeling a single document.
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We define y as the number of documents the expert labeled during a single

call. In this work, we take a as equal to 100 and c as equal to 1, which

simply means that the fixed cost of the expert’s call is equal to the cost of

labeling 100 documents.

4.5. Analysis of Results

4.5.1. Clustering algorithm effect

The clustering algorithm used by ACCA affects the amount of created

clusters, the content of each cluster, the labeling queries submitted to the

expert, and finally the clustering-based classification decisions of the algo-

rithm. Table 1 and Table 2 show the effect of clustering algorithms on the

obtained results for the terror and the email datasets, respectively.

Table 1. Evaluation of clustering algorithms in the terror dataset

Algorithm Min Max Mean Std.
Deviation

Crisp Document Identification rate (%) 77.96 99.65 93.97 5.48
Cosine False Positive Error Rate (%) 0.56 1.69 1.00 0.395

False Negative Error Rate (%) 0 0.2 0.003 0.009
Expert labeling cost 1044 3224 1797 654

Fuzzy Document Identification rate (%) 71.64 99.38 93.51 7.07
Cosine False Positive Error Rate (%) 0.411 0.74 0.58 0.13

False Negative Error Rate (%) 0 0.43 0.00 0.000
Expert labeling cost 2614 5562 3787 899

Table 2. Evaluation of clustering algorithms in the email dataset

Algorithm Min Max Mean Std.
Deviation

Crisp Document Identification rate (%) 89.77 99.49 97.42 2.7
Cosine False Positive Error Rate (%) 0.61 2.24 1.40 0.65

False Negative Error Rate (%) 1.18 3.61 2.31 0.63
Expert labeling cost 1569 8908 4250 2448

Fuzzy Document Identification rate (%) 90.89 99.98 97.96 2.42
Cosine False Positive Error Rate (%) 0.43 1.21 0.69 0.221

False Negative Error Rate (%) 1.61 4.93 3.12 0.844
Expert labeling cost 6509 17595 11007 3813

It is evident from both tables that the cost of expert labeling with the

fuzzy cosine is several times higher than the cost of expert labeling with
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the crisp cosine. This is because the fuzzy cosine algorithm tends to create

more clusters and thus needs more clusters to be labeled by the expert.

However, the False Positive Error Rate with the fuzzy cosine algorithm is

nearly two times lower than with the crisp cosine algorithm. T-tests have

shown that the difference in the False Positive Error Rate is statistically

significant in both datasets. On the other hand, in the email dataset, the

False Negative Error Rate with the crisp cosine clustering is significantly

lower than with the fuzzy cosine algorithm. The document identification

rates are quite high in both datasets disregarding the clustering algorithm.

The mean Kappa Statistic23 values for the terror dataset are 0.834 and

0.898 with the Crisp Cosine and the Fuzzy Cosine algorithms, respectively.

In the email dataset, which is less imbalanced, the mean Kappa Statistic

values are higher: 0.919 (CCC) and 0.918 (FCC).

4.5.2. Cluster Selection Strategy Effect

On each call, the expert receives a certain amount of clusters to label.

Those clusters can be selected using several strategies. Table 3 and Table

4 show the effect of cluster selection strategies on the obtained results in

the terror and the email datasets, respectively.

Table 3. Evaluation of cluster selection strategies in the terror dataset

Strategy Min. Max. Mean Std.
Deviation

Random Document Identification rate (%) 71.63 99.64 88.62 10.27
False Positive Error Rate (%) 0.41 1.69 0.88 0.44
False Negative Error Rate (%) 0 0 0 0
Expert labeling cost 1115 5562 2943.75 1210.82

Density Document Identification rate (%) 89.81 99.64 95.15 3.01
False Positive Error Rate (%) 0.43 1.4 0.78 0.34
False Negative Error Rate (%) 0 0.04 0.01 0.01
Expert labeling cost 1044 5562 2718.46 1306.00

Radius Document Identification rate (%) 90.13 99.68 95.560 2.72
False Positive Error Rate (%) 0.43 1.43 0.79 0.35
False Negative Error Rate (%) 0 0.03 0.004 0.01
Expert labeling cost 1087 5562 2765.88 1283.85

Size Document Identification rate (%) 90.13 99.65 95.57 2.72
False Positive Error Rate (%) 0.43 1.43 0.79 0.35
False Negative Error Rate (%) 0 0.03 0.004 0.01
Expert labeling cost 1048 5562 2741.75 1343.05
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Table 4. Evaluation of cluster selection strategies in the email dataset

Strategy Min. Max. Mean Std.
Deviation

Random Document Identification rate (%) 89.70 99.98 96.11 4.1
False Positive Error Rate (%) 0.43 2.24 1.08 0.6
False Negative Error Rate (%) 1.18 4.93 2.71 1.22
Expert labeling cost 2080 17595 8221 4691

Density Document Identification rate (%) 94.54 99.98 98.13 1.66
False Positive Error Rate (%) 0.44 2.09 1.03 0.61
False Negative Error Rate (%) 1.71 4.93 2.78 1.18
Expert labeling cost 1569 17283 7349 4681

Radius Document Identification rate (%) 95.07 99.98 98.24 1.56
False Positive Error Rate (%) 0.44 2.23 1.05 0.67
False Negative Error Rate (%) 1.52 4.93 2.63 1.18
Expert labeling cost 1602 17283 7464 4760

Size Document Identification rate (%) 95.43 99.98 98.29 1.47
False Positive Error Rate (%) 0.44 2.09 1.02 0.62
False Negative Error Rate (%) 1.66 4.93 2.74 1.13
Expert labeling cost 1571 17283 7478 4745

In both datasets, we have not found significant differences between var-

ious cluster selection strategies using ANOVA, although the false positive

\negative rates are higher with the random selection strategy. This makes

the random strategy inferior to all non-random strategies evaluated by us.

4.5.3. Cluster labeling percentage effect

Every time the expert is called, he is asked to label a certain amount of

unlabeled clusters. This amount is defined as a percentage of currently

unlabeled clusters. In our experiments, we evaluated the values of 15%,

50%, and 100% of unlabeled clusters. The results are shown in Tables 5

and 6.

As expected, the identification rate increases as a larger percentage of

clusters is selected from the set of unlabeled clusters. Not surprisingly,

the increase in the identification rate is accompanied by an increase in the

expert labeling cost. The false positive \false negative percentage grows

as more clusters are labeled though its growth is statistically insignificant.

Running ANOVA on the results has shown that the difference between

choosing 15%, 50%, and 100% of unlabeled clusters is insignificant in all

parameters, except the lower identification rate and the higher labeling cost

with the 15% labeling. This means that we can choose 50% of unlabeled
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Table 5. Evaluation of cluster labeling percentages in the terror dataset

Cluster ratio Min Max Mean Std.
Deviation

15% Document Identification rate (%) 71.64 94.62 88.29 8.01
False Positive Error Rate (%) 0.43 1.69 0.76 0.37
False Negative Error Rate (%) 0 0.04 0.01 0.01
Expert labeling cost 1044 4742 2593 1103

50% Document Identification rate (%) 91.18 97.9 94.97 1.891
False Positive Error Rate (%) 0.41 1.46 0.8 0.36
False Negative Error Rate (%) 0 0 0 0
Expert labeling cost 1087 5371 2819 1320

100% Document Identification rate (%) 95.98 99.65 97.97 1.63
False Positive Error Rate (%) 0.46 1.48 0.82 0.37
False Negative Error Rate (%) 0 0 0 0
Expert labeling cost 1115 5562 2966 1381

Table 6. Evaluation of cluster labeling percentages in the email dataset

Cluster ratio Min Max Mean Std.
Deviation

15% Document Identification rate (%) 89.77 97.58 94.92 2.69
False Positive Error Rate (%) 0.43 2.24 1.1 0.63
False Negative Error Rate (%) 1.18 3.91 2.38 0.96
Expert labeling cost 1569 17595 7310 4624

50% Document Identification rate (%) 97.72 99.52 98.6 0.5
False Positive Error Rate (%) 0.44 2.01 0.99 0.57
False Negative Error Rate (%) 1.67 4.87 2.82 1.16
Expert labeling cost 1602 17410 7809 4742

100% Document Identification rate (%) 99.05 99.98 99.56 0.35
False Positive Error Rate (%) 0.44 2.09 1.05 0.64
False Negative Error Rate (%) 1.1 4.93 2.94 1.27
Expert labeling cost 2080 17283 7766 4737

clusters and still obtain classification performance comparable to 100%.

This may be explained by the fact that when labeling 50% of documents

the expert skips small clusters, which have a minimal effect on the overall

clustering-based classification accuracy.

4.5.4. Similarity Threshold Effect

The similarity threshold is used to determine whether an incoming docu-

ment should be assigned to an existing cluster or start a new cluster. In

Tables 7 and 8, we show the effect of the similarity threshold on the results

in the terror and the email datasets, respectively.
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Table 7. The similarity threshold effect in the terror dataset

Similarity Min Max Mean Std.
Deviation

0.1 Document Identification rate (%) 74 99.15 94.1 6.63
False Positive Error Rate (%) 0.75 1.47 1.21 0.23
False Negative Error Rate (%) 0 0.13 0.03 0.05
Expert labeling cost 1044 2915 1991.25 831.45

0.15 Document Identification rate (%) 72.25 99.94 94.53 6.45
False Positive Error Rate (%) 0.74 1.57 1.16 0.2
False Negative Error Rate (%) 0 0.14 0.03 0.04
Expert labeling cost 1165 3545 2439 1003

0.2 Document Identification rate (%) 71.64 96.86 93.44 5.88
False Positive Error Rate (%) 0.67 1.69 1.05 0.35
False Negative Error Rate (%) 0 0.04 0.01 0.01
Expert labeling cost 1553 4043 2826 1060

0.3 Document Identification rate (%) 73.28 99.65 94.05 6.73
False Positive Error Rate (%) 0.41 0.68 0.54 0.1
False Negative Error Rate (%) 0 0.01 0.0006 0.003
Expert labeling cost 1872 5562 3913 1313

Table 8. The similarity threshold effect in the email dataset

Similarity Min Max Mean Std.
Deviation

0.1 Document Identification rate (%) 90.71 99.73 98.02 2.15
False Positive Error Rate (%) 1.82 3.55 2.58 0.63
False Negative Error Rate (%) 3.12 11.88 6.85 3.03

Expert labeling cost 1569 8197 4401 2550
0.15 Document Identification rate (%) 91.46 99.61 98.07 2.04

False Positive Error Rate (%) 1.24 2.69 1.7 0.38
False Negative Error Rate (%) 2.47 7.94 5.19 1.74
Expert labeling cost 2094 10224 5875 3142

0.2 Document Identification rate (%) 89.77 99.72 97.91 2.56
False Positive Error Rate (%) 0.79 2.24 1.48 0.57
False Negative Error Rate (%) 1.76 4.93 3.63 0.93
Expert labeling cost 2986 12412 7828 3724

0.3 Document Identification rate (%) 90.27 99.98 97.47 2.58
False Positive Error Rate (%) 0.43 1.13 0.62 0.2
False Negative Error Rate (%) 1.18 1.94 1.8 0.18
Expert labeling cost 5727 17595 12409 4624

ANOVA has shown a significant increase in the False Positive and False

Negative Error Rates with a decrease in the similarity threshold. This

can be explained by a decrease in the number of clusters as the similarity

threshold becomes lower. Consequently, the clusters become larger and

more heterogeneous, resulting in a declining classification performance.
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4.5.5. Time-based analysis

Figures 1 and 2 show the classification accuracy as a function of time

(amount of arriving documents) in the terror and the email datasets, re-

spectively, with the 50% labeling percentage. We define accuracy as the

portion of documents identified correctly by the clustering-based classifier

out of all incoming documents. The graphs show the difference between

two incremental clustering algorithms (Crisp Cosine Clustering vs. Fuzzy

Cosine Clustering) and three similarity thresholds (0.10, 0.15, and 0.20).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000

Ac
cu

ra
cy

Documents over time

0.1 Fuzzy Cosine
0.15 Fuzzy Cosine
0.2  Fuzzy Cosine
0.3  Fuzzy Cosine
0.1 Cosine
0.15 Cosine
0.2 Cosine
0.3 Cosine

Fig. 1. Accuracy as a function of time in the terror dataset

The X-axis shows the number of incoming documents over time, while

the Y -axis shows the percentage of arrived documents we were able to

classify correctly using the clusters labeled by the expert. Each point on

the graph represents an expert’s call when he was asked to label several

unlabeled clusters.

We can see that the frequency of expert calls increases as the similar-

ity threshold goes up. This occurs because a higher similarity threshold

increases the number of clusters, which in turn requires calling the ex-

pert more frequently. The graphs also demonstrate that the crisp cosine

clustering results in a higher percentage of correctly identified documents

than the fuzzy cosine clustering and that there is no significant difference

between the similarity thresholds in terms of accuracy. Thus, based on

our results in sub-section 4.5.4 above, the recommended clustering method

 



December 20, 2017 14:29 Data Mining in Time Series and Streaming Databases 9in x 6in b3092-ch05 page 114

114 M. Last, M. Stoliar & M. Friedman

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000

Ac
cu

ra
cy

Documents over time

0.1 Fuzzy Cosine
0.15  Fuzzy Cosine
0.2  Fuzzy Cosine
0.3  Fuzzy Cosine
0.1 Cosine
0.15 Cosine
0.2 Cosine
0.3 Cosine

Fig. 2. Accuracy as a function of time in the email dataset

is Crisp Cosine Clustering with the similarity threshold of 0.2, which is a

compromise between the accuracy rate and the FP/FN rates.

We compared the accuracy of our clustering-based algorithm to super-

vised classifiers. In the terror dataset, we used Weka and a resampling

filter to deal with the imbalanced data (21, 528 normal documents and only

582 terror documents). The resampling method is supervised, implying

that 100% of arrived documents had to be identified by the expert before

choosing equal number of instances from each class. The terror dataset

was processed using the J48 classifier with 10-fold cross-validation. We ob-

tained a False Positive Error Rate of 26%, a False Negative Error Rate of

1% and 86.67% of correctly classified instances. The accuracy percentage

was lower than obtained when using the ACCA algorithm and the False

Positive Error Rate was much higher. In Ref. 20, several supervised algo-

rithms were applied to the same email dataset that we used in this paper.

The results showed accuracy rate of 66.7% for SVM and Näıve Bayes, which

is considerably lower than the rate we have achieved here.

5. Conclusions

In this paper, we introduced a novel methodology for clustering-based clas-

sification of stationary document streams using active learning. The em-

pirical evaluation shows that by using active learning and clustering we can

improve the classification rate over time. The proposed method aims at
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a stream of incoming documents where, in the beginning, all documents

are unlabeled. The documents arriving from the stream are clustered and

either assigned to an existing cluster or used to start a new cluster. The

number of possible clusters is not limited. Occasionally, we call an expert

who receives several clusters to label. The expert labels the clusters based

on the cluster medoid and all documents in a labeled cluster are assigned

the same label. With arrival of more documents and their labeling, we

should call the expert less frequently considering the fact that most docu-

ments are expected to belong to existing clusters and thus we can identify

them automatically without using the services of a human expert.

We have evaluated the algorithm on two document streams from two

different domains. The goal of our experiments was to find the fastest way

of reaching the point where a high percentage of arriving documents can be

categorized correctly without calling an expert. The number of evaluated

algorithm settings was 192. The conclusion was that the best setting is to

use the Crisp Cosine Clustering algorithm together with either density, size

or radius-based cluster choosing strategy and labeling 50% of unlabeled

clusters on each expert call. The recommended similarity threshold for

clustering is 0.2.

Future research may include evaluation of the proposed method on ad-

ditional document streams to test the consistency of the trends shown in

this work, especially for multi-class text categorization problems. Another

research direction may be increasing the number of documents labeled by

the expert in each cluster. By labeling additional documents, we may be

able to decrease the false negative \positive rates. However, this approach

will also increase the total amount of documents labeled by the expert.

We have used crisp cosine clustering and fuzzy cosine clustering as incre-

mental clustering algorithms. In future work, other incremental clustering

methods, such as Refs. 24 and 7 may be used. In this work, we have assumed

stationarity of the incoming document stream. It would be interesting to

develop methods for incremental clustering of non-stationary data streams,

where the lexicon and the topic set may change over time. As opposed to a

clustering-based classifier, we may use a supervised classification algorithm,

such as Näıve Bayes or SVM that will induce a classification model from

the data labeled by the expert.
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The selection and pre-processing of data are key activities in the 
interpretation and extraction of knowledge from data streams. Their 
role become even more crucial in the context of big data mining where 
huge amounts of (volatile) data from various types are normal, and 
simply storing all data is not only becoming infeasible but also 
undesired. This makes the exploitation of domain knowledge the key 
ingredient to properly reduce the data stream while simultaneously 
keep information loss to a minimum. Using several examples from the 
completely different fields of cyber security, astronomy (in particular 
the detection of exoplanets), criminal justice (in particular in the 
Netherlands) and cyber security the importance of domain knowledge 
is illustrated. For each of these examples time series analysis is the 
goal, but the challenges during the selection and pre-processing stages 
are completely different. However, despite the differences, two 
different, but related, trends can be distinguished. The first trend shows 
that steps that need to be emphasized during pre-processing depend on 
the consistency of the time series data, and the second trend shows a 
shift from optimizing the records included in the time series data to 
optimizing the approach taken to allow the data to be mined. 
 

1.   Introduction 

According to IBM, about 2.5 Exabyte (=2.51018 bytes) of data is 
produced every day,1 and this is still growing exponentially. This is 
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affecting almost all facets of society, ranging from science (e.g. CERN, 
genome project, etc.) via the monitoring of processes (e.g. the weather, 
manufacturing, etc. ) to social life (e.g. social media, video streaming, 
etc.) However, this growth is also creating daunting challenges, not only 
in the collection, storage and access of such large data streams, but also 
the processing and interpretation. Such large data streams, and the 
problems surrounding them, are typically referred to as big data. 

Big data is either defined as a term for i) a vague metaphor for 
solving complicated problems with data or ii) data that cannot be handled 
with conventional tools.2 Commonly, big data is characterized by the 
‘3Vs’, i.e. high volume, high velocity and/or high variety,3 but other 
words starting with ‘V’ are sometimes also included (e.g.  value, 
veracity, etc.)4  High volume indicates the large quantity of data 
involved. High velocity is the speed at which data is created, while the 
high variety indicates the large variety of data types involved (e.g. 
structured databases, images, text, audio, etc.).  

Each phase of big data has its own challenges and is leading to new 
developments.5 Since the storage of the Terabytes of data is non-trivial, 
big data is driving recent developments in storage technology. Another 
technological problem is the increasing fraction of potentially interesting 
data that can never be analyzed due to the huge amounts of data that are 
collected.6 Furthermore, the sheer variety of non-traditional data (e.g. 
unstructured data, audio or video files, etc.) provides new processing 
challenges.7 Finally, averting privacy breaches, due to the combining of 
different data streams, is another challenge.8,9 

The goal of big data is to extract information to enable enhanced 
decision making, insight discovery or process optimization,10 and this is 
done with data mining. This field also shows many new developments 
and challenges due to big data. For example, the advances in distributed 
computing (such as MapReduce and Hadoop) have been driven by big 
data,5 while cloud computing allows data mining without the need to 
invest in expensive infrastructure.11 Furthermore, creating and 
maintaining a process that extracts and transforms relevant information 
from the original sources for analyses is a continuous challenge.7 
Another challenge for big data is interpreting the results and making 
them understood by the decision makers. This not only includes 
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understanding how a result was obtained, but also develop a way to 
visualize the results in an intuitive way. 

The big data and mining challenges get compounded when the time 
component is important. For example, due to concept drift statistical 
properties in a data stream can change over time12 (e.g. trending topics 
on Twitter, but also periodic seasonal variations). Another related 
challenge is the duration of the life cycles of the phenomenon that could 
be present in the data stream. A final example is the challenge to 
visualize the information that is continuously extracted from the data 
streams. Presenting such data over both large and very short timescales 
simultaneously requires new visualization techniques.13 

In this chapter the challenges with big data during the selection and 
pre-processing stages of the mining process are discussed. This is 
illustrated with three real-life examples from very different fields that all 
have a strong time component, namely: astronomy, criminal justice and 
cyber security. It will be shown that each case has its own unique 
challenges that are mainly motivated by domain knowledge. Section 2 
presents an outline of the different phases in data mining, and paints a 
broad picture of the problems during the Selection stage (Sect. 2.1) and 
the pre-processing stage (Sect. 2.2). Section 3 presents the challenges for 
the astronomy case, Sect. 4 those for the criminal justice system, and 
Sect. 5 those for the Cyber Security case. In Sect. 6 the different cases 
are compared and their differences and similarities are discussed with 
regard to domain knowledge (Sect. 6.1) and the presence of the time 
component (Sect. 6.2). Finally, in Sect. 7 the conclusions are presented. 

2.   The Pre-mining Phases 

To mine data streams it is important to take the process of Knowledge 
Discovery in Databases (KDD) into account. Knowledge Discovery is 
defined as “the non-trivial process of identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data”,14 and is an 
iterative process that consist of multiple stages. Although the approaches 
that have been outlined by KDD have been refined over years, e.g. in the 
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form of CRISP15 or SEMMA,16 nine steps can in essence be recognized, 
which can be summarized in 5 more general stages:  
(1) Selection 

(a) Developing and understanding the application domain 
(b) Creating a target dataset/data stream 

(2) Pre-processing 
(c) Data cleaning and pre-processing 

(3) Transformation 
(d) Data reduction and projection 

(4) Data mining 
(e) Choosing the data mining task 
(f) Choosing the data mining algorithm 
(g) Data mining 

(5) Interpretation/Evaluation 
(h) Interpreting 
(i) Consolidating discovered knowledge. 

Nowadays the term data mining has a very broad meaning, and is used 
for almost every exercise that tries to extract information.17 This can 
range from a pure statistical analysis where the dataset, the model and 
the goal are all very well defined to a completely blind search for 
patterns in an unknown data stream. In practice, most data mining 
exercises are in between these extremes, and (some) ideas about the 
content of the datasets and the  goal of the data mining are known 
beforehand.  

Since most data mining exercises have an idea about the goal, the 
first two stages of KDD are crucial for a successful campaign. These 
stages, the focus of this chapter, become even more important when it is 
not possible to store all data or the data has a time component. Since it is 
often difficult to explore the original data stream for potential features 
when a time component is involved,18 the selection criteria and pre-
processing procedures must typically be developed before the target data 
stream can even be created. In the remainder of this section the first two 
steps of KDD are described in a more general way.  
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2.1.  The Selection Stage 

The goal of the “Developing and understanding the application domain” 
step is to obtain feeling for the main  issues in the application domain to 
identify a well defined problem. Typically this problem needs to be 
broken down in many sub-questions, lead to the identification of new 
issues that need to be solved. For example, a common problem in Cyber 
Security is: “How can malicious intrusions be detected in high-speed 
network traffic in real-time without causing noticeable delays (by the 
users of the network).” An obvious sub-question is: “What are malicious 
intrusions?” which leads to the question of: “What does a specific 
malicious intrusion (e.g. certain malware) look like?”  

Obviously, the fact that the main problem is divided into a set of sub-
questions does not mean that these are less important. On the contrary, it 
is only by answering all these sub-questions that a data mining exercise 
can be developed to find a solution for the main problem. However, one 
thing to guard against is losing sight of the main problem. In general, it is 
better to only answer the smallest set of questions that still meet the 
minimum requirements to answer the main problem. Afterwards, aspects 
that could still need further clarification can be identified, and if needed a 
new data mining problem can be formulated.  

One thing to note is that typically more in-depth domain knowledge 
is needed when the sub-question becomes more specific. This leads to a 
better understanding of the application domain, leading to a better 
formulation of the higher level questions or even the main problem. If a 
question has finally been divided in a set of sub-questions that cannot be 
further broken down, its optimal solution is usually evident. At this point 
it is time to start thinking about creating the target data stream. 

During stage 2 the optimal solution to each sub-question is 
formulated. Some of these solutions could be as simple as selecting a 
specific value from a single attribute or a combination of attributes. 
However, due to all kinds of different constraints, the optimal solution is 
not always feasible. For example, it is not possible to directly measure 
the required attribute needed, or it could take too much bandwidth or 
processing time to make the solution feasible. In this case a sub-optimal 
solution or even a trade-off needs to be found that will still achieve the 
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minimum requirements to answer the question. Also, it could be possible 
that with the available data stream it is impossible to answer the 
question. In this case the underlying question, or in the worst case the 
main problem, will need to be re-phrased. When it is clear that all sub-
questions can be answered with the data streams that are available for 
mining, all necessary attributes can be collected to create the target data 
stream.  

Using again the Cyber security example, where two different kinds 
of malicious software need to be detected real-time without causing any 
noticeable delay to the network traffic, the considerations during the 
Selection phase can be illustrated. The first kind of software is a ‘simple’ 
piece of malware that redirects a user to a malicious website (which is 
located at a specific IP address). For this malware the optimal solution is 
to monitor if this IP address (website) is being accessed by outgoing 
network traffic. Since checking a common attribute in the network data, 
the destination IP addresses of the outgoing traffic, provides the solution, 
it is simple to implement. On the other hand, the second piece of 
malicious software is a more advanced piece of malware, and the 
simplest solution for its detection is to search for a certain signature. 
However, if this malware is hidden in an encrypted communication 
(thereby making the signature undetectable), or embedded in file that is 
too large to scan in depth without large delays in the network traffic, the 
simplest solution becomes unfeasible. The trade-off could be that the 
detection is not done real-time anymore or that a noticeable delay occurs 
in the network traffic. Which trade-off will be made depends if the real-
time or the delay aspect is considered more important. If it is acceptable 
that potentially malicious pieces of software are first quarantined and 
carefully checked, the original question could then be re-phrased into: 
‘How can malware be detected in quasi real-time without causing any 
noticeable delays to the remaining network traffic?’ 

2.2.  The Pre-processing Stage 

Real data typically has many shortcomings, and raw data is therefore 
considered ‘dirty’. For example, a data stream can be incomplete, noisy, 
inconsistent, and can be incoherent when multiple data streams are 
involved. The goal of the pre-processing stage is to transform this ‘dirty’ 

 



124 R. Cornelisse & S. Choenni 

Data Mining in Time Series and Streaming Databases     9in x 6in            b3092-ch06    

data into a consistent and understandable ‘clean ’data stream. To create 
such a ‘clean’ data stream the steps that are carried out are: i) combine 
the data from the different data streams into a coherent one, ii) fill in 
missing values, iii) resolve inconsistencies,  iv) understand the noise 
components. 

Combining data from different data streams can be challenging. For 
example, attributes in different data streams could have the same name, 
but this does not guarantee a similar meaning. There might be subtle (or 
not so subtle) differences, which have to be taken into account. The 
opposite problem, where similar attributes have different names, can also 
occur.19,20 Furthermore, combining the noise characteristics of each data 
stream and determining how they propagate in the combined set might 
not be trivial.  Finally, even if the attributes of different data streams 
might have a similar meaning, it does not guarantee that they have the 
same unit. An example is the different measurement systems that are 
used, such as the metric, United States customary units and the Imperial 
system (e.g. liter vs. US gallon vs. imperial gallon).  

Although it is not always possible, sometimes there are ways to fill 
in missing values.21 One such method is to replace a value with one from 
a similar attribute. Another way to fill in missing values is to infer the 
mean, or most probable, value from relevant attributes.  Although these 
methods appear similar there is a significant difference. In the first 
method a replacement value is directly taken from a different attribute, 
while in the second method a value must be derived from one or more 
different attributes. 

Inconsistencies are common in data streams and can have many 
origins. For example, they occur due to human errors such as typing 
mistakes (e.g. entries with 981 as the year of birth) that are introduced in 
the database. Other common inconsistencies can occur due to the 
reluctance to fill out (apparently) unnecessary paperwork that the system 
insists on. Generally some generic or nonsense input is given to comply 
with the demand of input. Another form of inconsistency occurs when 
developments in the real world cannot accurately be taken into account 
by the database, leading to new set of values that do not correspond with 
the original definition of an attribute. A final form of inconsistency 
occurs when there are multiple ways to represent the same object. For 
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example, a typical Dutch last name is ‘van Dijk’, which can also be 
written in a database as ‘v. Dijk’, ‘Dijk, van’, ‘van Dyk’, etc. 

Finally, understanding the noise characteristics of the data stream 
and how they propagate can be crucial for certain mining problems. In 
general, the following four kinds of noise can be distinguished. 1) 
Spurious noise, i.e. outliers that can clearly not be correct (e.g. a person 
that is 1035 years old, i.e. was born in 981). 2) Noise due to 
measurement errors (intrinsic to all measuring devices). 3) Systematic 
noise due to a systemic off-set in the measuring device. 4) Background 
noise due to presence of extraneous sources that cannot be separated 
from the object is mined. Understanding the importance of each noise 
component, and their effect on the confidence of the final answer, can be 
crucial.  

3.   Case I: Astrophysics 

The astrophysics case is illustrated by the Kepler satellite mission to 
detect Earth-sized exoplanets (see Ref. 22 for an overview of the results), 
i.e. planets around stars other than our sun. The mining question can be 
summarized as: ‘How common are Earth-sized exoplanets?’ Although 
high level of domain knowledge is needed to successfully answer this 
question, there are large deviations from the steps presented in the 
previous section. These deviations will be discussed, but the emphasis 
will be on steps where domain knowledge is crucial.   

3.1.  The Selection Stage 

The largest deviation from the steps described in the previous section is 
at the beginning. Since no time series data existed to detect of Earth-
sized exoplanets prior to Kepler, one needed to be created via a dedicated 
(scientific) program. This allows for the creation of a perfectly optimized 
time series data, instead of the more common situation where the time 
series data were never intended to answer the specific mining question.  

The first step is to break down the main question into more specific 
sub-questions, and could, for example, be: 1) How many stars need to be 
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observed to give a meaningful answer to the prevalence of exoplanets?, 
2) How to rule out alternative explanations of the data?, 3) How can 
Earth-sized exoplanets be detected? These major questions do not have 
an obvious optimal solution yet, and need to be broken down further. 
Furthermore, these major questions are also strongly dependent on each 
other, since the answer to one major question will strongly influence the 
answer to the other major questions.  

To continue the example, the third major question can be further 
divided into the following three (related) questions: 1) What is the most 
promising technique to detect exoplanets? 2) What is the minimum 
precision needed to detect an Earth-sized exoplanet? 3) How to reach this 
minimum precision? The first of these questions does have an obvious 
answer to any domain expert, and directly provides the answer to the 
second of these questions. However, it will create multiple new sub-
questions for the third of these questions, while also indicating how the 
other major questions can be further broken down.  

For Kepler the most promising technique to create time series data to 
search for Earth-like exoplanets was transit photometry. With this 
technique the brightness of a star is continuously measured, and when a 
planet crosses between the observer and the star there is a small drop in 
the amount of light. Using the Earth-Sun system as a benchmark, the 
minimum requirements can be calculated to be able to detect an Earth-
like exoplanet. For a far-away observer the Earth passes in front of the 
Sun once every year for a duration of 13 hours, leading to a drop in 
brightness of 0.0084%. Since the drop needs to be measurable, the total 
noise on each individual measurement needs to be smaller (for Kepler 
0.002% was chosen). However, observations with such a small noise 
contribution are not feasible from Earth (where at best a drop of at least 
0.1% can be measured), leaving only a satellite mission as the alternative 
to create such time series data.  

A satellite mission adds a lot of new requirements to the nature of the 
data that can be collected. For example, a satellite mission has only a 
limited lifetime (for Kepler the nominal lifetime was 3.5 years), 
constraining the time to create time series data that can answer the main 
question.  Furthermore, there is only a limited amount of bandwidth to 
send information back to Earth. Therefore, the pre-processing at the 
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satellite must be done carefully, since not everything can be reproduced 
on the ground. Also, satellite missions are expensive and major 
modifications are typically impossible after launch. This means that 
before the first data is even collected, all potential issues that prohibit the 
answer to the main problem must be solved.  For Kepler these problems 
are, for example, getting the total noise contribution to a small enough 
level, making sure that the duration of the time series data is large 
enough that alternative explanations for many transits can be excluded, 
while still being able to give an answer to the occurrence rate of Earth-
like exoplanets. In Refs. 23 and 24 an overview of the main issues and 
the solutions for the Kepler satellite mission are sketched. 

3.2.  The Pre-processing Stage 

For the creation of the Kepler time series data many of the steps in Sect. 
2.2 can be skipped. For example, since the time series data is specifically 
created to solve the mining question, it is not necessary to combine data 
from different data streams. Also the filling in of missing values and the 
resolving of inconsistencies can be skipped. Unless a glitch occurred on-
board the satellite (making all data during that period suspect, and should 
be discarded), no missing values or inconsistencies occur. However, 
understanding the noise characteristics is crucial to its success. 

The importance of understanding the noise is illustrated in Fig. 1, 
where the (fictive) observations of a transit, with the same characteristics 
as the Earth passing in front of the Sun, are shown. Although the 
measurements are all the same, the noise decreases from the top to 
bottom panel. The top panel shows the best that can be done from Earth, 
i.e. it is not possible to distinguish the transit due to the noise. In the 
middle panel the noise is similar to the depth of the transit. Although 
there is a hint that the brightness is dimming, the noise is still too large to 
make a convincing argument. The bottom panel shows the transit with 
similar noise characteristics as Kepler, and now there is a clear dip. 

Since the noise characteristics play such an important role in 
answering the main mining question, a complete understanding of each 
source of noise is necessary  before the experiment was devised. Some 
forms of noise could not be controlled, such as the intrinsic variability of 
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a star. There are no stars where the brightness is completely stable, but 
some types of stars are more stable than others. Therefore, the 
knowledge which stars are most stable is important, especially since 
these stars already needed to be selected beforehand (since the bandwidth 
for the data transfer to earth does not allow the observation of all stars).   

 
Figure 1: Examples of the same (fictive) transit observed with different noise 
characteristics. In the top panel the noise is similar to the best that can be done from 
Earth, in the middle panel the noise is similar to the dip, and in the bottom the noise level 
is four times smaller than the dip. 

 
Another source that cannot be controlled is the amount of shot noise 

due to the counting of light particles (i.e. photons). The exact size of this 
noise contribution depends only on the brightness of a star, i.e. fainter 
stars have a higher uncertainty, and should not be included in the list of 
observed stars. However, to obtain a reliable measure of the occurrence 
rate of Earth-like exoplanets, enough stars need to be included in the 
sample. The only way to increase this sample is to increase the mirror 
(i.e. allows the inclusion of fainter stars) or increasing the part of the sky 
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that is observed (i.e. allows the inclusion of stars that were previously 
outside the field of view). However, such changes are challenging and 
will have consequences for other sources of noise.  

Finally, there is a large range of noise sources that can be controlled 
as much as possible, such as the detector, electronics, the instability of 
the spacecraft, thermal noise, optical noise or stray light, but also the 
background noise. This background noise is always present, but depends 
strongly on the chosen satellite orbit. However, changing the orbit leads 
to all kinds of changes to the possible design of the spacecraft. In total, 
every design choice changes the contribution of each noise component. 
Understanding the way these contributions are connected was essential 
for the successful design of Kepler and needed to be done before the first 
data could be obtained.  

4.   Case II: Criminal Justice System 

The second case is about the criminal justice system in the Netherlands, 
and has completely different challenges during the pre-mining phases 
than the first case. The goal of the criminal justice system is to uphold 
the enforcement of law and the public safety of the people, via an 
effective and efficient system and administration. However, the system is 
composed of many interdependent agencies (e.g. police, public 
prosecution, the courts, etc.), that all have a strong tradition of 
independence. Furthermore, each agency has its own task and 
information needs, which they register in their own information system, 
hampering an efficient exchange of information.25,26 Here the problems 
and pitfalls are illustrated when the information systems of the different 
agencies are combined. Although many different mining questions can 
be formulated, the focus will be on the efficiency of the system as a 
whole in order to find the different bottlenecks. 

4.1.  The Selection Stage 

The question ‘What is the elapsed time for moving completely through 
the criminal justice system in the Netherlands?’ sounds straightforward. 
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For example, for the sub-question ‘What are the different parts in the 
system?’, most people think of the following linear chain: 
 
(crime) → investigate → prosecute → trial → execute sentence → (case 
close) 
 

However, Fig. 2 shows that the flow scheme of only the first part of 
the chain is already more complicated. In practice many side chains, 
short cuts, and loop backs occur in the criminal justice system. For 
example, Fig. 2 shows that during the investigation phase the police 
interacts with other agencies (which are indicated by the yellow boxes). 
Furthermore, when the police finishes the investigation, it has more than 
options for the next step than just moving on to the prosecution (the 
green box), most of which are part of the execution of the sentence phase 
(red boxes). For example, for small crimes the police in the Netherlands 
is allowed to directly pass sentence  (i.e. penalty by the police) or come 
to an understanding with the suspect about a fitting sentence without 
going to court (i.e. police transaction).  

 
Figure 2: Simplified flow scheme for the first part in the criminal justice system of the 
Netherlands. 
 

The simplified flow scheme in Fig. 2 also shows that a typical 
elapsed time through the system does not exist.25 Knowledge about all 
the possible paths through the chains is needed to answer the sub-
question ‘What are the different chains in the system?’ Since there are a 
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large number of routes through the system, only the most common ones 
can be explored in detail, and somehow these need to be selected.  

Another question that the main one can be broken into is: ‘What is 
meant by elapsed time?’ For example, is the elapsed time for someone 
sentenced to imprisonment measured until the beginning or the end of 
the time in detention, or even until the end of the time on parole? 
Another example is when the sentence is a fine. Is the elapsed time in 
this case the moment that the collection agency has send a bill, a bailiff is 
send, the fine is partially paid, or the fine is fully paid? A final example 
is the elapsed time for a convict that is sentenced to both detention and 
community service. Is the elapsed time measured after finishing both 
imposed sanctions or for each sanction separately? If the second case is 
chosen, should one take into account the duration of the other sanction? 
Again, a basic understanding of the criminal justice system in the 
Netherlands is needed to get optimal answers.     

4.2.  The Pre-processing Stage 

During the pre-processing of  the data streams of the criminal justice 
system the first 3 steps described in Sect. 2.2 are the most important. 
Although some though is given to the noise characteristics, only spurious 
noise needs consideration. However, due to the large size of the data 
stream and the kind of mining questions, outliers can in general be 
ignored. 

As illustrated in Fig. 2, data from over a dozen independent agencies, 
all with their own data information system, need to be combined. This is 
complicated due to the way information is registered at the different 
agencies. For example, for the police a case corresponds to a criminal 
offense (which can have multiple persons involved), while it corresponds 
to an unique person for the public prosecutor (which can be suspected of 
multiple crimes).  Furthermore, there is the added constraint of privacy 
regulations, which makes it impossible to use any sensitive personal 
information attributes, and the joining needs to be done via a so-called 
case identifier (e.g. the number the public prosecution assigns to the case 
of a suspect). However, this case identifier is not always properly 
registered for the agencies that are concerned with the execution of a 
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sentence (since it is not considered relevant). Therefore, in the 
information systems of these agencies it happens that only nonsense is 
recorded for the case identifier. This makes the tracing of a unique 
person through the criminal justice chain complicated. 

Another problem is the definition of the attributes registered by the 
different agencies. Seemingly similar attributes could have different 
meanings. For example, in the Netherlands there is an agency that 
coordinates the execution of sentences and several agencies that actually 
carry them out. One would expect that the start date a sentence is 
executed is similar for both the coordinating and executing agency, but 
this is not always the case. Only by detailed knowledge of all 
information systems is it possible to select the correct date to measure the 
elapsed time in the case of, for example, a community service.  

 Another issue that is encountered is that different data streams have 
a different value for the same attribute. For example, each data stream 
records the date of the verdict, and somehow this value is not always the 
same between data streams. Since the correct date cannot be determined 
from the registered data alone, one of the conflicting dates has to be 
chosen. In this case, knowledge about how this date is registered in each 
system is needed to determine which date has the highest probability to 
be correct.  The opposite, missing values that are only recorded in a 
single data stream, also occurs. In this case rules are needed on how to 
impute such missing value. For example, from experience it is known 
that most crimes are reported on the same day as they are committed. 
When the date a crime is committed is not recorded, the reported date 
could be used.  

A major problem with the data streams in the criminal justice system 
is that they are manually filled, dramatically increasing the changes of a 
mistake. Fortunately, due to the abundance of data streams it is possible 
to include many safety checks to catch these mistakes. For example, for 
elapsed times the goal is to obtain a sequence of important dates to 
measure the time differences. If one of these dates in the sequence is 
anomalous  this will be easy to catch. However, although the mistake is 
found it is typically not possible to correct, and it must be accepted that 
not all elapsed times can be measured. 
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A common complication for the criminal justice system is the fast 
pace at which definitions change. For example, due to legal reform 
existing laws could change meaning or could even be repealed. In 
particular when monitoring the elapsed time for a specific offense 
through time, these legal changes need to be taken into account to make 
sure that same offense (or at least a closely related one) is used. A similar 
kind of change is the reclassification of the different judicial districts. For 
example, courts could be closed to save money or the exact boundaries 
of the districts could change to better divide the workload. In particular 
when the elapsed times of specific districts are monitored these changes 
can lead to a structural break in the trend.  

A related problem is the shift in the severity rating of an offense. For 
all kinds of reasons the penalty for an offense could change. For 
example, offenses for which the typical sentence used to be 
imprisonment could change into a fine or community service. In 
particular when the type of penalty changes there is large influence on 
the elapsed time, making comparison with previous periods impossible. 
Finally, the introduction (or disappearance) of new penalties will have 
impact on the duration of the elapsed times. For example, in the 
Netherlands the public prosecution is nowadays allowed to pass sentence 
over certain offenses, thereby bypassing the judge and dramatically 
shortening the elapsed time.   

5.   Case III: Cyber Security 

The final case, cyber security, is a very broad topic and to limit the scope 
the focus will be on the more specialized topic of network forensics.27 
The goal of network forensics is the capture, recording and analysis of 
network events in order to discover the source of security attacks, 
anomalous behavior in network traffic or other problem incidents. The 
main challenge of network forensics is that it has to deal with large 
amounts of volatile and dynamic information that will otherwise be lost.    

 



134 R. Cornelisse & S. Choenni 

Data Mining in Time Series and Streaming Databases     9in x 6in            b3092-ch06    

5.1.  The Selection Stage 

The first step in network forensics is the capture and recording of 
network traffic.  One way to do this is to capture and store all network 
data and the analysis happens afterwards. However, this requires large 
amounts of storage space, in particular with traffic over a long period of 
time. Furthermore, finding important information in such a large amount 
of data is challenging. The alternative is to analyze traffic in real-time 
and only store information that could be useful. This technique has the 
disadvantages that a good processor is needed for the real-time analysis, 
beforehand it is decided which information  needs to be kept, while it can 
still lead to large amounts of stored data. Afterwards, both techniques 
still require that the (large amount of) stored network data is optimized 
for network forensics purposes.  Therefore, the central mining question 
can be ‘How to reduce and improve the amount of stored network traffic 
data to optimize network forensics analyses?’ 

The main problem has been formulated in such a way that it 
immediately raises new questions. For example, 1) ‘What is meant by 
reduce and improve?’, 2) ‘What are typical analyses carried out by 
network forensics?’, or 3) ‘What network data needs to be stored?’  are 
several obvious questions. Some of these questions apply for network 
forensics in general (e.g. question 1), but others  (e.g. question 2) depend 
on local constrains. For example, the software tools available at a 
company limit the types of possible analyses. Finally, for some questions 
the answers depend on external factors, e.g. question 3,  such as national 
privacy laws that dictate the kind of information to be stored (and how). 
The questions from the previous paragraph are related. Depending on the 
kind of analyses needed, different kinds of network data have to be 
stored. For example, the analyses of email traffic needs different data 
than checking for breaches via a vulnerability in a web form, leading to 
completely different ways to reduce and improve the stored data. This 
implies that the mining question is too broad and needs more focus. 
Although this re-focusing of the mining question was done for 
illustrative purposes, it also happens when domain understanding 
increases.   
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For the remainder of this case the focus will be on NetFlow data,28 i.e. 
‘How to reduce the amount of stored NetFlow data while simultaneously 
optimizing for network forensics analyses?’ NetFlow is a high-level 
description of the network traffic that registers where the traffic is 
coming from, where it is going and how much is generated (but not the 
content of the data). Figure 3 shows example output. For each flow the 
sending and destination IP address, the ports that were used (e.g. port 80 
is typically used for http traffic), the start time and duration, the 

communication protocol and the number of bytes are recorded. A typical 
communication is made up of multiple flows, and NetFlow provides an 
overview of the traffic (see Ref. 29 for an overview of NetFlow). 
Combined with information from other sources that have probed the 
transferred data, NetFlow data is used for Network Forensics purposes.30 
However, domain knowledge is again essential to extract information 
from NetFlow data that it is useful for network forensics. 

5.2.  The Pre-processing Stage 

Although most steps described in Sect. 2.2 need consideration, many of 
the discussed issues are not relevant due to the standardized format of 
NetFlow data. For example, inconsistencies are not an issue, and human-
made errors cannot occur. Furthermore, the definition of the attributes in 
the NetFlow data is always the same, and each recorded flow should 

Figure 3: Example output of NetFlow data. Note that the Source (Src IP Addr) and 
Destination IP (Dst IP Addr) addresses have been anonymized for privacy reasons. 
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always have all attributes (i.e. there are no missing values). Although the 
pre-processing of NetFlow data is similar to the astrophysics case in 
Sect. 3, there are differences due to the general, multi-purpose, format of 
NetFlow (instead of the unique format used in Sect. 3). 

Typically, since NetFlow data is collected at different points 
(routers) in the network before it is combined, there must be a guarantee 
that network traffic from all locations is captured and any overlap in data 
streams is known. Therefore, a good understanding of the network layout 
of the organization is needed to make sure that no part is missing or 
double recorded. 

Although the problem of missing attributes is not an issue with 
NetFlow data, the sampling of the data needs consideration. With high-
speed networks it is possible that the NetFlow collector cannot handle 
the large data stream, leading to drop outs. This is mitigated by setting a 
sampling rate, i.e. measuring only a fraction of the packets to determine 
the characteristics of each flow. However,  only the characteristics of the 
measured packets are added to the relevant flow in this case, causing 
most short communications (consisting of only a few packets) to be 
missed. Also, since the size and arrival time of individual packets varies 
a lot, the exact total size and number of packets for each flow is also 
unknown. Obviously, this can have consequences during the mining and 
one needs to be aware that sampling has occurred. 

Although the typical inconsistencies discussed in Sect. 2.2 do not 
occur in NetFlow data, it is still necessary to be aware of issues with the 
ICT infrastructure of the organization. For example, major software 
upgrades, the introduction of new software packages or the replacement 
of hardware might lead to different/new features in the network traffic. 
Being aware of these changes will limit the risk of false warnings, and 
thereby the amount of unnecessary work. 

Background noise is an important pre-processing issue for NetFlow 
data, in particular when optimizing for network forensics. Since the 
majority of the large volumes of highly dynamic and volatile network 
traffic is completely innocuous, it can be regarded as background noise 
for network forensics purposes. Preferentially this innocuous traffic 
should be removed before the mining starts, but a good understanding of 
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network traffic (in general and specific for that network) is needed to 
determine what constitutes innocuous traffic.  

6.   Domain Knowledge 

The challenges during the pre-mining stages were presented for three 
cases covering very diverse domains (i.e. astrophysics, criminal justice 
and cyber security), and the importance of domain knowledge was 
discussed. For each case it is obvious that domain knowledge plays a key 
role during the selection stage,  but beforehand it was less obvious that 
also for the pre-processing stage each case has its own challenges where 
domain knowledge plays an important and central role.  

6.1.  The Pre-processing Spectrum 

For the astrophysics case, a question is formulated and all potential 
problems encountered need to be solved before a single piece of data 
exists to answer it. However, as soon as data is produced, it is always 
automatically generated in the same, optimized, format. Such a set-up is 
common for problems in many natural science fields such as physics, 
earth science, chemistry, etc. Only after a significant investment in time, 
energy and/or money an experiment is developed to create dedicated 
time series data to answer the question. The most common pre-
processing steps are avoided with such a dedicated time series data, and 
the emphasis is on understanding the noise characteristics. Such 
emphasis on noise is common for most natural science problems, since 
otherwise the question was already answered with previous generation 
instrumentation, and the experiment would not have been constructed.  

The criminal justice example shows the other extreme. Here, several, 
more or less, unrelated data streams already exist to support tasks at the 
operational level of the different organizations, and need to be combined 
to provide insight at the strategic level.  This is the typical situation for 
companies that want to use data mining to improve their efficiency. A 
significant amount of the pre-processing is used to combine attributes 
from data streams that are filled by hand and were never designed to 
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answer strategic level questions. Therefore, the emphasis is on 
understanding the definition of the attributes and the meaning of their 
values to find out what is relevant, rubbish or has changed over time.   

The cyber security example sits in between the previous cases. Like 
the astrophysics case, data is automatically generated and will always 
have a specified format. However, now the format has not been 
optimized for the problem at hand, but is a generally accepted standard. 
Stock market analysis and traffic control monitoring are other examples 
where data in such a standard format is generated. Not surprisingly, 
during the pre-processing phase of such data streams, the problems 
discussed for the other two cases play a role, but less severe. In other 
words, understanding the noise characteristics to increase the changes of 
finding a relevant signature, combined with a good understanding of the 
definition of each attribute and its range of values, is essential.    

The three cases presented show a range in consistency of the time 
series data that are used. Ranging from the low consistency human-filled 
time series data of the criminal justice system, via the standard format 
time series data  of the cyber security case, to the dedicated time series 
data of astrophysics with a high consistency. This also corresponds with 
a shifting importance of the specific pre-processing steps needed. When 
consistency is low the importance of the noise contribution is negligible 
compared to the trustworthiness of each value (i.e. is it relevant, rubbish, 
and has its meaning changed). When consistency is high it is unlikely 
that a recorded value is erroneous or has a different meaning, but the 
contribution of the noise to each data point becomes central.  

6.2.  Time-Series Data  

All three cases were chosen because their main question contains a time 
component. For the astrophysics and criminal justice cases their final 
goals are time series analyses, while for the cyber security case it is the 
classification of large volumes of data. Although the actual data mining 
stage is not discussed here, the time component does add extra 
constraints during the pre-mining stages. 

During the selection stage the impact of the dynamic or timing aspect 
needs to be developed and understood. Especially since the impact can 
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differ at a fundamental level, even if the mining exercise is very similar. 
For example, for the astrophysics case the kind questions for the 
selection stage to create the time series are: ‘How many stars need to be 
simultaneously observed?’, ‘What types of stars have a low intrinsic 
variability?’, and ‘What types of stars are more suitable to harbor an 
Earth-like exoplanet?’ All these questions are related to determining the 
candidates to include in the time series data. For the criminal justice 
system on the other hand, the final time series for the mining exercise are 
created from the different data streams of the partners in the chain. Here, 
typical questions are: ‘What are typical paths through the chain?’, ‘What 
is meant by elapsed time?’, and ‘Does one follow an offence or the 
offender through the chain?’ These questions are about optimizing the 
approach to building the time series, and are fundamentally different than 
the ones for the astrophysics case. Despite the fact that the two cases 
have a similar mining problem, these fundamental differences illustrate 
that domain knowledge is already essential at the early stages of the 
mining process.  

The timing and dynamic aspects also add extra considerations during 
the pre-processing stage. Foremost is the problem that it is not always 
possible to keep all data. Already during the pre-processing stage a 
selection must be made what data is kept and which is discarded. Both in 
the astrophysics and cyber security cases this plays an important role and 
care must be taken that crucial data is not lost by accident. For the Kepler 
satellite mission the limited amount of bandwidth allows only 6% of the 
total information to be send to Earth, while the remainder is lost during 
the pre-processing on board the satellite. In the cyber security case, 
already during the pre-processing phase a selection is made which data 
will not be of interest for network forensics. Since majority of the 
network traffic is benign (e.g. web searches, visits to popular websites, 
social media, etc.), this can be excluded from the mining process. 
However, a good balance between the data that can be excluded and 
needs to be included requires continuous consideration. 

A second consideration for dynamic data is changes that occur in the 
way the data is recorded. Changes can occur ‘suddenly’ or slowly over 
time, but both need to taken into account to make sure that the results 
obtained from mining the data stays comparable. For example, in the 
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astronomy case, the sensors (i.e. pixels) are continuously degrading over 
time due to the hostile space environment, and needs to be corrected for. 
An example of change in the criminal justice case is the phasing out of 
an old database system and the introduction of a new one. Since the 
criminal justice chain consists of many organizations with their own 
database system (see Fig. 2), it is likely that at any time one is being 
replaced. Such a replacement always come with a revised set of attributes 
and corresponding definitions, and care need to be taken that the new 
database still allows the mining question to be answered.  

The final consideration discussed is the evolution of attributes. For 
all kinds of reasons the original meaning of an attribute can change. Not 
taking into account these changes will distort the results obtained from 
the mining and make a comparison with previous periods difficult. Some 
examples are the legal reform (i.e. changing of laws) or the introduction 
of new penalties in the legal justice chain.  When a law changes, one 
compares (slightly) different types of crime when looking at the periods 
before and after the change, while a change in penalty (e.g. from 
detention into a fine) could lead to a different path through the chain that 
has a different elapsed time. Examples from the cyber security case is the 
introduction of new software/hardware or changes in internet habits of 
the users. if these completely benign changes are not incorporated during 
the pre-processing phase it will increase the amount of ‘non-interesting’ 
information for network forensics or pollute the pre-processing with 
benign processes that do not occur anymore.  

7.   Conclusions  

The three cases presented all show that domain knowledge plays an 
important role during the first two stages of the mining process. During 
the first stage, developing and understanding the application domain, it is 
no surprise that domain knowledge plays an important role, but the 
presented cases have shown that domain knowledge also plays a key role 
during the pre-processing stage. Although there are some universal 
guidelines on the different steps taken during the pre-processing stage, 
the emphasis given to each step and specific pitfalls to avoid depend on 
the domain. Therefore, relying only on generic rules, without taking the 
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specific details of the domain into account, will lead to results that are 
difficult to interpret or could even be wrong.   

Two trends can be distinguished to help determine which aspect of 
the pre-processing stage must be emphasized. The first trend is the 
consistency of the time series data. Ranging from time series data that 
are automatically filled by specialized sensors where the emphasis is on 
the noise characteristics to ones that are mainly filled by hand and have 
to deal with the trustworthiness of each value.  The second trend that can 
be distinguished is the optimization of the set of records included in the 
time series data versus the optimization of the approach taken to answer 
the mining question. At one extreme the questions revolve around 
determining the most suitable candidates to include, while at the other 
extreme the questions revolve around the most suited approach.  

Both trends appear to align, which suggest that they are in some way 
related. Looking at the overlap at the two extremes of the trends, such a 
relation is understandable. When there are existing data streams that 
were not created to answer mining question, most of the effort during the 
pre-processing stage will go into understanding the trustworthiness of 
resources at hand and determining how they can contribute in answering 
the mining question. Although this does require domain knowledge, the 
main focus will be on the combining of different data streams and 
resolving inconsistencies.  The other extreme suggests that for time 
series data that are created for a specific mining purpose the noise 
characteristics of the candidates that will populate the time series data 
play an important role during the selection. This alignment can be 
understood when realizing that the time and money needed to invest in 
such very specific and dedicated mining expeditions is only obtained 
when previous experiments (that most likely had broader mining 
questions in the same specialized field) have already hinted that a more 
sensitive/specialized set-up will be successful. The main reason that the 
previous experiments could not give an unambiguous answer is most 
likely due to the noise characteristics that dominated the result. Getting 
the noise characteristics down becomes the most challenging aspect for a 
‘follow-up’ experiment. Understanding the noise characteristics of this 
new experiment requires in general highly specialized knowledge, which 
again depends completely on the domain knowledge.  
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The dependence on domain knowledge is even more pronounced in 
the case of dynamic or time dependent data. Since most of the time too 
much data is collected to keep everything for the mining stage, the 
decision what is kept and which data to discard (permanently) must 
already be made during the pre-processing phase. Without a good 
understanding of the domain such a decision is not possible, and the 
possibility that crucial information is discarded increases. Furthermore, 
even if it is possible to store all data, domain knowledge is still necessary 
to guard against the evolution of the attributes or the data. Therefore, 
relying on some universal pre-processing tools is best avoided.  
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Over the past few years, a lot of devices and machines around us are
becoming ‘smart’. Based on the idea of the Internet of Things (IoT),
different devices and machines can connect to the internet and commu-
nicate with each other. Such internet enabled devices are continuously
observing their environment and logging a lot of data in the back-end
database. By applying data analytics on the gathered Big Data, smart
decisions are made to facilitate the end user according to the current
situation. This capability of adaptive decision making actually makes
ordinary devices and machines ‘smart’. These devices and machines are
becoming intelligent by learning about their surroundings from different
sources, and develop the ability to avoid unforeseen situations by analyz-
ing that data. In this chapter, we provide a comprehensive overview of
how different industrial players are using data analytics to provide bet-
ter services to their customers and improve their internal processes and
workflows. We discuss how different industries use data analytics to gain
vital insights for providing better healthcare to public, making homes
more secure, increasing crop yield, delivering goods more quickly, reduc-
ing the downtime of a machine, avoiding a disease, etc. An overview
of different analytics platforms and solutions used in different industries
for time series and streaming data are also discussed in this chapter.

144
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1. Introduction

We live in an age where data is becoming a key for success in every field

of life. Due to rapid advancements in technology, different players in aca-

demics, research, and industry are collecting different types of data, which

serve as their driving force. However, the data itself has no meaning until

it is carefully analyzed. Data analyticsa is a process of analyzing data in

order to discover hidden patterns, knowledge, or trends. Many companies

are using data analytics widely to add value to their business by analyzing

past and current data. The process of data analytics not only includes anal-

ysis of the data, but it refers to a complete workflow which starts with data

collection and other steps including data cleaning, data preparation, data

governance, data analysis/modeling, and finally data visualization. Each

of the steps in this workflow is a key for good analytics.

To maximize the output, efficiency, and for added value, there are differ-

ent data providers, which take care of the initial steps (i.e., data cleaning,

preparation, and governance) in the workflow of data analytics by providing

data externally. This means that in combination with the in-house data

collected by companies, there are many external data sources, which are

being utilized to perform data analytics. Furthermore, due to the evolu-

tion of technology, the mode of data collection has also evolved. Especially,

with the emergence of IoT, which refers to the network of physical devices,

vehicles, buildings, and other items embedded with electronics, software,

sensors, actuators, and network connectivity that enable these objects to

collect and exchange data [1]. Recent studies show that the IoT market

is growing and will continue to grow a lot over the next four years. It is

expected that a market value of nearly $122 billion will be reached by the

year 2022 [2]. Due to these IoT enabled devices, companies are now contin-

uously getting live streams of huge amounts of data. This data is usually

collected over a continuous interval of time, which results in time-series

data. This IoT based time-series data resulted into the evolution of data

analytics where in contrast to traditional data analytics where data clean-

ing, and analysis were at the core, now it becomes even more difficult to

store and maintain the data, which is being collected by these IoT devices.

With the help of data analytics on streaming/time-series data, com-

panies can keep an eye on different aspects, e.g., reducing maintenance

costs, avoiding equipment failures, and improving business operations. In

aData analytics and Data mining are used interchangeably nowadays. In this chapter,
the term, data analytics is used. In an industrial perspective, data analytics is considered

as a complete workflow, which incorporates data mining among other things.
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addition, retailers, restaurant chains and makers of consumer goods can

use the data from smartphones, wearable technologies, and in-home de-

vices to do targeted marketing and promotions – the business side of the

IoT’s futuristic world of connected consumer gear.

Almost every industrial sector, be it health care, agriculture, manu-

facturing, agriculture, dairy farming, logistics, automotive, etc. is now

redefining their products and enabling them to IoT for gaining maximum

benefits. In this way, different industrial solutions are also available focus-

ing specifically on data analytics on time-series data. This chapter focuses

of providing insight on the different data analytics solutions available in

different industrial sectors.

2. Data Analytics in Agriculture

With the increase of the world population and the improvement of liv-

ing standards, the demand of high quality food is increasing. Agricultural

mechanization is playing a vital role to fulfill this need with the help of

large-scale production. However, the physical performance of mechaniza-

tion and mass production is limited with the advancements in the fields

of IoT and cloud computing, the devices for data collection and data stor-

age have become affordable and prevalent. In the agriculture sector, data

analytics can be applied on the machinery and farming data collected in

order to reduce loss, improve efficiency, and lower costs under the condition

of unchanged physical properties. This enables a modern farming concept

called precision agriculture (PA) or satellite farming. This kind of farming

helps the farmer to recognize the variations in the farming land and how

to adjust input for different parts of land to optimize the output. A global

positioning system (GPS) is the backbone of PA. With the help of GPS, a

farmer can identify the exact area where soil conditions vary. In conjunc-

tion with the precise location, different measures like air quality, moisture

level, field terrain, crop yield, crop maturity, and gas levels are recorded

and turned into meaningful information using data analytics.

Data driven decision-making has been extended from the business sector

to the agricultural sector. Many large enterprises in the agribusiness are

becoming involved in data analytics research and development. They are

providing solutions for PA and for a variety of other issues in agriculture.

Fierce competition between companies has already begun.

John Deere converted their equipment to the paradigm of IoT to help

farmers manage their fleet, reduce down time, and the cost of produc-

tion. This information is combined with the local weather data, soil data,
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crop characteristics, and other data sets from different sources. MyJohn-

Deere.com is a platform for data analytics, which provides the possibility

to store, analyze, and visualize results on a web-portal (as well as on mobile

application called Mobile Farm Manager). With the help of such plat-

forms, farmers can figure out when and where to plant which kind of crops,

when to plough and when to harvest, and which optimized path should be

followed during the work. The right decision can help farmers to improve

their efficiency. The data collected during different phases of farming are

massive. To take advantage of the collected data, John Deere already steps

into big data analysis for the future of farming.

IBM and SignalDemand have developed a data analytics system

which uses predictive analytics to predict the demand and optimize the

margin to meet the needs of different agribusiness companies. While large

agricultural enterprises have large datasets, advanced equipment, data sci-

entist, and domain experts at their disposal, the majority of farmers neither

have access to such information nor the resources to get benefits from ad-

vancements in technology. To help farmers who are working on a small-scale

and lack the technology infrastructure, IBM built a back-office network.

They supply corn-specific information on a regular basis, along with gener-

alized information on fertilizer and weather conditions to registered farmers

via their mobile phones. A farmer can get timely agronomic intelligence

simply via automated voice mail or text messages on his mobile phone.

aWhere (an American corporation) collects and analyzes over a billion

points of data (which is a pivot element for analysis) from around the globe

each day to create unprecedented visibility and insight which is known

as Agricultural Intelligence. This intelligence is used for critical decision

making from farm level through to national policy [3]. High-quality weather

data is combined and analyzed purely for agricultural use. Their major data

analytics solutions are Weather Terrain, Weather Agronomics, and

Weather Support.

The Climate Corporation (a San Francisco-based company) exam-

ines weather data to provide insurance to farmers who can lock in profits

even in the case of drought, heavy rains, or other adverse weather condi-

tions. FieldView is their data analytics solution, which combines farm-

ers’ field data with real-time and past – soil, crop, and weather data to

help them efficiently manage their operations and gain insights into their

fields [4]. In addition to the FieldView, they also provide a hardware solu-

tion SeedSense for Planter Monitoring. Perfect planter performance can

be achieved by maximizing planter speed and adjusting vacuum pressure
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by using SeenSense. It also enables the farmer to sow precisely, maintain

depth, avoid compaction, and troubleshoot mechanical problems.

The CropOS is a data analytics platform, which uses machine learn-

ing and cloud biology to improve crop performance and help scientists and

breeders with some of the biggest challenges in the agriculture sector. It is

developed and maintained by Benson Hill Biosystems, which is an agricul-

tural solutions company. They unlock the global genetic potential of plants

to enhance the sustainability of food, feed, fiber, and fuel production [5].

CropOS represents a uniquely powerful platform at the intersection of big

data, machine learning, and plant biology. CropOS empowers researchers

to significantly increase the yield of major food crops and identify the most

promising plant genetics in weeks instead of studying long growing seasons.

CLAAS focuses very much on self-propelled machines developing and

producing combine harvesters, self-propelled forage harvesters and trac-

tors [6]. Self-propelled machines are very important especially for crops

like wheat, rye, barley, and corn, which have to be harvested at just the

right point of maturity. Once this harvest maturity has been reached, the

combine harvesters work in the fields day and night. In this process, up

to 50 parameters from the reel to the chopper influence the harvest yield.

The operator has to continuously monitor and evaluate around a dozen of

these parameters. Hardly any operator is capable of keeping an eye on

everything and tapping the machine’s full potential. To solve this problem,

CLAAS also moved toward IoT enabled combine harvesters. In addition to

this, an assistance and analytics system is used, which permanently moni-

tors the harvesting process and automatically adjusts the machine setting

to the current conditions which is faster and more precise when compared

to a human operator. Furthermore, together with the German Research

Center for Artificial Intelligence (DFKI), and the Fraunhofer Institute of

Optronics, System Technologies, and Image Exploitation (IOSB), CLASS is

working on extending the data analytics to improve the performance of mo-

bile work machines with unsupervised anomaly detection algorithms, which

can detect unexpected events without any previous domain knowledge.

3. Data Analytics in Healthcare

Similar to agriculture, data analytics is playing a vital role in the advance-

ment of the healthcare sector. With the easy availability of smart devices

(including smart watches, smart phones, and smart wristbands), a new di-

mension of healthcare has emerged – Smart Healthcare. The end-user smart
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devices are continuously collecting users’ data regarding different activities

performed over a day, month, or year using different sensors.

Data analytics on smart sensors’ data have opened new dimensions of

research and applications in Connected or Smart healthcare. Smart health-

care is supporting, and slowly replacing traditional healthcare. By analyz-

ing the streaming data generated by smart wearables, it is possible to see if a

user is healthy, or if some preventive measures are required, in order to avoid

a potential health problem. Now doctors can remotely examine their pa-

tients and suggest treatments on the go. Smart healthcare offers many new

possibilities for patients too. Patients can keep updated with their health

and fitness data all the time, find other patients suffering with the same dis-

ease to discuss various treatments, and easily track the post-surgical needs.

The digitization of patient health data encourages the communication and

collaboration of all the stakeholders involved in the patient’s health. For in-

stance, i) government institutes can use the data to extract different statis-

tics and to make policies as needed, ii) pharmaceutical companies can use

the data to track the positive or negative effects of different medicines, iii)

doctors can use this data to choose a treatment when a patient has high

cardiovascular risk, etc. With smart and connected healthcare, healthcare

is shifting from being episodic/reactive to preventive/proactive. Different

companies (mentioned below) are providing solutions for connected, smart,

or preventive healthcare.

IBM Healthcare is a data analytics solution, which focuses on health

monitoring and intervention, analyzing streaming data (such as data gen-

erated in ICU), and helping in detecting signs of various changes occurring

in a patient’s health. The detected early signs are used to generate medical

alerts for proactive intervention. It also enables healthcare providers to

improve operational performance, reduce cost of care, and counter fraud in

healthcare by using integrated data management and analytics. Further-

more, it provides consumer level analytics to understand consumer pref-

erences and behaviors by capturing data from different sources such as

claims, clinical history, and social platforms; and then merges all the data

into one unified view. It also helps building a predictive model that evalu-

ates the risk of readmission for patients with chronic obstructive pulmonary

disease [7]. Researchers at National Institutes of Health (NIH) are using

IBM PureData System for analytics to unlock new insights from data

gathered over decades. With the help of this system, researchers can run

analysis on large, complex data sets (both clinical and genomic research

data) and generate reports faster than ever before [8].
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SAP Real-Time Analytics is a complete solution for patient care,

human resources, finance, care collaboration, and healthcare analytics. The

big health data collected from electronic health records, research, physician

notes, insurance claims, and social media data are used by SAP Real-Time

Analytics to reduce cost and improve quality of care. This solution enables

data scientists to separate noise from signals and derive meaningful insights

from the data. The unified analytics model transform data from a wide

range of sources into actionable information. Seoul National University

Bundang Hospital (South Korea) has developed its clinical data warehouse

(CDW) using SAP Data Services and SAP HANA. Their CDW is used

to automate the clinical indicators system, gather critical data in real-time,

provide instantaneous feedback to clinicians, and provide multidimensional

analyses based on patient characteristics, diseases, and location [9].

General Electric (GE) provides many healthcare solutions in general;

and some solutions are based on data analytics in the areas of diagnosis,

clinical decision-making, and asset monitoring. The GE Marquette 12SL

ECG analysis program provides diagnostic confidence to care providers by

giving fast and reliable cardiac care decisions. In the area of patient mon-

itoring, GE provides CARESCAPE Central Station which allows the

integration of different medical devices and systems to access patient’s his-

torical data. When a patient moves to a care area, this solution enables care

providers to perform in-depth analyses and offers clinical decision support.

Centricity Imaging Analytics is a real-time dashboard which provides

visibility into the workflows of the radiology department for increasing de-

partment throughput and patient care.

Combined Applications to Reduce Exposure (CARE) (by

Siemens) is an analytics solution, which is designed to improve dose mon-

itoring in different interventional radiology systems. The dose of an indi-

vidual patient is recorded in addition to other data, such as CT-dose index,

dose length product, and total recording time. This data is also used to

enhance dose reporting and assessment, transparency regarding dose per

case, reporting on patient dose history, and cross-institutional reporting.

Apple CareKit is an open source platform for creating health related

apps to regularly track care plans, monitor users’ progress, and share their

insights. One Drop (by Informed Data Systems, Inc.) is an example of

such a mobile app created using CareKit. Apple ResearchKit enables

developers to create apps, which enable researchers and doctors to gather

robust and meaningful data for their health related studies, and obtain a

complete history of their patients. The real life data collected is used to
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find physical patterns, correlation between physical history and medica-

tion, predict a particular problem, and recommend diet and fitness plans.

With the help of ResearchKit and CareKit, researchers use Apple Watch

to predict seizures before they actually happen. For instance, EpiWatch

(an Apple Watch app by Johns Hopkins University) enables people to ac-

curately track the onset and duration of seizures in real time. A patient

sensing an impending seizure launches the app on Apple Watch and an alert

is automatically sent to a designated family member or caregiver. Similarly,

Asthma Health (by Weill Medical College), Concussion Tracker (by NYU

Langone Medical Center), GlucoSuccess (by Massachusetts General Hospi-

tal), and C Tracker (by Boston Children’s Hospital) are examples of such

apps which are built on top of CareKit and ResearchKit.

4. Data Analytics in Manufacturing

Data analytics provides a granular approach to diagnose and improve whole

manufacturing flaws. It is always in the manufacturers’ interest to im-

prove their production processes, product quality, production cycle, and

the amount of output per unit of input. Due to the involvement of a num-

ber of players and processes in the manufacturing life cycle, it is hard to find

the cause of failure or inefficiency exactly. With the growth of Industrial

IoT in recent years, everything is going digital and connected. With the

help of this digitization and connectivity, a lot of streaming data related to

equipment, automation, production lines, systems, and products are gen-

erated and stored. Manufacturers can use data analytics to leverage the

data collected from on-the-floor factory machinery alongside other tradi-

tional (factory logs) and social data. Some of the advantages of using data

analytics in manufacturing are to – i) get unexpected insights into different

processes, ii) increase accuracy, quality, and yield (amount of output per

unit of input), iii) improve the forecast of product supply and demand, iv)

enhance the understanding of plant performance across multiple metrics, v)

boost the product quality, vi) track all products with defected components,

vii) predict machine failure, viii) quantify how daily production impacts

financial performance, ix) provide preemptive maintenance and service by

continuously monitoring a product instead of fixed term maintenance, and

x) identify the root cause of a failure. Figure 1 shows how advance data

analytics can help decode and improve complex manufacturing processes.

The main challenges in manufacturing are a lack of collaboration across

different departments, disparate systems and data sources, and difficulty

in coordinating supply and demand chains. Such challenges, among others
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Fig. 1. This figure shows how advanced analytics can be used in streamlining manu-
facturing value chains by finding the core determinants of process performance [10].

are tackled in the solutions provided by different companies using advanced

data analytics.

IBM Analytics provides a complete analytics solution to be used in au-

tomotive, defense, chemical, petroleum, energy, aerospace, electronics, and

other industries to uncover deeper insights into operations, inventory, mar-

ket demands, supply chain, and performance [11]. By applying advanced

data analytics on aggregated data from different sources (such as different

sensors, maintenance logs, and production systems), manufacturers can ef-

ficiently achieve their demand, production, and supply requirements; while

properly managing all the resources at minimal cost. It can integrate struc-

tured as well as unstructured data from different sources. IBM analytics can

unveil a number of critical manufacturers questions, such as how operating
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costs can be reduced while having better project financial performance,

how greater visibility into supply chains can be achieved, how the supply

chain’s needs can be predicted, and how the maintenance cost can be cut

down. It can also uncover insights into customers’ behavior, their needs,

and market trends to make better business decisions. Nowadays, produc-

tion assets and consumer products are transmitting vital operational data

to backend data warehouses. IBM Predictive Maintenance and Qual-

ity software solution leverages the data collected from different sources

and predicts when a particular asset or machine needs maintenance. In

contrast to the traditional scheduled maintenance, predictive maintenance

recommends when maintenance is required and when it is not. This type

of maintenance helps to keep critical production lines and consumer prod-

ucts running, while saving money and minimizing customer inconvenience.

Muller, Inc., USA, is a retailer and manufacturer of metal products. They

used IBM Cognos Business Intelligence, IBM Cognos TM1, IBM SPSS

Modeler, and IBM Business Analytics to pull data from all points of sale,

inventory, and ERP systems; so that the employees can view and analyze

company data, measure individual performance, and access how their work

affects the bottom line [12]. The Vaasan group (a leading bakery operator

in Northern Europe) used IBM Analytics to enhance forecasting and in-

ventory management. The solution based on the IBM Cognos Controller,

IBM Cognos Intelligence, and IBM Cognos 8 Planning enabled the bakery

to predict production requirements and helped them prepare for fluctuating

orders [13].

SAP provides multiple solutions in the domain of manufacturing. SAP

Manufacturing Execution System connects, monitors, and controls dif-

ferent manufacturing operations. With the help of automated data collec-

tion, it provides visibility into the manufacturing processes which helps

process managers to find and resolve quality issues. Its asset utilization

functionality improves overall equipment effectiveness, facilitates predic-

tive maintenance, and minimizes downtime. SAP Enterprise Resource

Planning (ERP) is an enterprise level system for streamlining the man-

ufacturing, services, sales, finances, and human resource processes. It is

composed of different modules, which accelerate the entire manufacturing

process, boost sales and customer satisfaction, provide support for admin-

istration tasks, streamline and automate financial operations, and provides

real-time analytics based on ERP data. SAP Manufacturing Integra-

tion and Intelligence (MII) is the solution for smart manufacturing

which exploit the data collected from Industrial Internet of Things (IIoT).
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It automates the IIoT and facilitates in manufacturing data transforma-

tion and integration. This software is equipped with the Manufacturing

Analytics Platform, which provides statistical process control and pre-

dictive analytics. It can also identify the root cause of machine downtime

and efficiency loss; which makes the maintenance task easy for technicians

and helps the operation team to improve efficiency. The SAP Predictive

Maintenance and Service solution leverages the IoT data to transform

reactive maintenance to predictive maintenance. It provides the visibility

into manufacturing asset and consumer product health by remotely ob-

serving their behavior and patterns. By analyzing the Big Data collected,

future needs are predicted [14].

Microsoft Azure IoT is a complete suite for connecting IoT devices,

collecting IoT data, analyzing the collected data, and mining disparate

data [15]. Existing data and systems can also be integrated with new data

sources to create new insights and business models. A Predictive Analytics

module in Azure provides insight into how a certain product behaves in

normal conditions and in other special conditions by finding patterns and

correlations in historical and new sensor data. Based on such analytics,

this suite is able to provide warning signs, identify where a problem exists,

and notify when equipment needs maintenance. With such preemptive

warnings, small repairs can be made before big failures occur. It also helps

in prioritizing the maintenance task by providing information about which

equipment is at high risk. Once an actual root cause of the failure is

detected, it can facilitate a technician by recommending the error code

(with possible fixes) for that condition. The technician’s time of finding

the root cause of a failure is saved, now he just has to fix the defective

component (with the help of some recommendations about possible fixes).

This suite enables manufacturers to remotely monitor their assets, which

are deployed outside the factory. Automatic notifications can be triggered

on this live data to get real-time asset feedback and maintenance requests.

General Electric (GE) Brilliant Manufacturing is a software suite,

which connects people, machines, materials, and processes in IoT. This

suite maximizes manufacturing production performance and optimizes op-

erations through advanced real-time analytics. It allows the integration

and aggregation of whole manufacturing life cycle data from the beginning

till the end. Data driven analytics from disparate manufacturing sources

allow manufacturers to take optimal decisions to drive improvements in

end-to-end production [16]. This suite includes different products including

the following: i) Efficiency Analyzer provides an up-to-date view of the
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entire production process and transforms real-time machine data into ac-

tion efficiency metrics. Such unified metrics help plant managers to reduce

unplanned downtime, maximize yield, improve production quality, increase

flexibility, and maximize team productivity. ii) Production Quality An-

alyzer analyzes data to catch non-conforming events before they occur to

help quality engineers to easily identify the problem. iii) Production Exe-

cution Supervisor digitizes documentation, instructions, orders, and pro-

cess steps, enabling manufacturers to get the right information at the right

time. iv) Product Genealogy Manager builds a record of all equipment,

raw materials, tools, and personnel which are required to build the finished

goods. It helps service personnel to manage services in an efficient way.

Manufacturing Analytics by BOSCH is a solution for analyzing pro-

duction data. Different types of data such as test, process, and machine

data from different sources can be used to improve the production process

and product quality while reducing the cost with the help of this suite. This

suite can integrate the existing production data with the new data. The pre-

dictive models can be applied to real-time data for predictive maintenance

and root cause analysis. Data analytics unveils the previously unknown

correlations in data and helps manufacturers in gaining new insights. The

newly discovered data insights and prediction models can be applied using

this suite to automate the analytics process.

SAS provides different solutions to get the best out of the manufac-

turing life cycle. SAS Demand-Driven Planning and Optimization

suite improves the supply and demand planning processes. This suite uses

analytical insights of demand patterns to help manufacturers in making

supply plans, which are aligned with the demand forecast. Production and

logistics can also be managed to match the ever-changing customer needs

and market dynamics. SAS Quality Analytics suite includes data mining

and predictive analytic technologies for predictive maintenance and iden-

tification of potential problems. It also helps in reducing the total cost

of quality by reducing the scrap and rework, and identifying design and

production defects. SAS Field Quality Analytics helps in making after-

market service efficient by integrating and analyzing internal and external

data sources. It helps in detecting and prioritizing warranty and service is-

sues. SAS Customer Intelligence 360 collects, analyzes, and reports on

customer experiences to improve sales and marketing performance. It pro-

vides insight into customer segmentation: which customer groups are more

likely to buy which kind of product and why. With the help of such fore-

casts, advertising and promotion campaigns can be planned and targeted

at customer groups [17].
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5. Data Analytics in Connected Vehicles

A connected vehicle is a vehicle designed with the capability of connecting

to the internet and other connected devices including smart phones, traffic

lights, other vehicles on the road, smart home appliances, etc. It is predicted

by Gartner, Inc. that by the year 2020, one in five vehicles in the world

will have some form of wireless connectivity in them, which adds up to 250

million connected vehicles [18]. The accumulated data based on driver’s be-

havior, car machinery, sensors installed in the car and in the surroundings

can leverage data analytics in the following functional areas: autonomous

driving, safety, infotainment, well-being of driver’s health, vehicle man-

agement, mobility management, and smart home integration [19]. Vehicle

manufactures like BMW and Volkswagen are making these connected vehi-

cles smart by introducing functionalities like autonomous car parking and

emergency assist respectively. Data analytics provides car manufacturers

with crucial insights into the vehicle system, behavior of the vehicles in cer-

tain conditions, and drivers’ patterns. Thousands of components inside the

vehicle are continuously logging data. Even if the test driver observes an

unexpected shifting characteristic, it is hard for a manufacturer to exactly

find the defective component or the contributing components. But, with

the help of data analytics, the defective component and the contributing

components can be figured out precisely.

Ford and IBM are working together to develop a platform which an-

alyzes data collected from a vehicle. Based on the small chunks of ve-

hicular data, this platform can spot patterns, correlations, and trends to

help the driver make efficient transportation decisions. Data collected from

Ford Smart Mobility Experimentation Platform helps their scien-

tists to spot tendencies and behaviors, and their customers to have a better

travel experience. They are working on using real-time analytics to learn

about a problem on a particular route by taking data feed from different

systems [20]. In the domain of predictive maintenance, Ford is working

on sending personalized oil change and brake maintenance notifications to

drivers. The collected data is statistically analyzed in order to evaluate the

maintenance needs for each vehicle separately [21].

Daimler is making their cars and trucks intelligent by enabling them

with anticipatory planning. Based on data from different sources, their ve-

hicles are able to operate on an anticipatory basis in which they can foresee

different things which the human eye cannot see. Their trucks and buses

are equipped with Predictive Powertrain Control (PPC), which can

anticipate the terrain and adjust the vehicle accordingly. Based on the 3D
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map data, PPC adjusts the vehicle speed and gear selection optimally to the

topography of the transport route. This control reduces fuel consumption

by up to 5% [22].

BMW group is also using IBM Big Data and Analytics technol-

ogy to optimize their products, repairs, and maintenance processes. IBM

SPSS predictive analytics software is used to combine and analyze data

from different sources like pre-production sensor data, workshop notes, and

numerous test drives of prototypes [23]. In this way, different vulnerabilities

can be identified quickly, and eliminated before the model goes into series

production. Before this automated process, this evaluation took months to

complete. IBM Big Data and Analytics are used to analyze data from all

available sources to discover anomalous patterns and predict maintenance

needs.

Volkswagen, in collaboration with CSC (a technology solutions and

service provider company), use data analytics to support predictive market-

ing to increase aftermarket service revenues [24]. They combine customer

data with vehicle data, and notes written by technicians at the service

centers. With the help of that data, they are able to predict upcoming

maintenance for specific drivers.

Tesla car manufacturer is collecting data from their connected cars and

using telematics to batch stream key data points to backend big data pool.

The collected data enable engineers and manufacturing lines to resolve the

issues and send back fixes with their over-the-air software updates. They

are providing continuously improving customer experience based on the

data and analytic views [25].

Audi is also making its vehicles intelligent with a vision to reduce fuel

consumption. The predictive efficiency assistant enables the vehicle to slow

down or automatically adjust the speed to the conditions in an anticipatory

manner. The system analyzes the route topography, speed limits, road users

ahead, and navigation data.

Caterpillar, Inc. is the world’s leading manufacturer of construction

and mining equipment. They have created a new organizational division

called Analytics and Innovation (AI) to form a broad and connected an-

alytics ecosystem. The data collected from gigantic machines are used to

develop predictive and proscriptive information. This predictive diagnostics

is shifting their customers from reactive (repair after failure) to proactive

(repair before failure) mode [26]. By using data analytics, they are able to

point out inefficiencies in the operation of a particular machine by compar-

ing its operational data with that machine’s benchmark data.
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6. Data Analytics in Logistics

Logistics service providers move masses of goods from one location to an-

other. A lot of data related to shipments, origin, destination, size, weight,

and content are stored per shipment. Some of the advantages of using

data analytics in the logistics sector are, i) optimization of delivery time,

resource utilization, and geographical coverage, ii) goods storage capacity

and required resources forecast, iii) valuable insight into customer sentiment

and product quality, and iv) insight into the global flow of goods.

DHL uses big data analytics to make their operations more efficient.

Rapid processing of real-time information enables their SmartTruck to

optimize the delivery route in real-time. Delivery routes are also auto-

matically updated according to traffic conditions. Unsuccessful delivery

attempts are avoided in intelligent routing, based on the availability and

location information provided by the recipient. SmartTrucks are re-routed

on the go, based on the combined analytics of geographical factors, envi-

ronmental factors, and recipient data [27]. It is important for a logistics

company to plan operational capacity in time. The optimal planning can-

not be done by neglecting external factors, such as unexpected bankruptcy,

a regional outbreak disease, or natural disasters etc. DHL Solutions and In-

novation is working on an analytics tool to measure external factors on the

expected volume of shipment to make efficient shipment volume prediction.

Based on the shipment records, DHL provides an online geo marketing tool

Geovista, to analyze business potential. This tool provides a sales forecast

and local competitor analysis. DHL is also working on a Supply Chain Risk

Management Solution which will improve the resilience of logistic providers

entire supply chain with the help of predictive analytics on a global scale

(by aggregating data from different local sources such as politics, economy,

nature, health, etc.).

Amazon was the first company to give recommendations about items in

which a user might be interested. Today, it uses different parameters (such

as, which items are bought by a particular user before, what he has in his

wish list and virtual cart, which items he has rated or viewed, and which

items a similar user has bought) to customize the browsing and buying

experience. Predictive analytics is used to ensure the right item must be

in stock when a customer orders it. Amazon is taking data analytics to

a different level with its patent on Anticipatory Shipping. The patent is

officially called ‘Method and system for anticipatory package shipping’. The

idea of anticipatory shipping is to predict who will order what and when,
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and then ship that item even before it is ordered. Another scenario is also

discussed in patent for ‘speculative shipping’. In this type of shipping, a

package is sent to a geographical area, without completely specifying the

delivery address at the time of shipment - the package might remain in near

continuous transit on trucks until a customer makes a purchase [28]. In this

way, the package is shipped to the customer instantaneously.

7. Data Analytics in Dairy Market

The current trend of automation and data exchange in modern manufactur-

ing is inextricably linked with the production industry as it helps making

cars autonomous or factories more productive. Nowadays, not only these

industries can benefit from IoT, but one of the oldest sector of mankind,

i.e., milk production, is also taking advantage of smart technologies. For

a long time, the dairy market has been suffering from low prices, which

means that modern technologies and data analytics can neither influence

market prices, nor the bargaining power of the dairy, nor the retail industry.

However, these new technological trends can help farmers to reduce their

production costs and enable them to produce more milk by keeping a keen

eye on their cows health.

Effects of the globalized milk market are already noticeable. Farmers

are suffering mostly from the extremely sharp fall in prices. The low milk

prices make it nearly impossible for farmers to obtain profits, as they are

not covering costs. They are forced to optimize their production. Legal

requirements and a change in social perception restricted many alternatives,

like the prophylactic use of antibiotics in Europe, for optimization [29].

The only chance to raise their economic performance is to reduce costs and

increase the efficiency of their production.

The welfare of cows is of enormous importance for farmers because only

healthy and happy cows give the maximum amount of milk. The farmers are

able to determine the health of their cows themselves, but this is only true

for small herd sizes. Farmers lack the time to monitor each cow individually

in herds of dozens or hundreds of cows as can be found nowadays [30]. This

is why farmers are making more frequent use of tracking systems and data

analytics for the automatic health monitoring of their herd.

These tracking systems take advantage of the architecture of modern

barns in Central Europe and North America, in which cows can move

around freely. As a result, the everyday movement and activity behav-

ior of cows is an important indicator of their health and whether they are
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in heat. In general, sick cows move less than cows without any diseases as

shown in Figure 2. When cows are in heat, they move much more. The

movement behavior is commonly measured with either accelerometers or

pedometers embedded into the collar of each cow. These sensors are the

central component in these systems as they are measuring the activity and

vital parameters of the equipped cows continuously and autonomously.

Fig. 2. Simplified movement behavior of cows. Different conditions of cows can be
classified based on their movement patterns.

In more recent times, acceleration sensors are used instead of pedome-

ters. They are superior since they cannot only recognize the amount of

activity, but also the precise type of movement: walking, running, or lying.

From a data perspective, the sensors are just counting steps, which do not

tell the farmer anything directly about the health of a cow. However, the

number of steps per day is a strong indicator, and it is directly linked to

diseases and in heat detection of individual cows in the herd. The smart

dairy products are sold by SCR Europe, Lely, DairyMaster, and DeLaval.

They have all placed sensors in the collars of cows and the data is trans-

ferred wirelessly to the server station (in most cases, by using proprietary

radio standards). By analyzing that data, data analytics provide meaning-

ful information about the cow’s health and notify when it is in heat. SCR

Europe product named Heatime and Lely product named Qwes-H also

integrate rumination detection. It tells the farmer how much time each cow

spends on ruminating which is an essential indicator for their health and

whether they are in heat if the average time per day differs significantly [31].

In the year 2014, the first tracking system based on locating cows within

the barns entered the market. Smartbow andCowView draw the diagno-
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sis from positioning data of cows instead of using pedometers or accelerom-

eters. Both systems utilize an ultra-wide band (UWB) RFID techniques in

combination with an approach based on Time Difference of Arrival (TDOA)

for locating the cows [32].

Indoor location techniques directly measure the distance traveled by

cows instead of indirectly “guessing” them based on step counts or ac-

celerometer values. Data analytics in this case works the same way as for

the step count: under certain thresholds, which already had been figured

out in studies a priori, cows are marked as in heat while they are classified

as diseased above this threshold.

Beyond health monitoring, the determination of being in heat is a very

sensitive process as the determination of the correct time is essential for a

successful insemination. A failed insemination not only leads to repeated

insemination costs, but also results in lower milk production. Nowadays,

the insemination of cows in the dairy industry is done synthetically. In

contrast to bulls (which can smell the hormones of cows and interpret their

behavior), humans can only draw their conclusions based on the interpre-

tation of their behavior. Studies show that the in heat observation plays

a time-consuming role – three times a day, 15 minutes of observation are

needed for complete heat detection (in addition to the normal working hours

in the cowshed) [30]. It is understandable that the farmers need automated

heat detection as an alternative to the time-consuming manual observa-

tion. The same kind of sensors as used for health monitoring can also be

used for in heat detection. Cows in heat, feature a special characteristic

in their movement behavior which significantly differs from healthy as well

as diseased cows (see Figure 2). This movement behavior can be used to

draw conclusions not only about health, but also about being in heat. The

tracking systems help farmers to reduce their costs for insemination and

again, increase their milk yield.

Now farmers are able to access data about the health and movement

behaviors of their herd from their PC, notebook, or smartphone anywhere

and at anytime. More importantly, they are notified if a cow shows an

abnormal pattern like a reduced feeding behavior. These alarms enable the

farmer to look after their cows and call a veterinarian if required before it is

too late. Not only the welfare of cows, but also the economic performance of

farmers is this improved. Sick cows cause high veterinarian and drug costs

for the farmers. Tackling these issues in time also leads to a better yield

due to increased milk production. As a result, modern IoT-based products
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as well as data analytics improve the quality of dairy products and enable

farmers to spend less time in the barn.

8. Data Analytics in Smart Homes

The IT market research company, Gartner predicts that in 2022, there will

be more than 500 smart objects in an average family household [33]. The

smart home market is now flooded with IoT based devices. Many of the

manufacturers are embedding wireless data exchange and interoperability

into their devices.

Heating control is one of the areas in smart homes where people can

actually save money. Products like Thermostat+ (by ELV) and Comet

Blue (by EUROtronic Technology) can easily be installed without even

drilling a single hole [34, 35]. Heating control devices are easily plugged onto

radiators, and are commonly shipped together with sensor windows (to get

the knowledge if the window is close or open) and a gateway. The gateway

bridges the heating control devices wirelessly so that a PC or smartphone

can control the whole system. These smart devices enable customers to

define the rules for temperature by the room, and to control and monitor

their heating remotely from anywhere. Customers can specify the required

temperature and define different time slots when they are not at home.

With the help of data analytics applied on the collected data, people can

analyze their habits and behaviors to save energy and more importantly for

them – money.

Radio-controlled sockets are cheap and small devices which can be

plugged between normal sockets and the device to be powered, such as

Parce One [36]. They are commonly equipped with Bluetooth 4.0 alias

Low Energy and are easily connectible with modern Android or iPhone

based smart phones. With the help of these smart sockets, i) customers can

(gain the possibility to) monitor the exact power consumption of their elec-

tronic devices and, ii) they can define rules when the device gets switched

on or off. With these smart sockets, all of the electrical devices can be

turned into smart devices by switching them on and off autonomously. The

data of the consumed energy can be analyzed per device, which gives cus-

tomers the possibility to limit the use of a particular device which helps in

minimizing the overall energy consumption.

The scope of smart homes is not confined only to the inside area of a

home. Gardena is regularly offering new products in order to make gardens
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and gardening smart [37]. Gardena’s Sensor Control Set contains a

smart gateway (which has to be installed indoors and connected via Wi-Fi

or cable to the network), magnetic valves for taps, and plant sensors. The

plant sensor measures temperature, soil humidity, and light intensity. These

values can be used to define irrigation profiles. The goal of this application

is to automatically identify if the plant needs some water or fertilizer. There

is a link between the level of photosynthesis within a plant and its energy

supply. Once the soil is dry, the magnetic valve is automatically opened.

Customers can fine-tune the irrigation rules, for instance, based on the type

of plant. Aquatic plants need more water than a cactus that will survive

even if the soil is dry. Environmental factors complicate the data analytics

part in this application field. However, a smart irrigation system saves

a labor force and more importantly, helps plants to survive even if their

owners are not present.

Now, most smart home devices are capable of measuring their surround-

ings, such as temperature, power consumption, or soil humidity. Addi-

tionally, they have the possibility to interact with their environment like

switching off devices, activating the heating, or watering plants. What

they currently lack is autonomous learning to interact with their environ-

ment based on the measured values. Nowadays, the customers still have

to manually define some rules for each device. But, there are some sys-

tems which are becoming intelligent with the help of analyzing data from

different sensors.

Apple wanted to change this situation with the development of Home-

Kit: a powerful, interoperable smart home control system which is easy

and fast to set up and usable on iOS devices out of the box [38]. Certi-

fied vendors and products (which are currently limited in number) can be

connected to iOS over Wi-Fi or Bluetooth 4.0. Afterwards, the connected

devices can be verbally configured, controlled, and monitored via Apple Siri.

Besides the fact that smart home devices have to support Apple’s Home-

Kit and implement its functions into their system, Siri is not yet capable of

communicating with people in a way one would expect or wish (to have it).

For example, Siri only listens to commands containing the exact name of a

device (which has to be defined a priori). General descriptions, which are

often used in colloquial and everyday language, are not understood for now.

Vivint is one of the largest home automation companies in North

America. Different smart home devices including small appliances, HVAC

(Heating, ventilation and air conditioning), security systems, video devices,

thermostats, smart doors and locks, smart bulbs, and smoke alarms are
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connected via Vivint touchscreen panel and make a network of smart de-

vices. That network produces a lot of streaming data, which is stored

in Hadoop – an open source framework, for processing and storage of ex-

tremely large datasets. They use Datameer (a big data analytics platform)

to shorten the time of using raw data for different analytics and actionable

intelligence purposes [39]. The collected data is analyzed to better under-

stand the usage patterns of different smart devices, which can be further

used to improve the service and reduce energy consumption.

Google Nest offers smart devices including security cameras, ther-

mostats, and smoke detectors. These are devices of daily use which have

been in use for ages. But, data analytics and big data have changed the

way these devices work. Before becoming ‘smart’, these devices were used

to just record videos, maintain heating to a certain level, and sound the

alarm when smoke is detected, respectively. Now, by learning user behav-

ior, Nest’s smart thermostat adapts to the user’s usage and season changes.

It automatically controls the temperature by learning the user schedule. By

detecting unwanted events inside and outside a home, and making smart

alerts, Nest Aware software makes security cameras intelligent. In con-

trast to the old security cameras which only record the video, Nest’s smart

security cameras can make custom alerts for the activities a user is inter-

ested in. By making the smart notifications, Nest’s smoke detectors can

tell the user (by speaking or by making mobile notification) in which room

there is smoke and gives early warnings to avoid any emergency situation.

It can distinguish between steam, food burn, carbon monoxide, and smoke.

These smart devices can also be connected to each other to make a home

safer and more secure. For example, security cameras, light bulbs, and win-

dow shades can work together to give an impression that you are at home

when you are away. Or, when a thermostat is set to ‘away’, it can auto-

matically turn on the security camera. By using data analytics, such smart

devices can build up a profile which allows them to intelligently adjust

themselves to the environment, minimize human effort, maximize human

safety, improve service quality, and save energy [40].

The smart home vision affords many business opportunities, but also

faces many challenges. Currently, smart devices are hindered by a lack of in-

teroperability and the communication standard between products designed

by different manufacturers. There are different products which are trying

to integrate and bridge as many different products, protocols, and wire-

less standards as possible. Mediola Gateway V4+ produced by Mediola

supports both 433 and 868 MHz [41]. The advantage is that various sensors
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and products of different manufacturers can interoperate which enable cus-

tomers to mix them in rules and profiles. This works quite well; at least as

long as Mediola supports them.

The smart home market is a mix of many different networking tech-

nologies and protocols, which are mostly proprietary and not designed for

interoperation. All producers in the domain of smart home want a big

piece of the cake to consolidate their market position. Thus, they are in-

tending to raise barriers for new producers to enter this market by using

proprietary protocols and prevent interoperability between different prod-

ucts. The market will most likely remain technically fragmented through

2020 [33]. From a consumer point of view, their biggest concern is data

privacy. There is a need to develop a trust between the service provider

and the consumer. It is very important for a consumer that the important

information collected about their private life is only used to facilitate them,

and not for earning money by selling that information to a third party

without the consent of the consumer.

9. Conclusion

This chapter provides an insight into different industrial solutions available

for data analytics. In addition to analytics on traditional data, most of these

solutions are focusing on the data analytics on streaming/time-series data

coming from IoT enabled devices. Almost all fields of life are benefiting from

data analytics, including agriculture, healthcare, manufacturing, logistics,

crowd analysis, dairy farming, smart homes, etc. This chapter attempts to

provide a state-of-the-art in industrial/commercial data analytics solutions

available in different fields. A deeper look at these solutions shows that

there is still a lot of room and potential for improvement. Especially, most

of the existing solutions are based either on traditional statistical-based

approaches or to some extent using machine learning. However, almost

none of the existing solutions is using the potential of deep learning, which

could be very helpful to bring these analytics to the fingertips of data

scientists and end users. Big players like Microsoft, Apple, SAP, and IBM

have already developed cloud-based solutions, which are very suitable for

streaming and time-series data. This already facilitates data scientists and

companies a lot in terms of handling and managing the big streaming data

from IoT devices. Companies are also making explicit efforts to evolve their

analytics methods, which can deal with big data to gain maximum benefit

from the collected data.
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