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Preface

Most data mining and machine learning algorithms are designed to deal
with “static” data, which is stored entirely in a database system and
which does not change significantly over time. Many such algorithms even
ignore the arrival ordering of observations as irrelevant to the knowledge
discovery process. With these assumptions being sufficiently accurate in
some applications, an increasing amount of systems and sensors produce
massive, high-speed streams of ever-changing data generated by dynamic
processes. The high volume and velocity of such data streams require real
time or near real time processing due to the volatility of the incoming
observations, which can be stored for a limited, if any, time only. Dynamic
data streams can be found in a variety of fields including weather monitoring,
traffic control, stock trading, cyber security, and more recently, Internet of
Things (IoT). Mining real-world time series and streaming data creates a
need for new technologies and algorithms, which are currently being devel-
oped and tested by data scientists worldwide.

This volume is a continuation of our previous editorial project — Data
Mining in Time Series Databases (World Scientific, 2004), which discussed
the aspects and challenges introduced to the tasks of data mining and
knowledge discovery by adding the time dimension to databases. The pur-
pose of the current volume is to present the significant progress made over
the last decade in pre-processing, mining, and utilization of streaming data.
Data stream mining researchers are working on multiple tasks such as find-
ing the most efficient representation of streaming data, developing privacy-
preserving methods for data stream mining, incremental pre-processing of
continuous time series and data streams in parallel to the data mining pro-
cess, handling delayed information, mining entity-related time series, and
developing online monitoring systems. Our book covers the state-of-the-art
research in some of these areas. Specific topics discussed by the authors of
this volume are described below.

vii



viii Preface

Chapter 1 by Albert Bifet, Jesse Read, Geoff Holmes, and Bernhard
Pfahringer describes Massive Online Analytics (MOA), an open source soft-
ware environment for implementing algorithms and running experiments for
online learning from evolving data streams. MOA is designed to deal with
the challenging problem of scaling up the implementation of state-of-the-
art algorithms to Big Data. The chapter discusses several change detection
techniques implemented in MOA along with classification and clustering
algorithms for streaming data. The current plans for extending MOA by
its core team and the community developers conclude this chapter.

Chapter 2 by Douglas Cardoso, Felipe Franga, and Joao Gama deals
with the problem of data stream mining under limited computational
resources. To reduce the computation costs, they propose to use Weightless
Artificial Neural Networks (WANNs), which contrary to standard ANNs,
have no weights on their links. The authors present a learning algorithm
based on the WiSARD (Wilkes, Stonham and Aleksander Recognition
Device) methodology and apply it to the data stream clustering task.
Finally, they indicate that many more potential applications of the
WiSARD model to data streams still need to be explored.

In Chapter 3, Dariusz Brzezinski and Jerzy Stefanowski discuss another
challenging problem — classification of non-stationary data streams where
one of the target classes is represented by much less instances than other
classes. Due to the evolving nature of non-stationary data streams, their
class imbalance situation may change over time along with a change in
decision boundaries known as a concept drift. The chapter describes
recent advances in the field of imbalanced data streams classification.
Besides presenting the current state-of-the-art in ensemble algorithms
for imbalanced streams, the authors stress the limitations of existing
approaches and outline new research directions.

Chapter 4 by Andreas Nienkotter and Xiaoyi Jiang deals with consen-
sus learning for sequence data, especially strings. In multiple classifier
combination, consensus methods produce a result, which best represents
the different classifier predictions and thus removes errors and outliers in
the input ensemble. As indicated by the chapter authors, strings provide
a simple and yet powerful representation scheme for time series and other
types of sequential data. A typical data-mining task is to represent a set
of similar objects by means of a single prototype (median). The chapter
briefly describes several procedures for computing median strings. Exper-
imental results are reported to demonstrate the median concept and to
compare some of the discussed algorithms.



Preface ix

In Chapter 5, Mark Last, Maxim Stoliar, and Menahem Friedman
present a clustering-based methodology for efficient classification of
stationary document streams. They propose an active learning algorithm,
which obtains a continuous stream of unlabeled documents and clusters
them incrementally so that each incoming document is inserted into an
existing cluster or used to start a new cluster of its own. Occasionally,
an expert is called to label some clusters for the classification mechanism.
The evaluation experiments on two benchmark corpora show that active
learning combined with clustering can reduce the labeling costs by increas-
ing the percentage of automatically categorized documents over time.

Chapter 6 by Remon Cornelisse and Sunil Choenni illustrates the impor-
tance of domain knowledge in the interpretation and extraction of knowl-
edge from data streams. The authors use examples of time series from the
completely diverse fields of cyber security, astronomy, and criminal justice.
The chapter focus is on the first two stages of the knowledge discovery
process — data selection and data pre-processing.

Finally, Chapter 7 by Mohsin Munir, Sebastian Baumbach, Ying Gu,
Andreas Dengel, and Sheraz Ahmed provides a comprehensive overview
of data stream and time series analytics used by various industries for
improving healthcare services, enhancing home security, increasing crop
yield, expediting goods delivery, reducing equipment downtime, avoiding
diseases, and other purposes. Most of these solutions are utilizing the
streaming/time-series data coming from IoT enabled devices. The authors
suggest that the existing solutions can be further enhanced by means of
advanced machine learning techniques like the deep learning.

As becomes evident from the chapters of this book, time series and
streaming data keeps presenting new challenges to data scientists in
academia and industry. Most data streams are characterized by all the
four famous V’s of Big Data (Volume, Variety, Velocity, and Veracity), often
combined with the fifth V. — the Volatility of the dynamic environment.
The contributors of this volume have provided their insights on some
state-of-the-art solutions for mining Big Streaming Data as well as on the
topics for future research in this exciting area.

Mark Last

Horst Bunke
Abraham Kandel
July 2017
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Chapter 1

Streaming Data Mining with
Massive Online Analytics (MIOA)

Albert Bifet

LTCI, Télécom ParisTech
Université Paris-Saclay, France
albert. bifet @telecom-paristech. fr

Jesse Read
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Geoff Holmes* and Bernhard Pfahringer?
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Fast Big Data is being produced at high-velocity in real-time. To effec-
tively deal with this type of streaming data produced in real time, we
need to be able to adapt to changes on the distribution of the data being
produced, and we need to do it using the minimum amount of time and
memory. The Internet of Things (IoT) is a good example and motivation
of this type of streaming data produced in real time.

Massive Online Analytics (MOA) is a software environment for im-
plementing algorithms and running experiments for online learning from
evolving data streams. MOA is designed to deal with the challenging
problem of scaling up the implementation of state of the art algorithms
to real world dataset sizes. MOA includes classification and clustering
methods. It contains collection of offline and online methods as well
as tools for evaluation. MOA supports bi-directional interaction with
WEKA, the Waikato Environment for Knowledge Analysis, and is re-
leased under the GNU GPL license.



2 A. Bifet et al.

1. Introduction

Nowadays, data is generated at an increasing rate from sensor applica-
tions, measurements in network monitoring and traffic management, log
records or click-streams in web exploring, manufacturing processes, call
detail records, email, blogging, twitter posts and others. In fact, all data
generated can be considered as streaming data or as a snapshot of streaming
data, since it is obtained from an interval of time.

In the data stream model, data arrive at high speed, and an algorithm
must process them under very strict constraints of space and time. MOA
is an open-source framework for dealing with massive, potentially infinite,
evolving data streams.

A data stream environment has different requirements from the tradi-
tional batch learning setting. The most significant are the following:

Requirement 1 Process an example at a time, and inspect it only once
(at most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time.

Figure 1 illustrates the typical use of a data stream classification algo-
rithm, and how the requirements fit in a repeating cycle:

(1) The algorithm is passed the next available example from the stream
(Requirement 1).

(2) The algorithm processes the example, updating its data structures. It
does so without exceeding the memory bounds set on it (requirement
2), and as quickly as possible (Requirement 3).

(3) The algorithm is ready to accept the next example. On request it is
able to predict the class of unseen examples (Requirement 4).

As data stream mining is a relatively new field, evaluation practices are
not nearly as well researched and established as they are in the traditional
batch setting. The majority of experimental evaluations use less than one
million training examples. In the context of data streams this is disappoint-
ing, because to be truly useful at data stream classification the algorithms
need to be capable of handling very large (potentially infinite) streams of
examples. Demonstrating systems only on small amounts of data does not
build a convincing case for capacity to solve more demanding data stream
applications [1].
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Fig. 1. The data stream classification cycle.

MOA permits evaluation of data stream learning algorithms on large
streams, in the order of tens of millions of examples where possible, and
under explicit memory limits. Any less than this does not actually test
algorithms in a realistically challenging setting.

Other Machine Learning frameworks as Weka, RapidMiner or scikit-
learn were not designed for data stream mining. In those frameworks, data
is considered static, and can be stored in main memory. MOA was designed
specifically for the data stream setting, with the challenging capabilities of
adapting to changes and processing data without storing it.

2. Concept Drift

Dealing with data streams evolving over time, our models need to adapt
to changes on the data. To do that, we need to know when it is the best
moment to adapt them. This is why it is important to detect changes, in a
fast and accurate way, so that we can update or replace our current models
when it is more appropriate.

A change detector or drift detector is an algorithm that having as input a
stream of instances, outputs an alarm if it detects change on the distribution
of the data, and optionally a prediction of the next instance to come. In

general, the input to this algorithm is a sequence x1,x2, ..., 2, ... of data
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items whose distribution varies over time in an unknown way. The outputs
of the algorithm are, at each time step, an estimation of some important
parameters of the input distribution, and a signal alarm indicating that
distribution change has recently occurred.

There are many different algorithms to detect change in streams. We
start looking at the classical ones used in statistical quality control, and
then we look at more recent ones such as ADWIN.

2.1. The CUSUM Test

The cumulative sum (CUSUM algorithm), which was first proposed in 1954
[2], is a change detection algorithm that gives an alarm when the mean of
the input data is significantly different from zero. The CUSUM input e,
can be any filter residual, for instance the prediction error from a Kalman
filter.

The CUSUM test is as follows:

go =10
gt = max (0,g:—1 + € — V)

if g > h then alarm and ¢g; =0

The CUSUM test is memoryless, and its accuracy depends on the choice of
parameters v and h.

2.2. The Page Hinckley Test

The CUSUM test is a stopping rule. Other stopping rules exist. For exam-
ple, the Page Hinckley test, also presented in [2]. The Page Hinckley Test
is as follows, when the signal is increasing:

go =0, gt = gi—1+ (€ —v)
Gy = min(g¢)

if gt — G¢ > h then alarm and g, =0

In the case that the signal is decreasing, instead of Gy = min(g;), we should
use Gy = max(g;) and Gy — g; > h as the stopping rule. As the CUSUM
test, the Page Hinckley test is memoryless, and its accuracy depends on
the choice of parameters v and h.
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2.3. Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [3] controls
the number of errors produced by the learning model during prediction. It
compares the statistics of two windows: the first contains all the data, and
the second contains only the data from the beginning until the number of
errors increases. Their method doesn’t store these windows in memory. It
keeps only statistics and a window of recent errors.

The number of errors in a sample of n examples is modelled by a bino-
mial distribution. For each point ¢ in the sequence that is being sampled,
the error rate is the probability of misclassifying (p;), with standard devi-
ation given by s; = /p:(1 — p¢)/t. They assume that the error rate of the
learning algorithm (p;) will decrease while the number of examples increases
if the distribution of the examples is stationary. A significant increase in
the error of the algorithm, suggests that the class distribution is changing
and, hence, the actual decision model is considered to be inappropriate.
Thus, they store the values of p; and s; when p; + s; reaches its minimum
value during the process (obtaining ppmin and Smin). And it checks when
the following conditions trigger:

® Dy + St > Pmin + 2 - Smin for the warning level. Beyond this level, the
examples are stored in anticipation of a possible change of context.

® Dy +St > Dmin + 3 Smin for the drift level. Beyond this level the concept
drift is considered to be real, the model induced by the learning method
is reset and a new model is learnt using the examples stored since the
warning level triggered. The values for p,,;, and s, are reset too.

This approach demonstrates good behavior detecting abrupt changes
and gradual changes when the gradual change is not very slow, but it has
difficulties when the change is slowly gradual. In that case, the examples
will be stored for a long time, the drift level can take too much time to
trigger and the examples in memory can be excessive.

2.4. ADWIN

ADWIN (ADaptive sliding WINdow) [4] is a change detector and estimation
algorithm. It solves, in a well-specified way, the problem of tracking the
average of a stream of bits or real-valued numbers. ADWIN keeps a variable-
length window of recently seen items, with the property that the window
has the maximal length statistically consistent with the hypothesis “there
has been no change in the average value inside the window”.
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More precisely, an older fragment of the window is dropped if and only
if there is enough evidence that its average value differs from that of the
rest of the window. This has two consequences: one, change is reliably
detected whenever the window shrinks; and two, at any time the average
over the existing window can be used as a reliable estimate of the current
average in the stream (barring a very small or recent change that is not yet
statistically significant).

The inputs to ADWIN are a confidence value 6 € (0,1) and a (possibly
infinite) sequence of real values x1, @2, x5, ..., %, ... The value of z; is
available only at time t. Each z; is generated according to some distribu-
tion Dy, independently for every ¢t. We denote with p; the expected value
of x; when it is drawn according to D;. We assume that x; is always in
[0, 1]; rescaling deals with cases where a < z; < b. No further assumption
is being made about the distribution D;; in particular, p; is unknown for
all ¢.

ADWIN is parameter- and assumption-free in the sense that it automat-
ically detects and adapts to the current rate of change. Its only parameter
is a confidence bound §, indicating how confident we want to be in the algo-
rithm’s output, inherent to all algorithms dealing with random processes.

It is important to note that ADWIN does not maintain the window ex-
plicitly, but compresses it using a variant of the exponential histogram
technique [5]. This means that it keeps a window of length W using only
O(log W) memory and O(log W) processing time per item, rather than the
O(W) one expects from a naive implementation.

3. Classification

Classification is one of the most widely used data mining techniques. In
very general terms, given a list of groups (often called classes), classification
seeks to predict to which group a new instance may belong. The outcome
of classification is typically either the identification of a single group or the
production of a probability distribution of likelihood of membership of each
group. A spam filter is a good example, where we want to predict if new
emails are considered spam or not. Twitter sentiment analysis is another
example, where we want to predict if the sentiment of a new incoming tweet
is positive or negative.

More formally, the classification problem can be formulated as follows:
given a set of instances of the form (x,y), where z = x1,...,zy is a vector
of attribute values, and y is a discrete class from a set of nc different



Streaming Data Mining with Massive Online Analytics (MOA) 7

classes, the classifier builds a model y = f(x) to predict the classes y of
future examples. For example, x could be a tweet and y the polarity of its
sentiment; or x could be an email message, and y the decision whether it
is spam or not.

Evaluation is one of the most fundamental tasks in the stream data min-
ing process, since it helps to decide what techniques are more appropriate
to use for a specific data stream mining problem. The main challenge is to
know when a method is outperforming another method only by chance, or
if there is a statistical significance to that claim. Some of the methodologies
applied are the same as in the case of non-dynamic data, where all data
can be stored in memory. However, mining evolving data streams has new
challenges and uses new evaluation methodologies. One thing worth noting
before we continue is that almost all of the discoveries made in data mining
and particularly classification assume that data is IID (Independent, Iden-
tically, Distributed). Thus a stationary distribution is randomly producing
data, in no particular order and the underlying distribution generating the
data is not changing. In a dynamic-data environment no part of IID re-
mains valid. It is often the case, for example, that for certain time-periods
the labels or classes of instances are correlated, intrusion detection has a
majority of periods containing instance class labels designated no-intrusion
and then shorter much less frequent periods of intrusion. This is another
aspect of data stream mining that would benefit from further research.

For evolving data streams, the main difference with traditional data
mining evaluation, is in how to perform the error estimation. Resources
are limited and cross-validation may be too expensive.

The evaluation procedure of a learning algorithm determines which ex-
amples are used for training the algorithm, and which are used for testing
the model output by the algorithm.

In traditional batch learning the problem of limited data is overcome by
analyzing and averaging multiple models produced with different random
arrangements of training and test data. In the stream setting the problem
of (effectively) unlimited data poses different challenges.

When considering what procedure to use in the non-distributed data
stream setting, one of the unique concerns is how to build a picture of
accuracy over time. Two main approaches arise:

e Holdout: when data is so abundant, that it is possible to have test
sets periodically, then we can measure the performance on these holdout
sets. There is a training data stream that is used to train the learner
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continuously, and small test data sets that are used to compute the
performance periodically.

e Interleaved Test-Then-Train or Prequential: when data is not
abundant, and there are no test sets, then each individual example can
be used to test the model before it is used for training, and from this
the accuracy can be incrementally updated. The model is always being
tested on examples it has not seen.

Holdout evaluation gives a more accurate estimation of the accuracy of
the classifier on more recent data. However, it requires recent test data
that it is difficult to obtain for real datasets. There is also the issue of
ensuring coverage of important change events, if the holdout is during a less
volatile period of change then it might give an over-estimate of classifier
performance. Gama et al. [6] propose to use a forgetting mechanism for
estimating holdout accuracy using prequential accuracy: a sliding window
of size w with the most recent observations, or fading factors that weigh
observations using a decay factor a. The output of the two mechanisms is
very similar (every window of size wy may be approximated by some decay
factor ap).

In a distributed data stream setting, we have classifiers that can be
trained at the same time. The approaches in this setting are the follow-
ing [7):

e k-fold distributed split-validation: when there is abundance of data
and k classifiers. Each time a new instance arrive, it is decided with
probability 1/k if it will be used for testing. If it is used for testing,
it is used by all the classifiers. If not, then it is used for training and
assigned to only one classifier. Doing that, each classifier sees different
instances, and they are tested using the same data.

e 5X2 distributed cross-validation: when data is less abundant, and
we want to use only 10 classifiers. We have 5 groups of 2 classifiers,
and for each group, each time a new instance arrive, it is decided with
probability 1/2 which of the two classifiers is used to test; the other
classifier of the group is used to train. All instances are used to test or
to train, and there is no overlapping between test instances and train
instances.

o k-fold distributed cross-validation: when data is scarce and we
have k classifiers. Each time a new instance arrive, it is used for testing
in one classifier selected randomly, and trained using the others. This
is the equivalent evaluation to k-fold distributed cross-validation.
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The decision tree is a very popular data mining technique since it is
very easy to interpret and visualize the model it builds. It consists of a tree
structure, where each internal node corresponds to an attribute that splits
into a branch for each attribute value, and leaves correspond to classification
predictors, usually majority class classifiers. Figure 2 shows an example.

Contains Domain Has Time

“Money”’ type attach. received spam
yes com yes night yes
yes edu no night yes
no com yes night yes
no edu no day no
no com no day no
yes cat no day yes

YES NO

Fig. 2. A data set that describes e-mail features for deciding if it is spam, and a decision
tree build using this data set.

Decision tree accuracy performance can be improved, using other clas-
sifiers at the leaves, such as Naive Bayes, or using ensembles of classifiers,
as we will see later on.

The basic way to build a tree is the following, starting by creating a
root node at the beginning node = root, and then doing the following:

(1
(2
(3
(4

Assign A as the best decision attribute for node.

For each value of A, create new descendant of node.

Sort training instances to leaf nodes.

If training instances are perfectly classified, then STOP, else iterate
over new leaf nodes.

— N —
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Two common measures are used to select the best decision attribute:

e Information Gain: computed as the decrement in entropy
Information Gain = Entropy(before Split) — Entropy (after split)

where Entropy is a measure of the uncertainty associated with a random
variable defined as Entropy = — Y. p; - log p;.

e Gini impurity Gain: computed using the Gini impurity measure instead
of the entropy

c c
Gini Index = Zpi(l —pi)=1-— ZP?
The Gini index is a measure of the statistical dispersion associated with
a random variable.

3.1. The Hoeffding Tree

In the data stream setting, where we can not store all the data, the main
problem of building a decision tree is the need of reusing the examples to
compute the best splitting attributes. Hulten and Domingos [8] proposed
the Hoeffding Tree or VFDT, a very fast decision tree for streaming data,
where instead of reusing instances, we wait for new instances to arrive. The
most interesting feature of the Hoeffding tree is that it builds an identical
tree with a traditional one, with high probability if the number of instances
is large enough, and that it has theoretical guarantees about that.

The pseudo-code of VFDT is shown in Figure 3. The Hoeffding Tree
is based on the Hoeffding bound. This inequality or bound justifies that a
small sample can often be enough to choose an optimal splitting attribute.
Suppose we make n independent observations of a random variable r with
range R, where r is an attribute selection measure such as information gain
or Gini impurity gain. The Hoeffding inequality states that with probability
1 — 4, if the true mean r of r is at least E[r] — e, then

_ [/R*In1/d
= 2n

Using this fact, the Hoeffding tree algorithm, can determine, with high
probability the smallest number n of examples needed at a node when
selecting a splitting attribute.

The Hoeffding Tree maintains in each node the statistics needed for
splitting attributes. For discrete attributes, this is the same information as
needed for computing the Naive Bayes predictions: a 3-dimensional table
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HOEFFDINGTREE(Stream, ¢)

1 © Let HT be a tree with a single leaf(root)
2 > Init counts n;;; at root

3 for each example (z,y) in Stream

4 do HTGrow((x,y), HT,d)

HTGrow((x,y), HT,0)

1 > Sort (z,y) to leaf [ using HT

2 > Update counts n;j at leaf (

3 if examples seen so far at [ are not all of the same class
4 then

5 > Compute G for each attribute
6

7

8

9

if G(Best Attr.)—G(2nd best) > \/@

then
> Split leaf on best attribute
for each branch
10 do > Start new leaf and initialize counts

Fig. 3. The Hoeffding Tree algorithm.

that stores for each triple (z;,v;,c) a count n; ; . of training instances with
x; = vj, together with a 1-dimensional table for the counts of C' = c. The
memory needed depends on the number of leaves of the tree, but not on
the size of the data stream.

A theoretically appealing feature of Hoeffding Trees not shared by other
incremental decision tree learners is that it has sound guarantees of per-
formance. Using the Hoeffding bound one can show that its output is
asymptotically nearly identical to that of a non-incremental learner using
infinitely many examples.

Domingos et al. [8] improved the Hoeffding Tree algorithm with an ex-
tended method called VFDT, with the following characteristics:

e Ties: when two attributes have similar split gain G, the improved
method splits if the Hoeffding bound computed is lower than a cer-
tain threshold parameter 7.

2In1
G(Best Attr.) — G(2nd best) < 1/ R+/6 <T
n
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e To speed up the process, instead of computing the best attributes to
split every time a new instance arrives, it computes them every time a
number n,,i, of instances has arrived.

e To reduce the memory used in the mining, it deactivates the least
promising nodes that have lower p; x e; where

— py is the probability to reach leaf [

— ¢ is the error in the node [

— It is possible to initialize the method with an appropriate decision
tree. Hoeffding Trees can grow slowly and performance can be
poor initially so this extension provides an immediate boost to
the learning curve.

A way to improve the classification performance of the Hoeffding Tree
is to use Naive Bayes learners at the leaves instead of the majority class
classifier. Gama et al. [9] were the first to use Naive Bayes in Hoeffding Tree
leaves, replacing the majority class classifier. However, Holmes et al. [10]
identified situations where the Naive Bayes method outperformed the stan-
dard Hoeffding tree initially but is eventually overtaken. To solve that,
they proposed a hybrid adaptive method that generally outperforms the
two original prediction methods for both simple and complex concepts.

The Hoeffding Adaptive Tree [11] is an extension of the Hoeffding Tree
that uses ADWIN as a change detector, to adapt the tree structure of
the decision tree to the changes in the distribution of the learning data.
Users can use the Hoeffding Adaptive Tree easily without needing to set
parameters that depend on the scale of the data change.

3.2. Ensemble Methods

Ensemble methods are combinations of several models whose individual
predictions are combined in some manner (e.g., averaging or voting) to
form a final prediction. When tackling non-stationary concepts, ensembles
of classifiers have several advantages over single classifier methods: they are
easy to scale and parallelize, they can adapt to change quickly by pruning
under-performing parts of the ensemble, and they therefore usually also
generate more accurate concept descriptions.

Bagging, boosting and stacking are traditional ensemble methods for
non-streaming environments. Usually ensemble methods outperform single
classifiers at the cost of more time and memory resources.
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Bagging is one of the simplest ensemble methods to implement.
Non-streaming bagging [12] builds a set of M base models, training each
model with a bootstrap sample of size N created by drawing random sam-
ples with replacement from the original training set. Each base model’s
training set contains each of the original training examples K times where
P(K = k) follows a binomial distribution:

e (oo ()2 (1-2)”

This binomial distribution for large values of n tends to a Poisson(1) dis-
tribution, where Poisson(1)= exp(—1)/k!. Using this fact, Oza and Rus-
sell [13, 14] proposed Online Bagging, an online method that instead of
sampling with replacement, gives each example a weight according to Pois-
son(1). Figure 4 shows the pseudocode of this ensemble method.

ONLINE BAGGING(M)

Input: M - number of classifiers in the ensemble

1 Initialize base models h,, for all m € {1,2,..., M}

2 for each example (z,y) in Stream

3 do form=1,2,....M

4 do Set w = Poisson(1)

) Update h,, with the current example with weight w
6 anytime output:

7 return hypothesis: hf;,(x) = argmaxycy Zthl I(hi(z) =y)

Fig. 4. Oza and Russell’s Online Bagging for M models.

Example 1. Let D be a dataset of 4 instances : A, B, C, D. Imagine that we
have 5 classifiers, and we run a non-streaming bagging, performing sampling
with replacement. The inputs for each classifier will be the following:

Classifier 1: B,
Classifier 2: D,
Classifier 3: B,
B
D

Classifier 4:
Classifier 5:

CapwE
=W AaE 0
OWWUWw
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And this is equivalent to the following sorted inputs:

Classifier 1: A, B, B, C: A(1) B(2) C(1) D(0)
Classifier 2: A, B, D, D: A(1) B(1) C(0) D(2)
Classifier 3: A, B, B, C: A(1) B(2) C(1) D(0)
Classifier 4: B, B, B, C: A(0) B(3) C(1) D(0)
Classifier 5: A, C, C, D: A(1) B(0) C(2) D(1)

So, to perform bagging in a data streaming setting, we just need to
assign each new instance that arrives a weight of Poisson(1).

When data is evolving over time, it is important that models adapt
to the changes in the stream and evolve over time. ADWIN bagging [15]
is the online bagging method of Oza and Russell with the addition of the
ADWIN algorithm as a change detector and as an estimator for the weights
of the boosting method. When a change is detected, the worst classifier of
the ensemble of classifiers is removed and a new classifier is added to the
ensemble.

A more powerful adaptive bagging exists that extends ADWIN bagging,
called leveraging bagging [16]. Tt leverages the performance of bagging, with
two randomization improvements: increasing resampling and using output
detection codes. Figure 5 shows the pseudocode of this method.

LEVERAGING BAGGING(M)

Input: M - number of classifiers in the ensemble

—_

Initialize base models h,, for all m € {1,2,..., M}
Compute for each classifier m and class y a binary output
code matrix fim, (y)

3 for each example (z,y) in Stream
4 doform=1,2,.... M
)

6

[\

do Set w = Poisson(\)
Update h,, with the current example
with weight w and binary mapped class i, (y)
7 if ADWIN detects change in error of one of the classifiers
8 then Replace classifier with higher error with a new one

9 anytime output:
10 return hypothesis: hyn(r) = arg maxycy ZtT:1 I(he(z) = pue(y))

Fig. 5. Leveraging Bagging for M models.
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Resampling with replacement is done in Online Bagging using Pois-

son(1). There are other sampling mechanisms:

e Lee and Clyde [17] uses the Gamma distribution (Gamma(1,1)) to ob-
tain a Bayesian version of Bagging. Note that Gamma(1,1) is equal to

Exp(1).

e Bulhman and Yu [18] propose subagging, using resampling without

replacement.

0.40

0.35

0.30

0.25

0.20

-—*"——-—__.--.
t

Fig. 6. Poisson distribution.

Leveraging bagging increases the weights of this resampling using a
larger value A to compute the value of the Poisson distribution. The Poisson
distribution is used to model the number of events occurring within a given

time interval.

Figure 6 shows the probability function mass of the distribution of Pois-
son for several values of A\. The mean and variance of a Poisson distribution
is A. For A = 1 we see that 37% of the values are zero, 37% are one, and 26%
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are values greater than one. Using a weight of Poisson(1) we are taking out
37% of the examples, and repeating 26% of the examples, in a similar way to
non streaming bagging. For A = 6 we see that 0.25% of the values are zero,
45% are lower than six, 16% are six, and 39% are values greater than six.
Using a value of A > 1 for Poisson(\) we are increasing the diversity of the
weights and modifying the input space of the classifiers inside the ensemble.
However, the optimal value of A may be different for each dataset.

A second improvement is to add randomization at the output of the en-
semble using output codes. Dietterich and Bakiri [19] introduced a method
based on error-correcting output codes, which handles multiclass problems
using only a binary classifier. The classes assigned to each example are
modified to create a new binary classification of the data induced by a
mapping from the set of classes to {0,1}. A variation of this method by
Schapire [20] presented a form of boosting using output codes.

In leveraging bagging, we assign to each class a binary string of length
n and then build an ensemble of n binary classifiers. Each of the classifiers
learns one bit for each position in this binary string. When a new instance
arrives, we assign « to the class whose binary code is closest. We can view
an error-correcting code as a form of voting in which a number of incorrect
votes can be corrected.

Leveraging bagging uses random output codes instead of deterministic
codes. In standard ensemble methods, all classifiers try to predict the same
function. However, using output codes each classifier will predict a different
function. This may reduce the effects of correlations between the classifiers,
and increase diversity of the ensemble.

Random output codes are implemented in the following way: we choose
for each classifier m and class ¢ a binary value p,,(c) in a uniform, inde-
pendent, and random way. We ensure that exactly half of the classes are
mapped to 0. The output of the classifier for an example is the class which
has more votes of its binary mapping classes. Table 1 shows an example
for an ensemble of 6 classifiers in a classification task of 3 classes.

Leveraging bagging is an extension of ADWIN bagging and uses the same
strategy to deal with concept drift. Algorithm 5 shows the pseudo-code for
Leveraging Bagging. First it builds a matrix with the values of y for each
classifier and class. For each new instance that arrives, it gives it a random
weight of Poisson(k). It trains the classifier with this weight, and when
a change is detected, the worst classifier of the ensemble of classifiers is
removed and a new classifier is added to the ensemble. To predict the class
of an example, it computes for each class ¢ the sum of the votes for u(c) of
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Table 1. Example matrix of random output
codes for 3 classes and 6 classifiers.

Class 1 | Class 2 | Class 3
Classifier 1 0 0 1

Classifier 2
Classifier 3
Classifier 4
Classifier 5
Classifier 6

O = == O
—_ O = O -
O OO

all the ensemble classifiers, and outputs as a prediction the class with the
most votes.

3.3. Classification in MOA

MOA contains stream generators, classifiers and evaluation methods. Fig-
ure 7 shows the MOA graphical user interface. However, a command line
interface is also available.

Considering data streams as data generated from pure distributions,
MOA models a concept drift event as a weighted combination of two pure
distributions that characterizes the target concepts before and after the
drift. Within the framework, it is possible to define the probability that
instances of the stream belong to the new concept after the drift. It uses
the sigmoid function, as an elegant and practical solution [15, 21].

MOA contains the data generators most commonly found in the liter-
ature. MOA streams can be built using generators, reading ARFF files,
joining several streams, or filtering streams. They allow for the simula-
tion of a potentially infinite sequence of data. The following generators
are currently available: Random Tree Generator, SEA Concepts Genera-
tor, STAGGER Concepts Generator, Rotating Hyperplane, Random RBF
Generator, LED Generator, Waveform Generator, and Function Generator.

MOA contains several classifier methods such as: Naive Bayes, Deci-
sion Stump, Hoeffding Tree, Hoeffding Adaptive Tree [11], Hoeffding Op-
tion Tree [22], Bagging, Boosting, Bagging using ADWIN, Bagging using
Adaptive-Size Hoeffding Trees [15] and Leveraging Bagging [16].

For example, a non-trivial example of the Evaluatelnterleaved Test Then-
Train task creating a comma separated values file, training the Hoeffd-
ingTree classifier on the WaveformGenerator data, training and testing on
a total of 100 million examples, and testing every one million examples, is
encapsulated by the following command line:
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Fig. 7. MOA graphical user interface.

java -cp.:moa. jar:weka.jar -javaagent:sizeofag.jar moa.DoTask\
"EvaluateInterleavedTestThenTrain -1 HoeffdingTree \
-s generators.WaveformGenerator \
-i 100000000 -f 1000000" > htresult.csv

MOA is easy to use and extend. A simple approach to writing a new
classifier is to extend moa.classifiers.AbstractClassifier, which will
take care of certain details to ease the task.

4. Clustering

Clustering is an unsupervised learning task that mines unlabeled data. It is
useful, when we have unlabeled data, and we want to find relevant groups
in the data. Clustering consists in the distribution of a set of instances
into non-known groups according to some common relations or affinities.
The main difference with classification is that the groups are not-known
before starting the learning process. There are many examples of clustering;:
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market segmentation of customers, or finding social network communities
are two examples.

We can see clustering as an optimization problem, where we want to
optimize a cost function. Some clustering methods needs the k& parameter
to know the quantity of clusters to find in the data, and other methods
does not have any restriction in the number of clusters to find in the data.

The k-means clustering method is one of the most used methods in
clustering, due to its simplicity. The k-means algorithm starts selecting
k centroids in a random way. After that there are two main steps: first
assign to each instance the nearest point, and second, recompute the cluster
centroids using these new assignments. This is done in a iterative way,
until a stopping criterion is accomplished, mainly based in the sum of the
distance to the centroids. k-means is not a streaming method as it requires
to do several passes over the data.

Streaming methods for clustering have two phases, an on-line and an off-
line phase. In the on-line, a set of micro-clusters is computed and updated
in a very fast way, and in the off-line phase, a classical batch clustering
method as k-means is performed using the micro-clusters computed in the
on-line phase. The on-line phase is doing only one pass over the data, and
the off-line phase is doing several passes, but not over all the data, only
over the set of micro-clusters, usually a small set of less than 200 points.

4.1. Clustering in MOA

MOA contains also an experimental framework for clustering data streams,
so that it will be easy for researchers to run experimental data stream
benchmarks. The features of MOA for stream clustering are:

e data generators for evolving data streams (including events such as
novelty, merge, etc. [23]),

e an extensible set of stream clustering algorithms,

e evaluation measures for stream clustering,

e visualization tools for analyzing results and comparing different set-
tings.

For stream clustering we added new data generators that support the
simulation of cluster evolution events such as merging or disappearing of
clusters [23].



20 A. Bifet et al.

[ ] ® MOA Graphical User Interface

Classification Regression  MultiTarget @liSediels Outliers Concept Drift

Setup

Dim1 [¢ “
| Resume | X im Points Ground truth

~Visualisation Speed Processed:205000 ‘
Stop Y Dim2 Microclustering Clustering

Pause in: 50000

£ N

%

rEvaluation
Values Plot ‘

O cvm
CMM Basic
CMM Missed
CMM Misplaced
CMM Noise
[FIl=f
F1-R

Zoom inY Zoom out Y Zoom in X Zoom out X ‘

SIS CI OIS O

©c o o000 oo
© oo o000 00

PPpPpEEPEEE

0.00 T
0

Purity

T T T T
50000 100000 150000 200000 ‘

Fig. 8. Visualization tab of the clustering MOA graphical user interface.

MOA contains several stream clustering algorithms such as the following
ones:

e StreamKM++ [24]: It computes a small weighted sample of the data
stream and it uses the k-means++ algorithm as a randomized seeding
technique to choose the first values for the clusters. To compute the
small sample, it employs coreset constructions using a coreset tree for
speed up.

e CluStream [25]: It maintains statistical information about the data
using micro-clusters. These micro-clusters are temporal extensions of
cluster feature vectors. The micro-clusters are stored at snapshots in
time following a pyramidal pattern. This pattern allows to recall sum-
mary statistics from different time horizons.

e ClusTree [26]: It is a parameter free algorithm automatically adapting
to the speed of the stream and it is capable of detecting concept drift,
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novelty, and outliers in the stream. It uses a compact and self-adaptive
index structure for maintaining stream summaries.

e Den-Stream [27]: It uses dense micro-clusters (named core-micro-
cluster) to summarize clusters. To maintain and distinguish the po-
tential clusters and outliers, this method presents core-micro-cluster
and outlier micro-cluster structures.

e D-Stream [28]: This method maps each input data record into a grid
and it computes the grid density. The grids are clustered based on the
density. This algorithm adopts a density decaying technique to capture
the dynamic changes of a data stream.

e CobWeb [29]. One of the first incremental methods for clustering data.
It uses a classification tree. Each node in a classification tree repre-
sents a class (concept) and is labeled by a probabilistic concept that
summarizes the attribute-value distributions of objects classified under
the node.

MOA contains measures for analyzing the performance of the clustering
models generated. It contains measures commonly used in the literature as
well as novel evaluation measures to compare and evaluate both online and
offline components. The available measures evaluate both the correct as-
signment of examples [30] and the compactness of the resulting clustering.
The visualization component (cf. Figures 8 and 9) allows to visualize the
stream as well as the clustering results, choose dimensions for multi dimen-
sional settings, and compare experiments with different settings in parallel.

Beside providing an evaluation framework, the second key objective is
the extensibility of the benchmark suite regarding the set of implemented
algorithms as well as the available data feeds and evaluation measures.

Figure 8 shows a screenshot of our visualization tab. For this screen-
shot two different settings of the CluStream algorithm [25] were compared
on the same stream setting (including merge/split events every 50000 ex-
amples) and five measures were chosen for online evaluation (CMD, F1,
Precision, Recall and SSQ). The upper part of the GUI offers options to
pause and resume the stream, adjust the visualization speed, choose the
dimensions for x and y as well as the components to be displayed (points,
micro- and macro clustering and ground truth). The lower part of the GUI
displays the measured values for both settings as numbers (left side, in-
cluding mean values) and the currently selected measure as a plot over the
arrived examples (right, F1 measure in this example). For the given setting
one can see a clear drop in the performance after the split event at roughly



22 A. Bifet et al.

@ Editing option: Stream
J class moa.streams.clustering.RandomRBFGeneratorEvents a
Purpose
Generates a random radial basis function stream.
modelRandomSeed 142
instanceRandomSeed 5HC
numCluster S5H°
numClusterRange 30C
kernelRadius 0.07 2
kernelRadiusRange 0c
densityRange 02
speed 500 J
Help Reset to defaults
Cancel ﬁ

Fig. 9. Option dialog for the RBF data generator (by storing and loading settings
benchmark streaming data sets can be shared for repeatability and comparison).

160000 examples (event details are shown when choosing the corresponding
vertical line in the plot). While this holds for both settings, the left configu-
ration (red, CluStream with 100 micro clusters) is constantly outperformed
by the right configuration (blue, CluStream with 20 micro clusters).

5. Conclusions

MOA is a classification and clustering system for massive data streams with
the following characteristics:

e benchmark streaming data sets through stored, shared, and repeatable
settings for the various data feeds and noise options, both synthetic
and real,
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e set of implemented algorithms for comparison to approaches from the
literature,

e open source tool and framework for research and teaching similar to
WEKA.

MOA is written in Java. The main benefits of Java are portability,
where applications can be run on any platform with an appropriate Java
virtual machine, and the strong and well-developed support libraries. Use
of the language is widespread, and features such as the automatic garbage
collection help to reduce programmer burden and error.

MOA can be found at:

http://moa.cms.waikato.ac.nz/

The website includes a tutorial, an API reference, a user manual, and
a manual about mining data streams. Several examples of how the soft-
ware can be used are available. The sources are publicly available and are
released under the GNU GPL license.

The core team and the community developers of MOA plan to con-
tinue extending MOA by adding more classification methods, outlier de-
tection, multi-label and multi-target learning, and frequent pattern mining
methods.
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Learning from data streams can only be realized by systems which are
not only effective but also efficient. That is, knowledge discovery in this
context is impossible without being aware of the computational resources
available. Weightless artificial neural networks (WANNSs) are based on
an alternative principle to iterative optimization of weights employed
by most mainstream artificial neural network models and related tools.
WANNS explicitly manage knowledge pieces, which are stored by RAM
nodes. Such foundational difference reflects on the adaptability of these
models to streaming inputs: in such scenario, the application of weight-
less models can be considered more natural than the same for their
weighted counterparts, with an ample control over learning capability
as well as resources consumption. This chapter details a WANN-based
approach for mining data streams, which allows the maintenance of an
up-to-date data summary which can be used for several purposes. The
insights and original ideas which power such model are explained as well,
enabling novel applications and further development of them.

26
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1. Introduction

Because of technological facts of our time as social networks, Internet of

Things, ubiquitous sensing and others, data generation processes became

faster and more numerous, while also acting as unbounded data sources. In

order to extract knowledge from such data, using classic machine learning

methods to process a data sample is possible. However, as fast as more

data is generated, knowledge previously obtained becomes obsolete. In this

scenario, classical methods could learn from scratch every time a new batch

of observations becomes available. Unfortunately, this strategy has some

weaknesses: !

e it can be hard to decide how large these batches should be;

e if the batches are too small, the lack of training data could harm
the learning process;

e on the other hand, if they are too large, they may feature concept
drift which could also have a negative effect on learning;

e learning from scratch can be very time consuming, what may not
be compatible with data input rate.

In the context being considered, data temporality is a key concept. How-
ever, classical machine learning and data mining techniques do not take such
aspect into account. This explains why their application in this case would
expectedly fail. Hence, instead of approaching such learning task consider-
ing as input a sequence of data sets, using a single data stream in the same
regard is the better alternative. This implies processing temporal data as
it is, and not as if such time dimension was not present. Consequently,
this also implies moving away from classical learning tools and relying on
true stream-oriented methods, which would uninterruptedly extract up-to-
date information from data. This way, data processing is realized with a
greater granularity and responsiveness to changes in the underlying data
distribution.

Methods developed to deal with data streams should meet efficiency
constraints imposed by the characteristics of their data sources:? input
data is assumed to be infinitely large, so that it should be processed incre-
mentally instead of as a single batch; because data input rates can be very
high, buffering observations unrestrictedly is forbidden; as a scalability re-
quirement, the computational cost of processing a single observation should
not be related to the number of observations already processed. The obser-
vation of such requirements led to the development of data stream mining
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systems which are not only effective with respect to knowledge extraction,
but they are also fast enough to be scalable as desired.? Moreover, these
systems also employ efficient memory management policies, usually based
on sampling or summarization techniques.*

Considering these challenges,” Wilkes, Stonham and Aleksander Recog-
nition Device (WiSARD) was brought into play as powerful, flexible, multi-
purpose learner. This artificial neural network (ANN) model provides the
means for pattern recognition working as a lazy learner, memorizing and
matching small information pieces extracted from its inputs. The original
and most frequent use of this model is standard classification. However,
it has been used for other tasks: unsupervised learning,%7 rule induction,®

10,11 are some recent

generative modeling® and natural language processing
examples of these applications. Such flexibility inspired the idea of explor-
ing its adaptation to feed from streaming data. It was also considered that
this could enable to reproduce its previous uses in such new and increasingly
popular scenario.

Other interesting characteristics of this model for the intended devel-
opment include its native high-speed functioning, which does not rely on
iterative optimization of any form. Instead, learning is realized record-
ing the occurrence of values obtained from randomly mapping the training
observations to a high-dimensional binary feature space. This way, each ob-
servation is processed individually, and learning is not affected by the input
order of observations in a training set. Moreover, learning and recognition
can be interleaved with no restriction. Such high-level granularity and sta-
bility could enable proper learning even if concept drift happens, responding
to such events in a reasonable way. Moreover, the explicit memorization
architecture of this model allows a fine control over its space complexity,
what is crucial to handle possibly large volumes of streaming data. It is
also valid to notice that most ANN models lack these characteristics, what
supports choosing WiSARD over other options.

In order to accomplish the targeted stream-oriented learning process, it
was considered necessary to change two aspects of WiSARD functioning.
The first of these aspects regards decremental learning. That is, since data
is continuously flowing, this model should incrementally learn from the most
recent observations while outdated knowledge is discarded. Disposing ex-
pired information is important not only because of efficiency, since storage
is limited while data is not. Besides this, there is no point in maintaining
knowledge that is not up-to-date, which could be mistaken as current, hurt-
ing model predictive capabilities. The second aspects is WiSARD defective
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operation when dealing with unbalanced data collections. It is impossible
to guarantee that during the entire stream processing there would be a
similar number of examples of all classes to be learned. Thus, it would be
necessary to enable proper learning even under this unfavorable condition.
This chapter presents ideas to address these two points.

This is the outline of the remaining sections: Section 2 presents the
WiSARD model, detailing its functioning, how it was inspired and compar-
ing its functioning to other well known statistical and machine learning tools;
Section 3 describes how decremental learning could be accomplished while
preserving the characteristics of the base learner; Section 4 details a counter-
measure to data imbalance with minimum impact on WiSARD algorithmic
complexity; Section 5 presents an application of the proposed framework for
clustering; at last, some concluding remarks are provided in Section 6.

2. The WiSARD Model

Artificial neural networks are statistical tools whose design was inspired by
nervous systems of living beings, created to emulate some of the learning
capability of their biological counterparts. There exists a great variety of
ANN models, which have different characteristics and are used for several
purposes: function approximation, signal processing, classification, cluster-
ing, time series prediction and others. But all these models share a basic
design principle: each of them is defined as a collection of units, called
nodes or neurons, which are combined according to the model definition,
working collectively.

Biological neurons operate as signal processing units: they receive stim-
uli through its dendrites, which are organized as a tree; these stimuli are
combined during the traversal of the dendritic tree; resulting signals of such
combination reach the soma, where a response for such inputs is generated;
this response is forwarded trough the axon to muscles, glands or other neu-
rons whose dendrites are connected to this axon by synapses. Figure 1
illustrates these components of a generic neuron.

The most popular mathematical abstraction of biological neurons was
originally proposed by McCulloch and Pitts.'? In such model, the synapses
are substituted by edges, connecting the nodes of the neural network. The
stimuli the neuron receives is substituted by the input of numerical val-
ues. These values are multiplied by numerical weights associated to the
edges they traverse. At last, the sum of these multiplications is input to
some function, whose outcome is used as the output of the neuron. Such
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Figure 1: A sketch of a biological neuron.?

modeling is reasonable from both biological and mathematical points of
view. Various ANN models rely on the modification of weights of its edges
by the superposition of the effects of the observations which compose the
training sample.

Weightless ANNs 3 are memory-based alternatives to weights-based
ones. All links of these networks have no weight, acting as the simplest
communication channels, exercising no effect on data traffic. Therefore,
their nodes are responsible for the learning capability these networks ex-
hibit. These nodes operate as memory units, keeping small portions of
information, which are combined when a query regarding the knowledge
the system possess needs to be answered. These information pieces are the
outcome of mapping the data used as knowledge source.

The biological inspiration of these nodes is the influence of dendritic
trees on neuron functioning. In the first abstraction described, such trees
were modeled as a weighted edges, which multiply the neuron inputs before
the application of the activation function on their summation. Although
practical, this is a rough simplification of how these trees operate. As a
matter of fact, the input signals of biological neurons, which can be of
two types (excitatory or inhibitory), are combined by the dendritic tree
before reaching the neuron soma, where they prompt the generation of a
new signal. This action can be naturally compared to the definition of a
boolean key used to access a index of boolean values. In fact, this is how
the most basic neurons of weightless ANN models work.

The WiSARD? is a weightless ANN. The way it works is quite simple:
it implements a mapping-and-memorization scheme in a collection of nodes
organized in a single layer; the outputs these nodes can provide are lim-
ited to 0 or 1; these outputs are aggregated through ordinary summation.

aAdaptation of image licensed under Creative Commons Attribution-Share Alike 3.0
Unported. Source: http://en.wikipedia.org/wiki/Neuron
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For classification, this model provides for each class a value in the interval
[0, 1], representing how well the provided observation matches the acquired
knowledge regarding the classes. For binary classification, it is straightfor-
ward to transform a two-values answer provided by WiSARD to a single
value as an output from a Multilayer Perceptron: the subtraction of the two
given values is enough for this. However, the answer format of WiSARD is
more informative: for example, a small difference between two values close
to 1 possibly is an evidence that both classes could be the true class of the
input observation; but the same difference between values close to 0 could
be an evidence that none of the classes are good guesses.

The values which compose an answer obtained from WiSARD are com-
puted from structures called discriminators. Each discriminator is respon-
sible for storing the knowledge regarding a class, as well as assessing the
matching between the class it represents and any observation whose true
class has to be predicted. How a discriminator learns about its respective
class is described in Algorithm 1. In a sentence, it records in its nodes
the values resulting from mapping the observations in the training sample.
Mind some notation introduced here: the discriminator of class y is rep-
resented by Ay; the j" node of Ay is represented by Ay ;; the number of
nodes which compose each discriminator is represented by §.

1. for all Ay ;, the network nodes do

2: Nyj— @ > All nodes operate as sets, and are initially empty

3: for all pairs (#;,y;), the training sample do

4: Let addressing(#;) = (a1 az -+ as) be a vector mapped from Z;
5: for all addresses a; in addressing(Z;) do
6: Ay, — Ay, U{a;} > Adding address a; to node A, ;

Algorithm 1: A description of WiSARD training procedure.

There are several analogies between hardware systems and WiSARD.
Consequently, some parts of its structure are named using terms which
belong to this domain. For example, its nodes are called RAM nodes, a
direct reference to their memory-like operation, different from the functional
nodes of the weights-based networks. Like physical RAM modules, their
content is retrieved or altered using addresses, defined by an addressing
procedure. Despite this nomenclature, RAM nodes work identically to sets,
well-known mathematical structures, and are commonly implemented using
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hash tables. Likewise, addresses can be seen as habitual vectors, obtained
from mapping the observations.

After training, a WiSARD instance can rate the matching between any
known class § and an observation Z as shown in Expression (1a). At last,
an observation 7 is classified according to Expression (1b).

matching(Z, y) Z 14, (addressing (7 7))P; (la)

¢ = argmax matching(Z, y). (1b)
Y

There is an extra level of generalization implied by the matching com-
putation. Consider that a discriminator Ay was trained using the observa-
tions of aset X = {...,Z;,...}. For a given observation Z, Expression (2)
holds: & perfectly matches Ay (i.e., matching(#,+) = 1) iff all addresses
of ¥ match addresses of observations in X ;. Thus, the combination of
addresses obtained from different observations allow the recognition of ob-

servations which do not belong to the training sample.

Vi, Jzex, addressing;(7') = addressing;(Z) <= matching(#,+) = 1.
(2)
Mathematically, WiSARD addressing procedure can be described as a
composite function go f : R™ — {0,1}°*7, such that:

o f:R™ — {0,1}"*7 is any encoding function!41®

binary representations of the observations;
e g: {0,1}"*7 — {0, 1}5Xﬁ is a random mapping defined prlor to
training, described as A B B; j = Ay j, for arbitrary 4, 7,4, j'.

which provides

Variable ~, which controls encoding resolution, and [, the length of the
addresses, are model parameters. If data is originally binary, an identity-
like function can be used for encoding: that is the case for black-and-
white images, the kind of data for which WiSARD was originally developed.
Otherwise, for example, if all data features are scaled to interval [0, 1], the
zero-padded-unary encoding function, Expression (3a), can be used.

f(@) = (h(zo), h(w1), -+, h(2n)), (3a)

h(y) = ([lyw] = 1 [yl = 2, vyl > 2])° (3b)

PThe indicator function: 14(x) = 1 if = € A; otherwise, 14 (x) = 0.
¢|z] represents the nearest integer of real number z.
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For a training sample X, the time complexity of WiSARD training pro-
cedure, Algorithm 1, is O(|X|§ 8). That is, for each of the | X| observations,
0 node updates are realized, and the cost of each of these updates can be
conservatively equated to the definition of a key of 8 bits. It can be noticed
that there is no dependence between such cost and the dimensionality of
the observations. However, this dependence can be established according
to how addressing is performed. In turn, a single prediction according to
Expression (1b) requires O(|Y'| 8 8) steps, where |Y| represents the number
of known classes.

The discriminator nodes register the occurrence of addresses which are
B-bits strings. There are 27 possible values for these strings. This can
be used to asymptotically define the memory complexity of a WiSARD
discriminator: O(J 427). This bound can be considered too “pessimist”,
since it is quite uncommon for a node to register O(2°) addresses: first, such
condition presumes that |X| > O(2?), while in commonly used WiSARD
setups, |X| < 27; second, it also presumes that the number of distinct
addresses to be obtained from observations in X will be of the order of
26 but this is hardly feasible, because in practice observations input to
the same discriminator, as examples of a given class, are expected to have
addresses in common. A better bound, although still very conservative, is

O(|X145).

3. Decremental Learning

As originally defined, an instance of the WiSARD model would be able to
gradually process a data stream: this comes from the fact that WiSARD
training is performed incrementally. However, based on such feature, the
content of its nodes could be expanded up to the point of saturation.” That
is, the pattern the discriminator represents would become too general, mak-
ing recognition meaningless. In order to avoid reaching such undesirable
condition, discarding stored addresses which are no longer useful is nec-
essary. In this sense, such usefulness should be defined according to data
temporality: an address needs to be kept as long as it contributes to the
representation of current knowledge. Such contribution can be verified by
occurrence of some observation which also provides this already stored ad-
dress. Consequently, it becomes necessary to register how recently each
address was matched, so that their disposal could happen based on such
record.
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The most straightforward way to implement this idea is to consider the
existence of a dictionary D, which maps addresses to time stamps. As
some incoming observation & is processed on instant ¢, this dictionary is
updated as follows: Dj,; <« t, for each component a; of addressing(¥) =
(a1 az -+ ag). Including this operation in WiSARD training procedure
does not alter the computational complexity of the model, since it repre-
sents a constant increase of its time and space costs. This way, on every
instant during stream processing, each stored address would be related to
a time stamp representing its recency.

Despite such modification, no address would be discarded since it was
not defined the criteria to rule an address as outdated. A simple criteria
is to consider as expired any address whose respective time stamp is below
some given threshold. Such threshold should be updated while the stream
is processed: otherwise, it would become useless as the values of the time
stamps increase over time. An idea in this regard is to assume that at
instant ¢, this threshold is t —w, where w is an additional model parameter.
Such idea can be directly related to the sliding window aging model,'¢ so
that the window length is w. This way, whenever D;,, < t— w for any
pair (j,a;), each discriminator y should be updated as follows: Ay ;
Ay \{aj}.

After deciding how outdated addresses are ruled as so, trying to identify
these elements among all others is naturally the next step. A naive approach
for this is to verify the expiration status of all entries of the dictionary D,
one by one. Such action would be prohibitively expensive, as it can be com-
pared to processing each of the w observations in the sliding window once
again, and should be performed every time an novel observation is received.
A better strategy is to consider D a least recently used (LRU) dictionary, so
that its entries are sorted based on how recently they were updated. This
reduces to a minimum the cost of determining which entry of D should
be first considered for disposal. Although the cost of maintaining such
structure is not negligible, it is indisputably more efficient than the afore-
mentioned naive approach. The combination of the ideas just described
represent one solution for the accomplishment of decremental learning by
WiSARD, as shown in Algorithm 2.

One possible variation of this given solution regards the substitution of
sliding window threshold ¢ — w by the definition of the maximum number
of elements of D. Therefore, whenever the number of entries of D reaches
this maximum, adding a new entry requires discarding an existing one, as
well as its respective RAM nodes addresses. This is an interesting alterna-
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1: for all triples (Z;, y;,t;), the streaming observations do

2: while min D <t —w do
3: J,a; = argmin Djq;
Jra;
4 for all y € Y do
5 Agj = By \{a}
6: Delete Dj o,
7 Let addressing(#;) = (a1 az -+ as) be a vector mapped from Z;
8: for all addresses a; in addressing(Z;) do
9: Ay, — Ay, U{a;} > Adding address a; to node A, ;
10: Dja; <t

Algorithm 2: A stream-oriented WiSARD training procedure.

tive to using a fixed-size window to decide about the disposal of outdated
knowledge. Instead, limiting the number of elements in D leads to the im-
plicit definition of an adaptive window. Such window becomes larger when
input data is repetitive, what can represent stream stability, and shrinks
otherwise. Furthermore, this allows setting a hard limit to memory usage,
what can be useful in certain cases.

The can be variations of the original solution to learn decrementally.
For example, instead of recording when an address was last matched, the
dictionary D could register the last time the addresses were written. Con-
sequently, instead of being indexed by pairs (7, a;), the keys of D would
be triples (9, j,a;), in which g represents a discriminator. Treating each
discriminator separately looks reasonable considering that the same pair
(4,aj) can contribute in very distinct ways to the up-to-date definitions of
two different patterns. That is, in a given instant during stream processing,
the triple (¢, j,a;) could be about to expire while (¢, 7, a;) was just written.
On the downside, depending on overlaps between patterns, this idea could
be significantly more expensive with respect to space complexity.

4. Learning from Unbalanced Streams

For the targeted stream-oriented version of WiSARD, proper handling un-
balanced data is as important as the efficient disposal of outdated knowl-
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edge. That is, both aspects need to be considered in order to avoid satu-
ration, a condition in which WiSARD learning and predictive capabilities
are nullified. With respect to data imbalance, saturation is a consequence
of the memorization-and-matching mechanism employed by this model, as
shown by the following reasoning:

(1) learning is realized storing binary features (i.e., addresses), while pat-
tern recognition happens matching the stored addresses to those ob-
tained from unlabeled observations;

(2) a pattern with numerous and varied examples has a greater chance of
comprising a large collection of addresses;

(3) thus, it is more probable to relate an unlabeled observation to this
pattern than to one with few training examples;

(4) in the worst case, any observation would be related to the pattern with
most examples, whose respective discriminator would be saturated.

It is also interesting to notice that imbalance level can fluctuate during
the entire stream length, what represents an extra challenge in order to
solve this matter. A primitive attempt to counter imbalance while using
WiSARD for data streams mining!'” assumed that the chance of a discrimi-
nator to be saturated increases monotonically over time. However, because
learning happens not only incrementally but also decrementally, the collec-
tion of features comprised by a discriminator can become larger but can
also shrink during stream processing. Therefore, the ideal approach for
handling imbalance should be adaptive, based on the extent of the content
of each discriminator.”

Based on this reasoning, the cardinality of a discriminator is defined
as in Expression (4a). Still in this regard, Expression (4b) is called nor-
malized matching rate and targets countering saturation considering the
cardinality in its computation. It can be noticed that the denominator
of matching”(k, ¥) is the geometric mean of the size of the nodes of Ay,
what is consistent with way the sets of addresses are combined for gener-
alization and pattern recognition. Moreover, the cardinality of a discrim-
inator is asymptotically equivalent to the area of the feature space itself
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encompasses: |Ag| ~ [matching(k, Z) d"z.

1Axl = | ]2k | ; (4a)

J

matching(k, &)
(1Ax))°

Replacing the original matching rate with its just described normal-

matching” (k, 7) = (4b)

ized variant does not increase the computational complexity of the system.
Therefore, there is no reason to avoid its use because of efficiency. This
way, its adoption could only be rejected if this could have a negative effect
on WiSARD predictive capability. Fortunately, it can be perceived that
its participation on matching computation is equivalent to a regularization
term, penalizing a discriminator according to how general, or vague is the
pattern it represents. In this regard, the following example comes in handy:
if matching(y, ) = matching(y’, &) but |Ay| > |Ay|, predicting that & is
an example of the pattern represented by 3’ is sensible; after all, the perti-
nence to both discriminators is the same, despite the fact that ¢’ is a more
strict pattern; this way, even if matching(y, Z) > matching(y’, Z) choosing
Y’ over g could still be valid.

The perspective of the cardinality of a discriminator as a regularization
term for normalized matching rate definition allows further developments.
For example, consider that regularization terms are usually attached to
some weighting factor. This fact can motivate the addition of a factor of
such kind to WiSARD matching rate definition. Another reason for such
modification is the additional flexibility provided by this parameter. That
is, the influence of cardinality on matching computation can be more or less
necessary, depending on the circumstances. After all, regular WiSARD pro-
vided interesting results despite not considering such participation at all.
The outcome of this last reflection is Expression (5), named adjusted match-
ing rate. Its calculation depends on an additional model parameter u, the
cardinality weight. Setting p = 0 reduces adjusted matching rate to original
matching calculation, while setting ;1 = 1 leads to the normalized matching
rate. As u grows, it is more probable to choose precise discriminators over
generic, all-encompassing ones.
matching(k, )

matching), (k, ) = TR (5)
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5. Use Case: Clustering

In order to assess the applicability of the ideas just described, it is reported
next the outcome of their use in various clustering tasks. Since WiSARD is
a classifier, first of all its adaptation to unsupervised learning is described.
The resulting method was named WiSARD for Clustering Data Streams,
WCDS. Next, the performance of the WiSARD-based system when clus-
tering 2D toy data sets is presented, as a proof of concept. At last, it is
detailed WCDS use to cluster streaming observations from two large data
sets.

WCDS architecture is similar to that of the original WiSARD, with one
discriminator for each modeled pattern and RAM nodes as basic learning
units. However, WCDS needs to identify unprecedented patterns during
stream processing to create the respective discriminators. WiSARD does
not require this because it learns based on training data ground truth, which
is not available for clustering. In order to solve this matter, the following
policy was established:

(1) for each streaming observation &, the best matching discriminator Ay,
k = argmax, matching), (k, 7), is identified;

(2) if matching}, (k, Z) < e (variable € represents any tiny value, as 10~
a new discriminator is created to represent the novel pattern denoted

100)7

by Z;

(3) otherwise, the best matching discriminator Ay records Z.

Another important feature of WCDS is its two-phase functioning.'®
That is, instead of trying to define the clusters directly from streaming
data, the online maintenance of a collection of micro-clusters is used as
an intermediate step of this process. These micro-clusters are updated
during data stream processing, and feed an offline clustering procedure to
generate high-level clusters. During WCDS offline functioning, the discrim-
inators were aggregated according to a batch average-linkage agglomerative
clustering algorithm. In this regard, Expression (6) was used to evaluate
discriminators similarity.

(B2 = 1E i Bai Dl ()

+ Zz |Aa,i U Ab,i|
In the first set of experiments, WCDS obtained the clusters feeding from
synthetic, bidimensional data sets, whose number of observations are in the
range from over three hundreds to just over three thousands. No temporal

information was considered during data processing. The five data sets used
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in this first set of experiments come from two publicly available data sets
repositories: Jain, a ‘two-moons’-like data set, and Aggregation, with 7
clusters in varied shapes, come from a collection found in the Web;4 Com-
plex8 and Complex9, which feature, respectively, 8 and 9 clusters in varied
shapes can also be found in the Internet.® Such variety of characteristics
poses an interesting test of learning adaptability.

The results of this first task are depicted in Fig. 2. WCDS was tested
using the following parameter setup: § = 200 and unary encoding with
~ = 200; since no aging was considered, w = 0o and p = 0; the § parameter
was adjusted to each data set, and its value is indicated together with the
obtained results. The targeted number of clusters was considered to be
known a priori. As shown, the clusters in all four tested scenarios were
successfully determined. The worst result regarded the Complex8 data
set, but they still led to a performance level over 0.9 with respect to the
V-measure clustering validation index.!?
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Figure 2: Clusters defined by WCDS for 2D toy data sets.

dhttp://cs.joensuu.fi/sipu/datasets/
®https://github.com/deric/clustering-benchmark
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In the just described experiments, input data was processed as a sin-
gle batch, targeting the definition of clusters just once. Alternatively, the
observations can be considered as a stream of items, which can be used
to establish current clusters according to data temporality. The next two
experiments explore scenarios featuring streaming data. Both are based on
regular data sets, whose elements are processed gradually. Current clusters
were defined and evaluated every 1000 observations. This allowed to verify
system sensitivity and responsiveness to concept drift.

This first test with data streams uses the KDD Cup 99 data set. Tt
is composed of 494,021 observations divided in 23 classes, which were pro-
cessed in their original order. WCDS used the following setup: 8 = 70,0 =
50,7 = 50, u = 1 and w = 1000. Figure 3 presents the results of the ex-
periment with this data set. Observing the entropy plot, it can be noticed
that during the intermediate section of the data stream there is a single
class, what explains the null entropy in such period. Another interesting
fact is the inverse relation between entropy and clustering quality which is
also evidenced in this graph.

0.30
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£ 0.8; 0.20 >
2 Q,
g 0.6} 0 15%
2 0.4} 0.10 M
0.05
0.2}
‘ ‘ 10.00
0 100 200 300 400 500

Time (number of observations x 1000)

Figure 3: Results for the KDD Cup 99 data set.

The second test is based on the Forest Cover Type (FCT) data set,?’
which is also popularly used for data streams clustering benchmarking. Its
581,012 observations are elements of 7 classes. They are described by 10
numeric attributes, besides those of other types which were not considered.
The results of this experiment are depicted in Fig. 4. WCDS used the same
settings of the KDD Cup 99 experiment. The greater entropy levels of
the FCT data set compared to those of the KDD Cup 99 data set are an

fhttp://kdd.ics.uci.edu/databases/kddcup99/
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evidence of the bigger challenge the first represents compared to the last
one. The small fluctuations of the V-measure values can be related to such
higher entropy.
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Figure 4: Results for the Forest Cover Type data set.

6. Conclusion

Learning from data streams is a research subject of major relevance nowa-
days. Accomplishing such goal is quite challenging, since it requires not only
gathering meaningful information for the definition of high-level knowledge,
but also meeting some efficiency targeting real-time processing of large vol-
umes of streaming data. WiSARD can be seen as a valuable tool in this
regard: it is flexible enough power applications in numerous scenarios, while
having its low algorithmic complexity as one of its most patent features.
This chapter provided some general guidelines for the adaptation of this
model to feed from streaming data. Although some of its features can be
used in this new context with no modification, it was shown that at least
two aspects require careful reconsideration. The chapter discusses each of
these aspects, providing some novel insights about the operation of this
model which can be further developed. The subject addressed here is far
from being exhausted: there is still much more to explore regarding data
streams and the WiSARD model.
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Stream classification is a challenging research field in which algorithms
are required to process data online, use minimal resources, and react
to concept changes. The task of mining incoming instances becomes
even more demanding when the classifier is required to cope with imbal-
anced data — situations when one of the target classes is represented by
much less instances than other classes. This chapter gives an overview
of research on imbalanced stream classification. We present dedicated
ensemble algorithms designed to cope with concept changes, discuss chal-
lenges posed by imbalanced class distributions along with assorted dif-
ficulty factors, and give an outlook on how class imbalance and concept
changes can interact.

1. Introduction

Supervised classification is one of the most widely studied tasks in machine
learning, data mining, statistics, and pattern recognition. Given a set of
labeled training data, the task is to learn a relationship between values of
attributes describing examples and a target class label.! This discovered re-
lationship can then be used as a classifier to assign class values to unlabeled
instances.

Numerous approaches to classification have already been proposed.!-?
Out of these proposals, ensembles of classifiers have been proven to be par-
ticularly efficient at increasing predictive accuracy and decomposing more
complex problems into easier sub-problems. An ensemble, also called a mul-
tiple classifier, is a set of individual component classifiers whose predictions
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are combined to assign a class label to a new instance. A good combina-
tion of classifiers requires that they are diversified, and many approaches
to fulfill this criterion have been introduced.?

Most classification algorithms have been proposed for batch learning
from static datasets that can be processed multiple times. However, the
development of information technology and new applications have led to
processing huge volumes of more complex data. In many domains, such as
sensor networks, financial data prediction, mobile device tracking or net-
work monitoring, data items arrive continuously in the form of data streams.

Compared to mining static data, the task of learning from data streams
introduces unprecedented challenges, especially with respect to computa-
tional resources, as well as restrictions on making predictions in short time.
Besides new processing requirements, another important challenge is that
algorithms learning from streams often act in dynamic non-stationary en-
vironments, where the data and target concepts change over time in a
phenomenon called concept drift.* Examples of real-life concept drifts in-
clude spam categorization, weather predictions, monitoring systems, finan-
cial fraud detection, and evolving customer preferences.’

As standard algorithms for supervised classification are not capable of
meeting challenges presented by evolving data streams, several new algo-
rithms have been proposed.®” Out of a myriad of proposals, ensemble meth-
ods play an important role in reacting to many types of concept drift. Due
to their modular architecture they are flexible to incorporate new data by ei-
ther introducing a new component into the ensemble or updating knowledge
of existing components. Moreover, voting weights of component classifiers
can be tuned with respect to recent data elements.®

Many practical applications make learning classifiers from streams even
more challenging by introducing additional data complexities. One of such
additional challenges is class imbalance, i.e., a situation when one of the
target classes is highly underrepresented. Class imbalance is an obstacle
even for learning from static data, as standard learning algorithms are
usually biased toward better recognition of the majority classes and have
difficulties in correctly classifying new objects from the minority class. Since
several years, the class imbalance problem has been studied in this static
data framework and many new algorithms have already been introduced;
for their comprehensive review see recent monographs and surveys.? !

However, the classification of imbalanced data is a relatively new re-
search topic in the stream mining community. An evolving and imbalanced
stream is a more demanding classification framework than a static dataset.



46 D. Brzezinski & J. Stefanowski

Due to the evolving nature of data streams, it is possible that the imbalance
ratio and the notion of a minority class may change over time. A more com-
plex scenario will occur when these changes are accompanied by concept
drifts such as moving decision boundaries or other changes in class example
distributions. Making predictions becomes even more ambitious when mul-
tiple minority classes occur in the stream and novel classes may appear.'?
Additionally, class imbalance introduces challenges to classifier performance
measures and evaluation procedures used in stream mining.!314

This chapter describes recent advances that have been made in the field
of imbalanced data streams classification. In our opinion, it is still an open
research task which requires novel studies and whose analysis may lead
to many interesting results. Besides presenting current state-of-the-art in
ensemble algorithms for imbalanced streams, we would like to draw the
reader’s attention to the limitations of existing approaches and position
new research directions.

The remainder of the chapter is organized as follows. Section 2 gives a
more formal presentation of data stream classification and discusses basic
approaches to coping with concept drift. In Section 3, we describe the class
imbalance problem and other data difficulty factors connected with imbal-
anced class distributions. Section 4 reviews the state-of-the-art in imbal-
anced stream classifiers, whereas Section 5 showcases potential interactions
between class imbalance and concept drift. Finally, Section 6 concludes the
chapter with an outlook on potential future research directions in the field.

2. Data Streams

Before analyzing challenges posed by imbalanced streams, let us explain
the basic concepts and definitions concerning data stream classification.

A data stream can be defined as a sequence of labeled examples {x*, y'}
for t =1,2,...,T, where x is a vector of attribute values and y is a class
label (y € {K1,...,K;})."> When a new example x' arrives it is classified
by a classifier, which predicts its class label. Most studies®” consider a
completely supervised framework where after some time the true class label
y! is available and can be used to update the classifier.®

Since data streams can be potentially unbounded, the entire sequence
of examples cannot not be made available to a classifier at once. Moreover,

aWe note that there are several works concerning active learning and delayed labeling
in stream mining, however, as they do not concern imbalanced data, we focus solely on
the completely supervised framework.
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it is usually assumed that the time required to process a single instance
and the average memory usage should remain constant throughout the life
of a stream classifier.® This forces data stream algorithms to process data
in smaller fragments, either online or in blocks (also called data chunks).
In the first approach, algorithms process single examples appearing one by
one in consecutive moments in time, while in the other approach, examples
are available only in larger sets called data blocks By, Ba, ..., B;j. Blocks
are usually of equal size and the construction, evaluation, or update of
classifiers is done when all examples from a new block are available.

The distinction between online and block processing also refers to clas-
sifier evaluation procedures. Contrary to batch learning scenarios, it is
assumed that due to the size and speed of data streams repeated runs over
the data are not necessary to estimate classifier performance on labeled test-
ing examples. Furthermore, due to their computational costs, re-sampling
techniques such as cross-validation or bootstrapping are deemed too ex-
pensive for streams.'® As a result, simpler error-estimation procedures are
used, yet ones that build a picture of performance over time, either after
each example or consecutive blocks. The most popular of such procedures
involves interleaving testing with training. In practice, this means that each
individual example (or block of examples) is first used to test the classifier
before it is used for training.'® If concept drifts are expected, this scheme
is usually modified to calculate evaluation measures using only the most
recent data, rather than the entire stream. Such incremental assessment
with forgetting is often denoted as prequential evaluation.

As it was mentioned in the introduction, alongside restrictions concern-
ing processing time and memory usage data streams are characterized by
their potential to change over time, a phenomenon that is often referred to
as concept drift.* More formally, if in each point in time ¢, every example is
generated by a source with a joint distribution P?(x,y) over the data and
all examples are generated by the same distribution, we say that concepts
in data are stable. However, if for two distinct points in time ¢ and ¢t + A an
X exists such that P!(x,y) # P**2(x,y), then concept drift occurs.® Al-
though different component probabilities of P!(x,y) may change,* in case
of supervised classification most studies are mainly interested in real drift,
that is changes in posterior probabilities of classes P(y|x). Nevertheless, it
is worth noticing that changes of imbalance ratios over time are also changes
in class distributions P(y) and, therefore, can be considered a special case
of wirtual drift. Concept drifts introduce further difficulties to data stream
processing and force classifiers to forget outdated examples and adapt to
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new concepts. The task of actively recognizing and reacting to drifts is par-
ticularly challenging, as changes can occur suddenly, gradually, or reoccur
after some time.!”

The aforementioned challenges inspired a range of novel classifiers de-
signed specifically to cope with evolving streams of data. These classi-
fiers can be divided into active (trigger-based) approaches, which introduce
changes in classifiers when drifts are detected, and passive (adaptive) ap-
proaches, which continuously update the classifier regardless of whether
drifts occur in the data stream or not.*

Trigger-based approaches include drift detectors that analyze incoming
examples and indicate the need for rebuilding a classifier. Drift detectors
are usually implemented using statistical tests based on sequential analysis,
process control charts, or monitoring differences between two distributions.*
Detectors based on sequential analysis check whether the classification er-
ror calculated on the most recent instances is significantly different from its
value calculated on a range of older instances. In drift detectors based on
control charts each classifier prediction is treated as a Bernoulli trail. Then,
the number of classification errors can be modeled with a binomial distri-
bution, which in turn can be tested for significantly improbable changes.!®
Finally, several approaches use a reference window which is compared with
a sliding window of the most recent examples. If the distributions over
these two windows are significantly different, a change is signaled, suggest-
ing that only examples from the sliding window should be used to create a
new model.**

Adaptive methods operate in a different manner — they try to update
the classifier without explicit change detection. One general approach to
adapt classifiers to evolving streams includes using a sliding window, which
moves over processed examples and ensures that only the most recent data
is used to train a classifier. Some techniques use windows of a fixed size,
however, this introduces the problem of choosing a proper size for a given
stream (larger window sizes are more useful for slower concept drifts, but
fail whenever sudden drifts occur). Alternatively, dynamic adjusting of the
window size can also be applied.?% 22 Apart from windowing approaches,
several innately incremental classifiers have been proposed. Probably the
most representative of such classifiers is the Very Fast Decision Tree (VFDT
or Hoeffding Tree)?3 algorithm, which induces a decision tree from a data
stream incrementally, without the need for storing examples after they have
been used to update the tree. Hoeffding Trees work similarly to classic tree
induction algorithms and differ mainly in the selection of the split attribute,
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which is done without viewing all the examples but guarantees the right
split with a user-specified probability. Although the original VFDT algo-
rithm did not take into account concept drifts, currently there exist several
modifications of the algorithm that involve a forgetting mechanism.5

However, the majority of studies on time-changing data streams involve
the use of ensemble classifiers. Due to their modular construction, en-
sembles are capable of adapting to changing streams by introducing new
components created using batches of incoming examples, updating existing
component classifiers, or changing weights in the aggregation phase. De-
pending on the way component classifiers are created and updated, data
stream ensembles are categorized into block-based and online approaches.

Block-based ensembles re-evaluate components with fixed-size blocks of
incoming instances and usually replace the worst component with a new
candidate classifier trained on the most recent examples. The first of such
block-based ensembles was the Streaming Ensemble Algorithm (SEA),%*
which used a heuristic replacement strategy based on accuracy and diver-
sity. Using these two factors, after each block of examples SEA reevaluates
a set of decision trees and substitutes the weakest classifier with a new
decision tree trained on examples from the most recent block. Following
a similar scheme, many other bock-based ensembles were put forward, e.g.
the Accuracy Weighted Ensemble,?® Learn™tNSE,2¢ or the Accuracy Up-
dated Ensemble.!”

Referring to online ensembles, one of the first proposed algorithms was
the Weighted Majority Algorithm,?” which combines the predictions of a
set of component classifiers and updates their weights when they make
false predictions. Another popular online ensemble is Online Bagging,?® a
generalization of batch bagging known from static environments, proposed
by Oza and Russell. It uses incremental learners as component classifiers
and mimics bootstrap sampling by using single examples multiple times
according to the Poisson distribution. Other reference online ensembles
include: the DDD algorithm,?? Dynamic Weighted Majority (DWM),3° or
the Online Accuracy Updated Ensemble.?! A broader categorization and
discussion on ensemble classifiers for evolving data streams can be found in
recent Surveys.7’32’33

The aforementioned concepts and algorithms focus on three main chal-
lenges posed by data stream classification: limited time, memory restric-
tions, and concept changes. In the following section, we discuss other diffi-
culty factors that can make classification problems even more challenging.
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3. Class Imbalance and Data Difficulty Factors

The class imbalance problem typically concerns binary classification or bi-
narized multi-class problems, where one class (called a minority class) is
under-represented in comparison to the remaining classes (majority class).
Correct recognition of the minority class is of key importance and misclas-
sification of minority examples is more severe than incorrectly predicting
the majority class. We recall that standard classification algorithms tend
to focus on majority classes and, therefore, give unsatisfactory results in
imbalanced domains.’

It is worth noting that imbalanced data constitute a challenge not only
when constructing a classifier, but also when evaluating its performance.
Indeed, an overall classification accuracy is not the best criterion character-
izing performance of a classifier as it is biased toward recognizing examples
from the majority classes. Since good recognition of minority examples
is preferred, measures other than classification accuracy were defined on
the basis of the confusion matrix. To strike a balance between majority
and minority class performance, many researchers consider sensitivity and
specificity. Sensitivity (also called recall) is the ratio of correctly recognized
examples from the minority class, whereas specificity is the ratio of exam-
ples correctly excluded from the majority classes. Kubat and Matwin3*
proposed to aggregate these measures through a geometric mean (G-mean).
A popular alternative, called the F-measure, involves aggregating precision
and recall using the harmonic mean. Furthermore, in case of scoring clas-
sifiers the area under the Receiver Operator Characteristic curve (AUC)
is typically exploited; Japkowicz and Shah3® present a comprehensive re-
view of these and other measures dedicated for evaluating classifiers on
imbalance data.

Recent studies show that the problem of class imbalance is usually ac-
companied by additional difficulty factors. In some problems characterized
by high imbalance, standard classifiers were found sufficiently accurate,°
whereas series of experimental evaluations have proven that, when there
is a clear separation between classes, the minority class can be sufficiently
recognized regardless of the high imbalance ratio.?” These and other stud-
ies have led to conclusions that the global class imbalance ratio® is not
necessarily the only, or even the main, problem causing the degradation

bGlobal imbalance ratio is usually expressed as either N™i: N™aJ or N™i" /N where
N™aj  N™n N are the number of majority, minority, and total of examples in the
dataset, respectively.
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of classification performance. Therefore, focusing only on the global ratio
may be insufficient for improving classification performance.?®* 42 Following
these opinions, in this chapter we draw our attention to other characteris-
tics of instance distributions in the attribute space. These characteristics
are often called data complexity or data difficulty factors. Although these
data factors should affect learning also in balanced domains, when they
occur together with class imbalance the deterioration of classification per-
formance is amplified and affects mostly (or sometimes only) the minority
class. Researchers usually distinguish the following data difficulty factors:
decomposing the minority class into rare sub-concepts, overlapping between
classes, and presence of outliers, rare instances, or noise. Examples of these
complexity factors are illustrated in Fig. 1.
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(a) Compact homogeneous mi- (b) Minority class decomposed
nority class into three subclusters

(¢) Minority class with large (d) Minority class composed of
overlapping (borderline) region two sets of rare cases (upper-
right) and four outliers

Fig. 1. Examples of minority class distributions with different difficulty factors. Mi-
nority examples are depicted as black circles, majority examples as white circles.



52 D. Brzezinski & J. Stefanowski

The influence of class decomposition has been noticed by Japkowicz
et al.3®%3 Their experimental studies with mainly artificial datasets have
clearly demonstrated that the degradation of classification performance has
resulted from the decomposition of the minority class into many sub-parts
containing very few examples, rather than from changing the global im-
balance ratio. They have also argued that the minority class often does
not form a compact homogeneous distribution of the single concept, but
is scattered into many smaller sub-clusters surrounded by majority exam-
ples. Such sub-clusters of minority examples often play the role of small
disjuncts,*> which are harder to learn and cause more classification errors
than larger sub-concepts.

Other factors related to the class distribution are linked to high over-
lapping between regions of minority and majority class examples in the
attribute space. This difficulty factor has already been recognized as partic-
ularly important for standard, balanced, classification problems, however,
its role is more influential for the minority class. For instance, a series of ex-
perimental studies of six popular classifiers on synthetic data have pointed
out that increasing overlapping has been more influential than changing the
class imbalance ratio.??4* The authors of these studies have also shown that
the local imbalance ratio inside the overlapping region is more influential
than the global ratio.

Yet another complexity factor which influences degradation of classi-
fier performance on imbalanced data is the presence of minority examples
inside distributions of the majority class. In standard machine learning,
such examples are often treated as noise. However, experiments presented
in a study by Napierala et al.*® have shown that single minority examples
located inside the majority class regions cannot be always treated as noise
since their proper treatment by informed preprocessing may improve clas-
sifiers. In more recent papers??! Napierala and Stefanowski distinguished
between safe and unsafe examples. Safe examples are the ones located in
homogeneous regions populated by examples from one class only. Other
examples are unsafe and they are more difficult to learn from. Unsafe
examples were further categorized into borderline (placed close to the deci-
sion boundary between classes), rare cases (isolated groups of few examples
located deeper inside the opposite class), and outliers. Napierala and Ste-
fanowski also argue that rare examples or outliers could represent very small
but valid sub-concepts of which no other representatives could be collected
for training. Therefore, they cannot be considered as noisy examples which
typically would be removed or re-labeled. The same authors introduced an
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approach?®4! to automatically identify the aforementioned types of exam-
ples in real world data sets by analyzing class labels of examples in the local
neighborhood of a considered example. Finally, other studies*? emphasize
that several of the aforementioned data factors usually occur together in
real world imbalanced data sets.

Various methods to handle class imbalance have already been pro-
posed.” ' In general, they are categorized into data level and algorithm
level approaches.

Methods within the first category are classifier-independent. They are
applied in a preprocessing step and attempt to modify the class distribution
inside the training data toward a more balanced one.!! The simplest data
preprocessing techniques are random over-sampling, which replicates exam-
ples from the minority class, and random under-sampling, which randomly
eliminates examples from the majority classes until a required degree of bal-
ance between classes is reached. However, the simplest re-balancing may
not be sufficient to improve learning classifiers. The focused (also called in-
formed) methods, which consider internal characteristics of regions around
minority class examples, are often exploited, see e.g. SMOTE %6 and its ex-
tensions, one-side-sampling, NCR, or SPIDER.*®> The most popular among
the informed methods is SMOTE, which considers each example from the
minority class and generates new synthetic examples along the lines be-
tween the selected example and some of its randomly selected k-nearest
neighbors from the minority class. A comprehensive review of re-sampling
methods for imbalanced data can be found in a survey by Branco et al.'”

The second category, algorithm level methods, involves specific solutions
dedicated to improving a given classifier. They usually include modifica-
tions of the learning algorithm, its classification strategy, or adaptation to
the cost sensitive framework. Within the algorithm level approaches, en-
sembles are also quite often applied. These new proposed solutions usually
either employ preprocessing methods before learning component classifiers
or embed the cost-sensitive framework in the ensemble learning process.*”48
Most of these ensembles are based on known strategies from bagging, boost-
ing, random forests, or their variants to cost learning.

For instance, the most efficient generalizations of bagging apply random
or informed preprocessing to change balance between classed in bootstrap
samples. Under-bagging approaches randomly reduce the number of the
majority class examples in each bootstrap sample to the cardinality of the
minority class. The best performing Roughly Balanced Bagging approxi-
mates these numbers from the negative binomial distribution.*>*° On the
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other hand, in over-bagging the minority examples are additionally resam-
pled to bootstraps.®!

4. Classifiers for Imbalanced Streams

The number of classifiers which address imbalanced and evolving data
streams is fairly limited. Most of them are adaptations of ensembles for
evolving streams extended by simple re-sampling mechanisms known from
static data mining, like under-bagging or over-bagging. Moreover, the em-
ployed re-sampling techniques are parametrized based on the global im-
balanced ratio. In general, ensembles for imbalanced streams could be
categorized in three ways, based on:

e processing streams in data blocks or online;
e using under-sampling or over-sampling;
e adaptive or drift-detector-based classifiers.

One of the first proposals by Gao et al.’? divides the stream into blocks
By, By, ..., Bj. Each block B; contains N Jmm minority class examples and

N;"aj majority examples. N is assumed to be much smaller than N;"aj )
The main idea while building a new classifier from a given block is to take
all minority examples from the previous blocks (By,k < j) and under-
sample the majority examples from the current block (with respect to a
given global imbalance ratio). Such sampling gives a new temporary subset
Ts. Subsequently, m datasets are generated from T in the following way:
each majority example is randomly propagated into exactly one of m sets
(completely disjoint) while minority examples are propagated to all of these
m sets. From each of the m sets a component classifier is built and added
to the ensemble, where predictions of these components are combined using
simple voting. In general, this idea resembles the simplest under-bagging
solutions known from static batch data.?%->!

To accommodate a potentially infinite data stream, Gao et al. propose
to sample minority examples from only a limited number of the most recent
blocks, using either fixed (each block contributes equally) or fading (the
more recent blocks contribute more instances) strategy. However, as all
of the minority examples are used to learn each classifier, this method is
limited to situations with a stable definition of the minority class.

Based on a critical discussion of the proposal of Gao et al., Chen and He
proposed the Selectively Recursive Approach (SERA).%? Instead of using all

minority class examples, SERA selectively looks for a limited number of the
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most similar examples to instances of the minority class inside the current
block. The best n examples are found based on the Mahalanobis distance
and combined with all majority class examples in a given block. After
selecting the most relevant examples the authors propose to construct either
a single new classifier or a bagging ensemble (this has also led to a slightly
different variant in Multiple Selectively Recursive Approach®). Unlike the
proposal of Gao et al., SERA can be considered an over-sampling approach.

In their further work, Chen and He extend the idea of sampling exam-
ples from previous blocks to the Recursive Ensemble Approach (REA).?
The first novelty in REA is balancing the current block by adding those
minority instances from previous blocks which are nearest neighbors of the
minority examples in the current training block. Following the authors’
motivations, this approach should perform better than previous proposals
when the minority class is decomposed into smaller sub-concepts. Another
extension involves using a non-linear weighting function for each component
classifier in the ensemble’s voting aggregation. These functions are based
on mean square errors calculated on the the new block of testing examples.
According to experimental results, REA and SERA provide more accurate
predictions than the proposal of Gao et al.?®°

Lichtenwalter and Chawla proposed another extension of the work by
Gao et al., where instead of propagating all minority class examples, they
also propagate misclassified majority class instances.?® With this approach,
the authors seek to better define the boundary between the classes, thereby,
increasing the performance of ensemble members. Their other novel contri-
bution is the adaption of the Hellinger distance (a skew-insensitive metric)
to measure similarities between two data blocks and, thus, to implicitly
check if a concept drift has taken place. This information is then used to
weight ensemble members during the aggregation of their predictions with
a linear block-dissimilarity weighting function.

Another use of Hellinger distances was presented by Hoens and
Chawla.?” First they criticize the simple temporal similarity commonly
used to propagate examples, and promote the selection of old instances
that are drawn from the most similar distribution as the new minority
class examples. They solve this task by reclassifying old blocks with a vari-
ant of the Naive Bayes classifier constructed from the recent blocks. Then,
they provide a modification to the Heuristic Updatable Weighted Random
Subspaces algorithm (HUWRS), where each component classifier is built
on a different set of features and combined with the aforementioned idea of
using Hellinger distances.
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Furthermore, Ditzler and Polikar®® considered extending their
LearnTT.NSE algorithm for the case of class imbalance. This combines
their previous approach to learning in non-stationary scenarios with the
idea of bagging, where under-sampling is performed in each bag. Compo-
nent classifiers are weighted based on their performance on both minority
and majority classes, thus, preventing significant loss of accuracy on major-
ity examples. However, one must point out that this approach assumes a
well-defined minority class and cannot handle dynamically changing proper-
ties of classes. These authors also studied a different variant which employs
oversampling of the minority class.

Another idea of selective sampling in block-based ensembles was con-
sidered by Zhang et al.?® They propose to use the k-means algorithm to
form clusters of majority examples in the current training block and then
calculate their centroids. The number of these clusters is set to be equal
to the number of minority examples in the current block. Then, a current
training set is constructed by taking all minority examples along with cen-
troids of the clusters and used to build a new classifier which is added to
an ensemble. The current component classifiers are evaluated on the re-
cent block with the AUC measure and these results are used for estimating
the weight of components and selecting best classifiers to be included in
the ensemble. The same authors proposed another approach called ECSDS
(Ensemble Classifier for Skewed Data Streams), which additionally aims at
reducing the learning time by limiting the number ensemble updates.

A much smaller body of work is dedicated to learning ensembles online,
instance by instance. One of the main motivations for online solutions for
imbalanced data follows observations that these algorithms may react to
drifts faster than block-based classifiers, where the update is delayed to
the end of the block. The simplest idea of updating component classifiers
online depending of the imbalance ratio was discussed by Nguyen et al.5"

More advanced online approaches to imbalanced and drifting streams
were proposed by Wang et al.5%2 Unlike previously discussed papers,
these authors considered variations of the imbalance ratio over time. Fur-
thermore, they noticed that the role of classes may evolve, for example, the
majority class may become the minority over time.

First, Wang et al.°! proposed two basic extensions of online bagging —
its oversampling and undersampling variants. In the first version when the
incoming example belongs to the minority class, it increases the chance
of adding its copies to component classifiers by changing the parameter of
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the Poisson distribution in online bagging. The value of this parameter is
related to the imbalance ratio. In the same way the chance for selecting
copies of the majority class is reduced in the undersampling based variant.
To cope with dynamically changing imbalance ratios and potential switch-
ing of class roles, the authors propose a dedicated concept drift detector.
Its output directly influences the parameter of the Poisson distribution in
oversampling or undersampling. A further modification of this idea, called
WEOB, used a combination of both under and oversampling in order to
chose the better strategy for the current state of the stream. An adaptive
weighting combination scheme was proposed to accommodate this hybrid
solution, where weights of these sampling strategies are either computed
as their G-mean values or are only one of them is selected. Recently, a
multi-class extension of this method has also been proposed.!?

Finally, two other, less typical, proposals concern ensembles of online
neural networks to handle drifting and imbalanced streams. Ghazikhani
et al.%% embedded elements of cost-sensitive learning into the process of neu-
ral network training. Similarly, the Ensemble of Subset Online Sequential
Extreme Learning Machine (ESOS-ELM) was developed by Mirza et al.,5*
where randomized neural networks were trained on balanced subsets of the
stream. However, these proposals do not adapt to changes of the minority
class like the aforementioned approaches of Wang et al.

5. Interactions Between Class Imbalance and
Concept Drift

In this section, we will showcase possible interactions between class imbal-
ance, concept drift, and additional difficulty factors in the form of minority
class sub-clusters. For this purpose, we will analyze experimental evalua-
tions of ensemble classifiers including one of the most popular ensembles
for imbalanced streams — SERA.%3

The presented analysis is based on an experimental setup from our re-
cent study on evaluating stream classifiers using AUC calculated incre-
mentally with forgetting.!* Although the cited work focuses mainly on
evaluation measures, parts of the results therein can be used to highlight
difficulties posed by evolving data difficulty factors. The analysis of these
results will serve as a vantage point for positioning lines of future research
in the field of imbalanced stream classification.



58 D. Brzezinski & J. Stefanowski

5.1. Experimental Setup
We present experiments involving four classifiers:

e Very Fast Decision Tree (VFDT),°

e Online Bagging (Bag),®

e Accuracy Updated Ensemble (AUE),'”

e Selectively Recursive Approach (SERA).53

The Very Fast Decision Tree (VFDT) was chosen as a reference classifier
without any forgetting mechanism. The remaining three algorithms are
ensemble classifiers representing: an online approach (Bag), a block-based
approach with forgetting (AUE), and a dynamic block-based oversampling
method designed for imbalanced streams (SERA).

All the algorithms and evaluation methods were implemented in Java as
part of the MOA framework.%® All ensemble methods (Bag, AUE, SERA)
used 10 Very Fast Decision Trees as base learners, AUE and SERA were
set to create new components every d = 1000 examples.

Classifiers were evaluated using six measures: accuracy, AUC, G-mean,
Cohen’s Kappa, Kappa M, and Recall. These measures can be defined
using a two-class confusion matrix presented in Table 1.

Table 1. Confusion matrix for two-class classification

Predicted

Actual Positive Negative total
Positive TP FN P
Negative FP TN N
total P N n

The TP (True Positive) and TN (True Negative) entries denote the
number of examples classified correctly by the classifier as minority and
majority instances, while the FN (False Negative) and FP (False Posi-
tive) indicate the number of misclassified minority and majority examples,
respectively. Based on these values, the evaluation measures used in the
experiments are defined as follows:

TP+ TN
TP+ TN + FP + FN

Accuracy =
AUC = / TPR(T)FPR/(T)dT = P(Xp > Xy)

Gmean\/ re N
) “VTP+FN FP+ TN
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Kappa _ Po — Pe
1- Pe
Kappa M = Po = Pm
1- Pm
TP
Recall = ————
T TP Y FN

where X p is the classifier score for a minority instance and Xy is the score
for a majority instance, pg is the accuracy of the tested classifier, p. is the
accuracy of a chance classifier, and p,, is the accuracy of a classifier always
predicting the majority class. A detailed description of each evaluation
measure can be found, for example, in a recent publication by Japkowicz
and Shah.?® These measures where calculated prequentially,'® i.e., incre-
mentally with forgetting, using a sliding window of d = 1000 examples.

5.2. Datasets

A key component when assessing the impact of different difficulty factors is
testing classifiers in a controlled environment. Therefore, for this study we
use 11 synthetic datasets created using custom stream generators, which
enabled us to administer the evolution of class imbalance, concepts, and
minority sub-clusters. Additionally, we use two real-world data streams
which showcase both class imbalance and changes over time.

The Ratio datasets are designed to test classifier performance under
different imbalance ratios without drift. Examples from the minority class
create a uniform five-dimensional sphere, whereas majority class examples
are uniformly distributed outside that sphere. The Dis datasets are cre-
ated in a similar manner, but the minority class is fragmented into spherical
sub-clusters (playing the role of small disjuncts). Datasets Disg, Diss, Diss
have 2, 3, and 5 clusters, respectively. In the AppDis datasets, every stream
begins with a single well-defined cluster, and additional clusters are added
as the stream progresses. New disjuncts appear suddenly in majority class
space after 40 k (AppDisy35), 50 k (AppDiss ), 60 k, and 70 k (AppDiss)
examples. In static data mining, the problem of small disjuncts is known
to be more problematic than class imbalance per se,>® however, to the best
of our knowledge this issue has not been tackled in stream classification.
Finally, datasets MinMaj, Gradualprc, and Suddenprc contain class ratio
changes over time. In MinMaj, the majority class abruptly becomes the mi-
nority; such a virtual drift relates to a problem recently discussed by Wang
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et al.%2 Suddengc was created using a modified version of the SEA gener-
ator,?* and contains three sudden class ratio changes (1:1/1:100/1:10/1:1)
appearing every 25 k examples. Analogously, Gradual rc uses a modified
Hyperplane generator,?® and simulates a continuous ratio change from 1:1
to 1:100 throughout the entire stream. Suddenpc has attributes with val-
ues ranging from 0 to 10, whereas all the remaining synthetic datasets have
attribute values uniformly distributed in the range [—1,1]. The two real
world dataset used are KDDCup and PAKDD.%6:67 It is worth noting that we
used the smaller version of the KDDCup dataset and transformed it into a
binary classification problem, by combining every class other than “NOR-
MAL” into one “ATTACK” class. The characteristics of all the datasets
are given in Table 2.

Table 2. Characteristic of datasets

Dataset #Inst  #Attrs Class ratio Noise  #Drifts  Drift type
Ratiosos0 100 k 5 1:1 0% 0 none
Ratioiggo 100 k 5 1:9 0% 0 none
Ratiogs95 100 k 5 1:19 0% 0 none
Ratiog1gg 100 k 5 1:99 0% 0 none
Disg 100 k 5 1:9 0% 0 none
Disg 100 k 5 1:9 0% 0 none
Diss 100 k 5 1:9 0% 0 none
AppDisa 100 k 5 1:9 0% 1 sudden
AppDis3 100 k 5 1:9 0% 2 sudden
AppDiss 100 k 5 1:9 0% 4 sudden
MinMaj 100 k 5 1:19/19:1 0% 1 sud. virt.
Gradualrc 100 k 3 1:1 — 1:100 5% 1 grad. virt.
Suddenpc 100 k 3 1:1/1:100/1:10/1:1 10% 3 rec. virt.
KDDCup 494 k 41 ~1:4 - - unknown
PAKDD 50 k 30 ~1:4 - - unknown
5.3. Results

We experimentally compared classifier evaluations using accuracy, AUC,
G-mean, Cohen’s Kappa, Kappa M, and Recall.'
teractions between difficulty factors and their effect on different classifiers.
To facilitate the presentation of results, we will mostly concentrate on plots
depicting classifier performance using the G-mean measure; more detailed
results are available in publications by Brzezinski and Stefanowski.!* Fig-
ure 2 presents selected plots, which characterize different difficulty factors.

Here we focus on the in-
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Figures 2(a) and 2(b) compare classifier performance on a balanced and
imbalanced stream. We can see that class imbalance alone, without any
drift, makes the classification task more challenging, but only for some
time. Since the concept does not change, VFDT and ensemble classifiers
are capable of successfully adapting new knowledge about the minority
class. As SERA was designed for such static imbalanced scenarios, it is
not, surprising that it learns the minority concept much quicker than the
remaining classifiers.

Looking at Figs. 2(c) and 2(d), one can notice how sudden and gradual
ratio changes can affect classifiers. We can see that oversampling examples
from previous blocks can slightly mitigate gradual ratio changes, but does
not help in any way during sudden drift. This raises the question of detect-
ing class ratio changes, a topic that has only recently been recognized®2-62
and still requires more studies.

Figures 2(e) and 2(f) show that static minority sub-clusters are only a
slightly more difficult case of static class imbalance (see Fig. 2(b)), whereas
appearing sub-concepts are much more challenging. It is also worth noting
that SERA has difficulties in adapting to new minority clusters because
it over-samples minority examples by selecting the most similar ones from
previous data chunks, which become outdated when the minority class is
split. Figure 2(g) compares classifier performance on a real dataset, which
most probably contains a single, well-defined minority concept, which is
successfully oversampled by SERA.

Finally, Fig. 2(h) raises the issue of changing majority-minority class
assignments. The evolving nature of data streams forces researchers to
question many common assumptions made by static imbalanced learning
approaches, such as one-time identification of the minority class. For drift-
ing data, the minority class has to be periodically identified and analyzed,
prior to any over- or under-sampling. As Fig. 2(h) shows, the results of this
seemingly trivial task strongly depend on the used performance measure.
Accuracy, k, and k., are sensitive to minority-majority class swaps, and one
can notice strong drops in these performance measures. Recall and G-mean,
on the other hand, focus on the improving minority class predictions and
increase without dropping. Finally, AUC shows that ranking performance
of the classifier, and thus the predicted class boundaries, practically did not
change. This plot constitutes an example of the complementary properties
of various performance measures, and shows the impact they can have on
processing drifting imbalanced streams.
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6. Outlook

The literature review and experimental analysis presented in this chapter
show the vast number of research problems related to mining imbalanced
and evolving data streams. Popular block-based and incremental ensembles
can react to changes over time, but recognize minority class concepts much
slower than specialized oversampling approaches such as SERA. However,
over- or under-sampling methods alone are not capable of coping with the
myriad of possible interactions between class imbalance and concept drift.
Sudden class ratio changes or appearing minority sub-clusters require novel
change reaction mechanisms, since current drift detectors are mostly de-
signed for balanced data. As showcased in the experimental analysis, this
in turn raises the broader question of using evaluation measures suited for
imbalanced streams. Although some of these issues have recently started

14,62 solutions to these problems are still to be found.

to gain attention,

Moreover, the intersection of class imbalance and data stream mining
still holds many problems that have not been explored. Current research
concentrates on binary classification, while recent studies'? show that in
multi-class problems one can expect concept drifts in the form of appear-
ing novel minority classes. Moreover, the evolving nature of data streams
has still not been studied in the context of data difficulty factors recently
recognized in static classification of imbalanced data.*! The same way as
sub-clusters can suddenly appear they could also appear gradually, reoccur,
or move within the attribute space. Class overlapping could also change
over time, for example, the borderline region between two classes could
grow, shrink, or change its shape. Notions of rare cases and outliers are
another set of difficulty factors that still have not been properly introduced
to data stream mining. All the mentioned complexities provide a fertile
ground for research on adaptive systems.

We hope that this chapter will not only serve as reference for current
state-of-the-art in classifiers for imbalanced and drifting data streams, but
will also inspire new works in this field. New adaptive ensembles capable of
dealing with various difficulty factors are still sought for. Similarly, evalu-
ation measures and drift detectors tailored for various drifts in imbalanced
streams are still to be studied. However, to make these advancements possi-
ble, potential types of drift between difficulty factors have to be recognized.
We believe that these issues are of vital importance, because, as research in
the field of class imbalance has shown, data complexities have a much more
profound impact on classifier performance than class imbalance alone.
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Learning a prototype from a set of given objects is a core problem in
machine learning, data mining, and pattern recognition. A commonly
used approach to consensus learning is to formulate it as an optimization
problem in terms of generalized median computation. Sequential data
can be effectively represented by strings. In this chapter we discuss how
the median concept can be applied to strings. We introduce the notion
of median string and provide related theoretical results. Then, we give
a brief review of algorithmic procedures for computing median strings.
Experimental results will be reported to compare some of the shown
algorithms.

1. Introduction

Learning a prototype from a set of given objects is a core problem in ma-
chine learning, data mining, and pattern recognition and has numerous
applications.! Prototypes are often used to index large-size data so that
queries can be efficiently answered by only considering those prototypes.
Another example is multiple classifier combination, where a change of al-
gorithm parameters or the use of different algorithms can lead to distinct
results, each with small diverse errors. Consensus methods produce a final
result which best represents the different results and thus removes errors
and outliers in the input ensemble.

Strings provide a simple and yet powerful representation scheme for
sequential data. In particular time series can be effectively represented by
strings. A large number of operations and algorithms have been proposed
to deal with strings.2”” Some of them are inherent to the special nature of
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strings such as the shortest common superstring and the longest common
substring, while others are adapted from other domains.

String algorithms have found numerous applications in a broad range of
fields including computer vision, language processing, speech recognition,
and molecular biology. In data mining, clustering and machine learning, a
typical task is to represent a set of (similar) objects by means of a single
prototype. In particular, a commonly used approach to consensus learn-
ing is to formulate it as an optimization problem in terms of generalized
median computation. This median concept is useful in various contexts.
It represents a fundamental quantity in statistics. In sensor fusion, multi-
sensory measurements of some quantity are averaged to produce the best
estimate. Averaging the results of several classifiers is used in multiple
classifier systems in order to achieve more reliable classifications. Interest-
ing applications of the median concept have been demonstrated in deal-
ing with rankings,® 3D rigid structures,® rotation,'® clustering,!! graphs,'2
shape,’?
(points, lines, or 3D frames),'® brain models,'” anatomical structures,

atlas construction,'® binary feature maps,'® geometric features
18
and facial images.'® In this chapter we discuss the adaptation of the me-
dian concept to the domain of strings.

This chapter is an updated version of the previous paper?® including
recent developments. The outline of the chapter is as follows. We first
formally introduce the median string problem in Section 2 and provide
some related theoretical results in Section 3. Sections 4 and 5 are devoted to
algorithmic procedures for computing set median and generalized median
strings. In Section 6 we report experimental results to demonstrate the
median concept and to compare some of the considered algorithms. Finally,
some discussions conclude this chapter.

2. Median String Problem

Assuming an alphabet Y. of symbols, a string z is simply a sequence of
symbols from ¥, i.e., z = 2122 ... 2y, where x; € X for i = 1,...,n. Given
the space U of all strings over X, we need a distance function d(p,q) to
measure the dissimilarity between two strings p,q € U. Let S be a set of
N strings from U. The essential information of S is captured by a string
p € U that minimizes the sum of distances of p to all strings from S, also
called the consensus error Eg(p):

5= inE here Es(p) = > d .
p = argmin s(p), where Eg(p) ng;g (P q)
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The string p is called a generalized median of S. If the search is constrained
to the given set S, the resultant string

o B
p = argmin s(p)

is called a set median of S. For a given set S, neither the generalized median
nor the set median is necessarily unique. This definition was introduced by
Kohonen.?! Note that different terminology has been used in the literature.
In some works the set median string and the generalized median string are
termed center string and Steiner string,* respectively, while in others the
generalized median was called consensus sequence.??

A different possibility is mentioned by Kohonen?! too. This is the par-

allel of mean from elementary statistics. Here we would like to search for

S0 0).

qeS

p’ that minimizes

Martinez-Hinarejos et al.?® returned to this definition and investigated the
possibility of using mean instead of median. Generally, this variant can be
interpreted as a special instance of the generalized median problem using
d? as the distance function.

Several string distance functions have been proposed in the literature.
The most popular one is doubtlessly the Levenshtein edit distance. Let
A=aias...a, and B = biby...b,, be two words over ¥. The Levenshtein
edit distance d(A, B) is defined in terms of elementary edit operations which
are required to transform A into B. Usually, three different types of edit
operations are considered, namely (1) substitution of a symbol a € A by a
symbol b € B,a # b, (2) insertion of a symbol a € ¥ in B, and (3) deletion
of a symbol a € A. Symbolically, we write a — b for a substitution,
€ — a for an insertion, and a — ¢ for a deletion. To model the fact that
some distortions may be more likely than others, costs of edit operations,
cla = b), ¢(e = a), and c(a — ¢), are introduced. Let s = l1ly... 1
be a sequence of edit operations transforming A into B. We define the

k
cost of this sequence by ¢(s) = Y ¢(l;). Given two strings A and B, the

Levenshtein edit distance is giveln 1by d(A, B) = min{c(s) | s: sequence of
edit operations transforming A into B }. To illustrate the Levenshtein edit
distance, let us consider two words A = median and B = mean built on the
English alphabet. Examples of sequences of edit operations transforming
A into B are:
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e s;=d—a,i—>n,a—e,n—¢
e so=d—a,i—>e,a—¢
e s3=d—¢e,i—¢

Under the edit cost ¢(a — &) = ¢(e = a) = ¢c(a = b) = 1,a # b, s3
represents the optimal sequence with the minimum total cost 2 for trans-
forming median into mean among all possible transformations. Therefore,
we observe d(median, mean) = 2. The most popular algorithm to com-
pute the Levenshtein distance was proposed by Wagner and Fisher?* by
means of dynamic programming. Since then, many improvements or other
algorithms have appeared.*?

Further string distance functions are known from the literature, for in-
stance, normalized edit distance,?? Hamming distance, maximum posterior
probability distance,?! feature distance,?! and others.?%:2” The Levenshtein
edit distance is by far the most popular one. Actually, some of the al-
gorithms we discuss later are tightly coupled to this particular distance
function.

3. Theoretical Results

In this section we summarize some theoretical results related to median
strings. The generalized median is a more general concept and usually a
better representation of the given strings than the set median. From a prac-
tical point of view, the set median can be regarded an approximate solution
of the generalized median. As such it may serve as the start for an iterative
refinement process to find more accurate approximations. Interestingly, we
have the following result (see Gusfield* for a proof):

Theorem 1. Assume that the string distance function satisfies the triangle
inequality. Then Es(p)/Es(p) <2 —2/|S5].

That is, the set median has a consensus error relative to S that is at most
2 — 2/|S] times the consensus error of the generalized median string.
Independent of the distance function we can always find the set median
of N strings by means of %N (N — 1) pairwise distance computations. This
computational burden can be further reduced by making use of special
properties of the distance function (e.g., metric) or resorting to approximate
procedures. Section 4 will present examples of these approaches.
Compared to set median strings, the computation of generalized me-
dian strings represents a much more demanding task. This is due to the
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huge search space which is substantially larger than that for determining
the set median string. This intuitive understanding of the computational
complexity is supported by the following theoretical results. Under the two
conditions:

e cvery edit operation has cost one, i.e., c(la = b) = c(e = a) =
cla—e)=1,
e the alphabet is not of fixed size,

de la Higuera and Casacuberta?® proved that computing the generalized me-
dian string is NP-hard for an unbounded alphabet. Sim and Park?® proved
that the problem is NP-hard for finite alphabet and for a metric distance
matrix. Furthermore, Nicolas and Rivals showed the same hardness even
for a binary alphabet.?® Another result comes from computational biology.
The optimal evolutionary tree problem there turns out to be equivalent to
the problem of computing generalized median strings if the tree structure is
a star (a tree with n + 1 nodes, n of them being leaves). Wang and Jiang®!
proved that in this particular case the optimal evolutionary tree problem is
NP-hard. The distance function used is problem dependent and does not
even satisfy the triangle inequality. All these theoretical results indicate
the inherent difficulty in finding generalized median strings. Not surpris-
ingly, the algorithms we will discuss in Section 5 are either exponential or
approximate.

4. Fast Computation of Set Median Strings

The naive computation of set median requires O(N?) distance computa-
tions. Considering the relatively high computational cost of each individ-
ual string distance, this straightforward approach may not be appropriate,
especially in the case of a large number of strings. The problem of fast set
median search can be tackled by making use of properties of metric distance
functions or developing approximate algorithms. Several solutions32:33 have
been suggested for fast set median search in arbitrary spaces. They apply
to the domain of strings as well.

4.1. FEzxact Set Median Search in Metric Spaces

In many applications the underlying string distance function is a metric
which satisfies:

(1) d(p,q) > 0 and d(p,q) = 0 if and only if p = g,
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(2) d(p,q) = d(q,p),
(3) d(p,q) +d(q,r) > d(p,7).

A property of metrics is:

|d(p,7) —d(r,q)| < d(p,q), Vp,q,7 €S, (1)

which can be utilized to reduce the number of string distance computations.

d
d

The approach proposed by Juan and Vidal®? partitions the input set
S into subsets S, (used), S. (eliminated), and S, (alive). The set S,
keeps track of those strings that have not been fully evaluated yet; initially
So = 5. A lower bound ¢(p) is computed for each string p in S, i.e., the
consensus error of p satisfies:

Es(p) = _d(p,q) > g(p)-
qeS

Clearly, strings with small g values are potentially better candidates for set
median. For this reason the string p with the smallest g(p) value among
all strings in S, is transferred from S, to S,. Then, the consensus error
Es(p) is computed and, if necessary, the current best median candidate p
is updated. Then, the lower bound ¢ is computed for all strings that are
alive, and those whose g is not smaller than Eg(p) are moved from S, to
Se. They will not be considered as median candidates any longer. This
process is repeated until S, becomes empty.

In each iteration, the consensus error for p with the smallest g value is

dYodp+ Y, dpg).

qESy q€S.U(Sa—{pr})

computed by:

Es(p)

Using (1) the term d(p, q) in the second summation is estimated by:
d(p,q) > |d(p,r) — d(r,q)|,¥r € S,.

Taking all strings of S, into account, we obtain the lower bound:

Es(p) = )  dlp,q) + max |d(p,r) — d(r,q)| = g(p). (2)
q;s:u qese%z{p» res
The critical point here is to see that all the distances in this lower bound are
concerned with p and strings from S,,, and were therefore already computed
before. When strings in S, are eliminated (moved to S,,), their consensus
errors need not to be computed in future. This fact results in saving of
distance computations. In addition to (2), two other lower bounds within
the same algorithmic framework are given by Juan and Vidal.3? They
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differ in the resulting ratio of the number of distance computations and
the remaining overhead, with the lower bound (2) requiring the smallest
amount of distance computations.

Ideally, the distance function is desired to be a metric, in order to match
the human intuition of similarity. The triangle inequality excludes the case
in which d(p,r) and d(r,q) are both small, but d(p,q) is very large. In
practice, however, there may exist distance functions which do not satisfy
the triangle inequality. To judge the suitability of these distance functions,
other works?* suggest quasimetrics with a relaxed triangle inequality. In-
stead of the strict triangle inequality, the relation:

dlp.r) +drq) > G20

is required now. Here € is a small nonnegative constant. As long as ¢
is not very large, the relaxed triangle inequality still retains the human
intuition of similarity. Note that the strict triangle inequality is a special
case with ¢ = 0. The fast set median search procedure3? sketched above
easily extends to quasi-metrics. In this case the relationship (1) is replaced
by:

d(p,r d(q,r
d(p7 q) Z maX( 1(1_)’_ g) 7d(q77,)7 1(3_ E) - d(p,?")), vpvrvq es

which can be used in the same manner to establish a lower bound g(p).

4.2. Approximate Set Median Search in Arbitrary Spaces

Another approach to fast set median search makes no assumption on the
distance function and therefore covers non-metrics as well. The idea of this
approximate algorithm is simple. Instead of computing the sum of distances
of each string to all the other strings of S to select the best one, only a
subset of S is used to obtain an estimation of the consensus error.3* The
algorithm first calculates such estimations and then calculates the exact
consensus errors only for strings that have low estimations.

This approximate algorithm proceeds in two steps. First, a random
subset S, of N, strings is selected from S. For each string p of S, the con-
sensus error Eg (p) relative to S, is computed and serves as an estimation
of the consensus error Eg(p). In the second step Ny strings with the lowest
consensus error estimations are chosen. The exact consensus error Fg(p)
is computed for the IV; strings and the string with the minimum Eg(p) is
regarded the (approximate) set median string of S.
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5. Computation of Generalized Median Strings

While the set median problem is characterized by selecting one particu-
lar member out of a given set of strings, the computation of generalized
median strings is inherently constructive. The theoretical results from Sec-
tion 3 about computational complexity indicate the fundamental difficul-
ties we are faced with. In the following we describe various algorithms for
computing generalized median strings. Not surprisingly, they are either of
exponential complexity or approximate.

5.1. An Ezact Algorithm and its Variants

An algorithm for the exact computation of generalized median strings under
the Levenshtein distance is given by Kruskal.?® Let ¢ be the empty string
and ¥ = Y U {e} the extended alphabet. We define:

0(r1,7r9, ..., rN) = mizn[c(v —=r)+clv—=ra)+- -+ c(v—=ry)]
veX!

The operator § can be interpreted as a voting function, as it determines
the best value v at a given stage of computation. Finding an optimal value
of v requires an exhaustive search over ¥’ in the most general case, but in
practice the cost function is often simple such that a shortcut can be taken
and the choice of the optimal v is not costly.

Having defined § this way, the generalized median string can be com-
puted by means of dynamic programming in an N-dimensional array, sim-
ilarly to string edit distance computation.?* For the sake of notational
simplicity, we only discuss the case N = 3. Assume the three input strings
be uius ... u;, V103 ...V, and wiws ... w,. A three-dimensional distance
table of dimension I x m x n is constructed as follows:

initialization:+ dy 0,0 = 0;

iteration:

dz 1,j—1,k—1 + 5(ul7vj7wk)
di-1j-1k + 0(ui,vj,€)
dicijk—1  + 0(us, e, wg) 0<i<1

dijr=minq di_1 + 0(us, €, ¢€) 0<j<m
dij—1,k—1 (s,v],wk) 0<k<n
dij-1k  +0(e,05€)
di j k-1 + (e, e, wy)
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The computation requires O(Imn) time and space. The path in the dis-
tance table that leads from dy 9,0 to djm,n defines the generalized median
string p with dj ., being the consensus error Es(p). Note that a general-
ization to arbitrary N is straightforward. If the strings of .S are of length
O(n), both the time and space complexity amounts to O(n”) in this case.

Despite of its mathematical elegance the exact algorithm above is im-
practical because of the exponential complexity. There have been efforts
to shorten the computation time using heuristics or domain-specific knowl-
edge. One such approach assumes that the string of S be quite similar.??
Under reasonable constraints on the cost function (c(a =€) = c(e - a) =1
and c¢(a — b) nonnegative), the generalized median string p satisfies
Es(p) < k with k being a small number. In this case the optimal dynamic
programming path must be close to the main diagonal in the distance table.
Therefore only part of the N-dimensional table needs to be considered.??
The asymptotic time complexity of this restricted search is O(nk™ ). While
this remains exponential, k is typically much smaller than n, resulting in a
substantial speedup compared to the full search of the original algorithm.3?
An integer linear programming formulation based on both the original dy-
namic programming algorithm and the improved version was provided by
Zou et al.30

We may also use any domain-specific knowledge to limit the search
space. An example is the approach in the context of classifier combination
for handwritten sentence recognition.?” An ensemble of classifiers provide
multiple classification results of a scanned text. Then, the consensus string
is expected to yield the best overall recognition performance. The input
strings from the individual classifiers are associated with additional infor-
mation of position, i.e., the location of each individual word in a sequence
of handwritten words. Obviously, it is very unlikely that a word at the
beginning of a sequence corresponds to a word at the end of another se-
quence. More generally, only words at a similar position in the text image
are meaningful candidates for being matched to each other. Marti and
Bunke 37 make use of this observation in the above case to exclude a large
portion of the full N-dimensional search space from consideration.

5.2. Approximate Algorithms

Because of the NP-hardness of generalized median string computation, ef-
forts have been undertaken to develop approximate approaches which pro-
vide suboptimal solutions in reasonable time. In this section we will discuss
several algorithms of this class.
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Algorithm 1 General framework of greedy algorithms
Do =¢€
for (I =1;;14++4) do
@ = arg min Eg (P1-1a)
Pt =DPi—1a4;
if termination criterion fulfilled then

return prefix of p;
end if
end for

5.2.1. Greedy Algorithms

The following algorithm was proposed by Casacuberta and de Antonio.?®

Starting from an empty string, a greedy algorithm constructs an approxi-
mate generalized median string p symbol by symbol. When we are going
to generate the I-th symbol a;(I > 1), the substring a1 ...a;—1(e for I = 1)
has already been determined. Then, each symbol from 3 is considered as a
candidate for a;. All the candidates are evaluated and the final decision of
a; is made by selecting the best candidate. The process is continued until
a termination criterion is fulfilled.

A general framework of greedy algorithms is given in Algorithm 1. There
are several possible choices for the termination criterion and the prefix. The
greedy algorithm proposed by Casacuberta and de Antonio®® stops the iter-
ative construction process when Eg(p;) > FEg(pi—1). Then, p;_; is regarded
the approximate generalized median string. Alternatively, Kruzslicz?? sug-
gests the termination criterion [ = r;lezg( |[p|. The output is the prefix of

p; with the smallest consensus error relative to S. For both variants a
suitable data structure 3® enables a time complexity of O(n?N|%|) for the
Levenshtein distance. The space complexity amounts to O(nN|%|).

In the general framework in Algorithm 1 nothing is stated about how
to select a; if there exist multiple symbols from ¥ with the same value of
Es(p;—1a). Besides a simple random choice, the history of the selection
process can be taken into account to make a more reliable decision.?®
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5.2.2. FEvolutionary weighted mean approach

The evolutionary weighted mean framework by Franek and Jiang?® is a
method to compute the generalized median of arbitrary objects, and there-
fore can be applied to strings as well.

It is motivated by the lower bound of the generalized median by Jiang

1.'2 The consensus error is defined as (N even):

Es(p) =Y d(p,q)

q€eS
Applying the triangle inequality
d(pi, p) +d(p, p;) > d(pi, ;)
to each pair of distance calculations leads to
Es(p) > d(p1,p2) + d(ps,pa) + -+ - + d(pn-1,PN),
which is true for each permutation of p;. Therefore,

Es(p) > max{d(p1,p2) +--- +d(pN-1,pN) (3)
| (p1,p2),-..,(PN—1,pN) is a partition of S}.

et a

If the lower bound is reached, then the triangle inequality becomes an
equality. This can be imagined as the generalized median lying on the
intersection point of the lines between each pair. This is illustrated in
vector space in Figure 1(a).

This intersection point can be approximated using the so called weighted
mean of the object pairs. The weighted mean p between two objects p; and
p; at ratio « is defined as

d(pi,p) = - d(pi,pj),  d(P,p;) = (1 = a)d(pi,p;). (4)

Geometrically, the weighted mean can be seen as a linear interpolation
between two objects. A function to compute the weighted mean can often
be derived from the distance function itself. The Levenshtein distance for
example can be extended to return a list of edit operations to transform
the first string into the second. A weighted mean is then computed by
applying edit operations one after another until the distance of d(p;,p) is
at least o - d(p;, p;). 4!

If the lines between object pairs do not intersect, then the weighted
mean can be used to compute an approximation of the generalized median,
as illustrated in Figure 1(b).
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(a) (b)

Fig. 1. Generalized median in two-dimensional vector space. Red points: initial objects.
Green point: generalized median. black points: weighted means. (a) Generalized median
is on the intersection between pairs of initial points. (b) Lines between pairs do not
intersect in a point.

Algorithm 2 Evolutionary weighted mean framework

Given a string set S = {p1,...,pn}
Compute a partition of S into pairs (p;1, pi2) to maximize Equation (3)
for each pair (p;1,pi2) do

Compute w weighted means p; by using o = bdpapiz)

Popia), e, W
p=mini—1__{Es(P:i)}
S =Su{p}

end for

Delete the strings from S with the worst Eg(p) until |S| < Npaz-
if the lower bound is matched or convergence is achieved then
return the string from S with the lowest Eg(p)
else
Restart the algorithm with the current set .S
end if

The evolutionary weighted mean framework shown in Algorithm 2 uses
these properties to compute an approximation of the generalized median.
First, the objects are divided into sets that maximize the pairwise distances.
Then for each pair of objects a number of weighted means are calculated
and the best one is added to the set. In the end, objects with the highest
Es(p) are discarded to prevent the set from growing too much.
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5.2.3. Vector space embedding

Objects Euclidean space

05

o O o®

03

01 [ )

02

NP-hard & @

o -— o
o °
o
Generalized Median Geometric Median

Fig. 2.  Overview of the vector space embedding framework. Direct calculation is often
NP-hard, depending on the distance function. (1) Embed objects into vector space.
(2) Compute the median in vector space. (3) Reconstruct a median object from vectors.

Another method to compute the generalized median of arbitrary objects
is vector space embedding.*? The idea of this algorithm is to not compute
the generalized median of the objects directly, but instead compute it in a
vector space, where this task is much more easily solved. As can be seen in
Figure 2, this process can be divided into three steps:

(1) Embed objects into a vector space.
(2) Compute the generalized median in vector space.
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(3) Reconstruct the median in object space based on its position and neigh-
borhood in vector space.

First, the objects in S = {p1,...,pn} are embedded into a vector space
142 used prototype embedding
for this purpose. For each object p; in the set S, this method computes a
vector x; using k < N prototype objects { Py, ..., Py} C S:
z; = p(pi) = (d(ps, P1), d(pi, Po), ..., d(pi, Py)) € R".

The prototypes are selected to be representative of the set, often by k-
means clustering.*?> The generalized median in vector space, which is called
geometric median, is computed in the second step. Since the computation
of the geometric median is again NP-hard, the Weiszfeld algorithm3 is used
to calculate a good approximation in a very short time. In the last step, the
median in object space is reconstructed. This is done using the neighbors
of the geometric median and a weighted mean function®* as described in
Equation (4).

While this method is easy and fast to compute, it generally does not

using an embedding function . Ferrer et a

preserve the distances very well. Therefore, this step can be improved by
using distance-preserving embedding methods*® instead. These methods
compute a much more accurate embedding in reasonable time, by finding
points z1,...,xzx € RF such that

3(pi,pj) = de(i,xj), V1 <i,j <N

with d.() being the Euclidean distance between two points. They can be
roughly divided into three categories:*?

Reference object methods: Methods like FastMap, MetricMap and
SparseMap compute their embedding based on the distance to selected
objects from the original set, similar to prototype embedding

Error minimization methods: These methods propose an error func-
tion on the embedding vectors. The vectors are optimized using these
methods to form an accurate embedding, often by gradient descent.
Examples are MDS, Sammon Mapping, CCA and t-SNE.

Neighborhood graph methods: Methods like MVU, LLE and IsoMap
construct a neighborhood graph for the objects and base their embed-
ding on this graph.

Each of these methods can be used instead of the prototype embed-

ding for an often more accurate result, thereby improving the median

computation.*®
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By using the Levenshtein edit distance and the weighted mean function
described in Section 5.2.2, this framework can be applied to compute very
accurate generalized medians of strings.*®

5.2.4. Perturbation-based Iterative Refinement

The results of the algorithms above as well as the set median represent
an approximation of the true generalized median string of a set. This
approximate solution p can be further improved by an iterative process of
systematic perturbations. The idea was first suggested by Kohonen,?! but
without algorithmic details. A concrete algorithm for realizing systematic
perturbations is given in .*6 For each position %, the following operations
are performed:

(1) Build perturbation

e Substitution: replace the i-th symbol of p by each symbol of ¥ in
turn and choose the resulting string « with the smallest consensus
error relative to S.

e Insertion: insert each symbol of 3 in turn at the i-th position of
p and choose the resulting string y with the smallest consensus
error relative to S.

e Deletion: delete the i-th symbol of p to generate z.

(2) Replace p by the one from {p, z,y, 2} with the smallest consensus error
relative to S.

For the Levenshtein distance one global iteration that handles all positions
of the initial p needs O(n®N|X|) time. The process is repeated until there
is no more improvement possible.

Alternative methods to select the best perturbed string are also possible.
Abreu and Rico-Juan?” for example rank each possible edit operation on p
by how much Eg(p) is affected by it, and iteratively apply the best operation
until there is no more improvement.

5.3. Dynamic Computation of Generalized Median Strings

In a dynamic context we are faced with the situation of a steady arrival
of new data items, represented by strings. At each point of time, ¢, the
set S? of existing strings is incremented by a new string, resulting in S**1,
and its generalized median string is to be computed. Doubtlessly, a trivial
solution consists in applying any of the approaches discussed above to S**1.
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By doing this however, we compute the generalized median string of S*+!
from scratch without utilizing any knowledge about S¢, in particular its
generalized median string. All algorithms for computing generalized me-
dian strings are of such a static nature and thus not optimal in a dynamic
context. Jiang et al.48
update scheme only considers the generalized median string of S together
with the new data item, but not the individual members of S?.

The inspiration for the algorithm comes from a fundamental fact in real
space. Under the distance function d(p;,p;) = (pi —p;) - (ps — p;), i.e., the
squared Euclidean distance of p; and p;, the generalized median of a given
set St = {p1,p2,...,p:} of t points is the well-known mean:

1 t
t . )
p *E §1pz-
i=

When an additional point piy; is added to Si, the resultant new set
Sttt = St U {py11} has the generalized median

propose a genuinely dynamic approach, in which the

1 t 1
_t+1:—. . = ~_t .
P tr1 Zizlpl 11 Pt e

which is the weighted mean of p* and p;1 satisfying

_ _ 1 _
d(ptH,pt) = t—i——l 'd(ptvptﬂ)

t
t+1
On a heuristic basis the special case in real space can be extended to the
domain of strings. Given a set S* = {p1, pa2,...,p:} of t strings and its gen-
eralized median p’, the generalized median of a new set S**! = St U {p;41}
is estimated by a weighted mean of p’ and p;1 with a ratio a € [0, 1],

in the same manner as in Section 5.2.2. In real space a takes the value
1

1

Therefore, we resort to a search procedure. Remember that our goal is to

AP pe1) = ~d(p', pes1)-

For strings, however, we have no possibility to specify « in advance.

find p**! that minimizes the consensus error relative to S**1. To determine
the optimal « value a series of « values 0, %, R k—;l, 1 is probed and the

« value that results in the smallest consensus error is chosen.

6. Experimental Evaluation

In this section we report some experimental results of several methods de-
scribed above. The used datasets are shown in Table 1. The Copenhagen
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Table 1. Evaluated datasets

Dataset Type Number of | Number of Strings | Number of
Sets in each Set Symbols
CCD real 22 100 11
Darwin artificial 21 40 52
MSNBC real 20 100 17

Chromosome Dataset?® consists of 22 genetic string sets, each containing

100 individual strings of different lengths. Each string encodes selected
parts of a chromosome and is based on an alphabet of 11 different genetic
symbols. The Darwin dataset uses 21 lines of Charles Darwin’s work “On
the Origin of Species”, each of which was artificially modified according to
common probabilities in optical character recognition applications.*>%° To
generate a set, each one line was duplicated 40 times, while each symbol
had a 12% chance to be modified in the process. The modification was a
substitution with a different but optical similar symbol in 87%, a deletion
in 9% and an insertion of a new symbol in 4% of the cases. Since these
lines are written in the English language, 52 symbols are possible with 26
lower and 26 upper case letters. The MSNBC.com anonymous web dataset
is a symbolic time series consisting of consecutive page views by users on
msnbc.com and msn.com for one day. Each time series is represented by
an array of integers, each integer representing a visit to a page of a specific
category like news, weather, business and 14 others. The dataset consists
of 989818 entries of varying length, from which we randomly selected 20
subsets with 100 entries between 30 and 50 visited pages.

For all datasets, we used the Levenshtein edit distance with cost 1 for
deletion, insertion and substitution. The average results of all datasets
using five median algorithms are shown in Figure 3. These methods are the
greedy algorithm (Section 5.2.1), prototype embedding (Section 5.2.3) and
distance-preserving embedding (DPE, Section 5.2.3), evolutionary weighted
mean (EWM, Section 5.2.2) and set median (Section 4). Since neither of
these methods produces an exact result, the minimal possible Eg(p) is
unknown.

In the case of prototype embedding, DPE and EWM, we did not use
parameters specific for these datasets, but parameters that performed well
in a range of applications instead. As weighted mean function we used the
modified Levenshtein distance described in Section 5.2.2

As can be seen in Figure 3, aside from the MSNBC dataset the greedy
algorithm performs significantly worse than all other methods. This can be
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Fig. 3. Experimental results on three datasets using five approximative algorithms. A
lower result is better.

explained by the simple nature of the algorithm. By only selecting the next
best symbol, it is easy to arrive at a poor local minimum. For example,
if the set consists only of the string “AB”, then the generalized median
is also “AB”. Selecting both “A” and “B” as initial symbol of the greedy
algorithm result in a distance of 1 (assuming cost 1 for all edit operations).
If “B” is selected, then the algorithm stops since the first “A” is never added
afterwards and no improvement can be made by adding more symbols at
the end. This could also explain the much worse performance in the case
of the Darwin dataset. Since there are much more different symbols in this
set, the likelihood to select a suboptimal one is much higher. The greedy
algorithm performs well in the MSNBC dataset since the first category is
“frontpage” which is visited relatively often and is the first visited page
of most users. In our case, this is also the first category that is tested as
an addition to the solution of the greedy algorithm and therefore causes
problems like the ones above not nearly as often as in the other datasets.
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The results of prototype embedding are generally better by a large mar-
gin, but often slightly worse than the set median which is much easier to
calculate. Distance-preserving embedding methods improve this result and
are on average better than the set median. This can be attributed to the
more accurate embedding, which improves the median computation in vec-
tor space and therefore the reconstructed median string.

The evolutionary weighted mean method shows results only slightly
worse than distance-preserving embedding, each of them being the best
method in several string sets of all datasets.

The set median results demonstrate why it is often used as a good
approximation of the generalized median. Even though it is the easiest and
fastest of the shown methods, its results are close behind the results of DPE
and EWM in the tested datasets.

7. Discussions and Conclusion

This chapter deals with consensus learning for sequence data, in particu-
lar strings. Several procedures for computing median strings were briefly
described. Experimental results were reported to demonstrate the median
concept and to compare some of the discussed algorithms.

The majority of the algorithms described in this chapter are based on
the Levenshtein edit distance. The algorithms’ applicability to an arbitrary
string distance function is summarized in Table 2. Note that an extension
to an arbitrary string distance function usually means a computational
complexity different from that for the Levenshtein edit distance.

In the definition of median string, all the input strings have a uniform
weight of one. If necessary, this basic definition can be easily extended to

Table 2. Characteristics of median computation algorithms

Distance function | Extension to | Handling | Handling

Algorithm (original paper) Arbitrary | Weighted | Closest
Distance Median String
Exact algorithm Levenshtein No Yes No (yes39)
and its variants22:35-37
Greedy algorithms3%:39 Levenshtein Yes Yes Yes
Evolutionary Arbitrary distance n/A Yes Yes
weighted mean40
Distance-preserving Arbitrary distance n/A Yes Yes®!
embedding?2:45
Perturbation-based Arbitrary distance n/A Yes Yes

iterative refinement21-46

Dynamic algorithm?8 Levenshtein No Yes No
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weighted median string to model the situation where each string has an
individual importance, confidence, etc. Given the weights wg,q € S, the
weighted generalized median string is simply
p = arg ;Iél[rjl qezs wq - d(p, q).

All the computational procedures discussed before can be modified to han-
dle this extension in a straightforward manner.

The generalized median string represents one way of capturing the es-
sential characteristics of a set of strings. There do exist other possibilities.
One example is the so-called closest string®' or center string defined by:

* = arg min max d(p, q).
p g min max d(p, g)

It is important to note that the term center string is used by Gusfield* to
denote the set median string. Under the two conditions given in Section 3,
it is proven by de la Higuera and Casacuberta®® that computing the closest
string is NP-hard. Another result is given by Frances and Litman®? where
the NP-hardness of the closest string problem is proven for the special case
of a binary alphabet (i.e., ¥ = {0,1}) and the Hamming string distance.
The ability of the algorithms to compute the closest string is summarized
in Table 2.

Another issue of general interest is concerned with cyclic strings. Several
methods have been proposed to efficiently compute the Levenshtein distance
of cyclic strings.?® 5°
this kind of strings.

It remains an open problem to determine medians of
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Automated categorization of textual information is becoming an increas-
ingly important task in the digital world. However, most classification
algorithms build upon manual labeling of text documents, which is a
time-consuming and costly process. In this paper, we present a novel
methodology for clustering-based classification of stationary document
streams using active learning. The proposed active learning clustering-
based classification algorithm (ACCA) obtains a continuous stream of
unlabeled documents. The arriving documents are clustered incremen-
tally so that each incoming document is inserted into an existing cluster
or used to start a new cluster of its own. The number of possible clusters
is unlimited. From time to time, an expert is called to label several clus-
ters for the classification mechanism. With arrival of more documents,
the expert can be called less frequently, since most of the incoming docu-
ments will eventually belong to existing labeled clusters. Our algorithm
is aimed at finding the fastest way of reaching the point where most
arriving documents can be classified automatically without the experts
assistance. The evaluation experiments on two benchmark corpora show
that active learning and clustering can increase the percentage of auto-
matically and accurately categorized documents over time.

Introduction

Text categorization, or classification, is a task where texts are assigned
to one or several of a set of predefined categories based on their con-

tent.!

If the texts are newspaper articles, typical categories might be,

for example, economics, politics, sports, and so on. Text classification
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applications include automatic email categorization, spam filtering,? and
web-page classification.® These applications are becoming increasingly im-
portant in todays information-oriented society.

While many algorithms have been developed in recent years to cope with
text classification, a key difficulty is that they require many labeled exam-
ples to produce a good classifier that can classify text documents with high
accuracy. The labeling in text classification is typically done manually by
reading documents or web pages, which is a time-consuming task. Unfor-
tunately, we cannot eliminate the document labeling process, since without
it a supervised machine learning algorithm will not be able to build an
accurate classifier representing the user interests.

The task addressed in this paper is classification of a stream of incom-
ing documents where there are no labeled documents at the starting point.
Classification is often posed as supervised learning, where a set of labeled
data is used to train a classifier that can be applied to label future ex-
amples. According to Ref. 4, in batch classification algorithms the same
time-consuming and computationally expensive training process has to be
run again in order to adjust the classifier when receiving new data. More-
over, labeling documents is costly and it would be too expensive to employ
experts all the time on labeling every new document found on the web.

In order to reduce the computational effort and the amount of labeled
documents, our methodology uses incremental clustering. Considering a
continuous and stationary document stream, we either assign each arriving
document to an existing cluster or start a new cluster. The number of
possible clusters is unlimited. At some stage, an expert is asked to label
a selected number of clusters. Cluster labeling by the expert is based on
representative documents from that cluster. All documents in each labeled
cluster are assigned the same label.

In this work, we present an active learning algorithm (ACCA) for
clustering-based classification of document streams. Our method requires
no initial training set. Unlike other methods that use clustering for text
categorization and active learning (such as Refs. 4 and 5), our method does
not limit the amount of possible clusters and allows the active learner to
label clusters rather than just single documents. We show that although at
the starting point there are no labeled documents, it is possible to improve
classification accuracy over time by using active learning and to reduce the
amount of documents that need to be labeled. Consequently, we will sub-
mit fewer queries to the experts for labeling documents that belong to new,
unlabeled clusters.
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The rest of this chapter is organized as follows. Section 2
describes the related work on active learning, incremental clustering, and
clustering-based text categorization. Section 3 presents the active learning
clustering-based classification (ACCA) algorithm. Section 4 presents the
experimental settings used for the evaluation of the proposed method and
discusses the results of the evaluation experiments. Section 5 summarizes
this chapter and outlines the directions for future research.

2. Related Work

This section covers the research in several domains, which are relevant
to the proposed method. Sub-section 2.1 describes several approaches to
incremental clustering, including fuzzy-based clustering. Sub-section 2.2
presents active learning and discusses various active learning techniques.
In sub-section 2.3, we cover existing clustering-based classification methods
with and without active learning.

2.1. Incremental Clustering

A method for clustering-based categorization of a continuous document
stream should be able to use its accumulated knowledge at any stage dur-
ing the learning process. This implies that the learned patterns evolve with
every new instance and there is no need of repeatedly processing previous
instances. This sort of clustering is referred to as an incremental cluster-
ing.5 Incremental clustering involves several challenges. The number of
arriving documents at the early stages of a document stream is small mak-
ing it difficult to obtain a high degree of clustering quality. As additional
documents arrive, it might become necessary to re-assign some previously
arrived documents to new clusters. In other words, document streams with
a different arrival order may result in different clustering results. Due to
these and other problems, there is still much work to be done before an
incremental clustering method can be regarded as accurate.”

According to Ref. 8, an important advantage of incremental cluster-
ing algorithms is that it is not necessary to store the entire dataset in the
computer memory. Consequently, the space requirements of incremental
algorithms are very small. In Ref. 8, an example of an incremental algo-
rithm is presented. In the first step of the algorithm, the first document is
assigned to the first cluster. In the next steps, when a new item arrives, it
is assigned either to one of the existing clusters or to a new cluster. The
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cluster assignment of a new document is based on the distance between the
new document and the existing cluster centroids.

In fuzzy clustering, instead of associating an item with a cluster, a mem-
bership function relates a document to a pattern. In Ref. 9, a fuzzy-based
method for incremental clustering of text documents is presented. With
this method, documents are represented as keyphrase vectors, similar to
the vector-space model,'? and the cluster centroid is defined by averaging
the vectors already assigned to this cluster. The centroid must include
all keyphrases that belong to any of the vectors in the cluster. For each
keyphrase, the averaging function takes into account only the documents
containing that particular keyphrase rather than all documents in the clus-
ter. Since the method is an incremental clustering algorithm, incoming
vectors are processed one at a time. Before a new cluster is created, the sim-
ilarity to each cluster centroid is computed treating each of its keyphrases
separately and assigning them importance degrees with respect to the clus-
ter. The document is assigned to the most similar cluster provided that the
distance of the vector to the associated cluster centroid does not exceed a
given threshold. If it exceeds the threshold, a new cluster is created.

The important feature of this method is that the final number of clusters
is determined by the algorithm rather than being limited by the user. The
only requirement is that each cluster will include similar vectors; vectors
that belong to separate clusters will be radically different. In Ref. 11, the
methods presented in Ref. 9 are revised and several crisp and fuzzy meth-
ods based on the cosine similarity principle for clustering without limiting
the final number of clusters are presented. Removing the restriction on the
total number of clusters moderately increases computation costs but it im-
proves the methods performance in classifying incoming vectors as normal
or abnormal, based on their similarity to existing clusters.

2.2. Active Learning

A general principle in machine learning is that the more training data a
learner has, the more accurate it should be. In practice, machine learning
algorithms are trained with very large amounts of training data due to the
fact that not all examples are equally informative. Some possess little or no
information value while others are extremely informative. In active learn-
ing, the learner queries a large data pool for data points that are expected
to be the most informative. Active learners are useful when labeling a data
point is expensive. With active learning, a machine learning algorithm can
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achieve higher accuracy with fewer labelled training instances. An active
learner can present queries to an expert (a human annotator), a query be-
ing a case from the input domain for which the learner does not know the
real label. These queries are the heart of the active learning framework and
allow the learner to control the training data it uses.

A stopping criterion is a potentially important element of interactive
learning algorithms and it is used to decide when to stop the active learning
process. In most cases, a simple stopping criterion allows the expert to
provide a specified number of labels, which is called the labeling budget. In
other approaches, referred to as holdout accuracy approaches, the algorithm
stops when the performance of the classifier reaches a point where the
cost of acquiring new training data is greater than the cost of the errors
made by the current model. The stopping criteria that use the intrinsic
characteristics of the classifiers are preferable since they do not require a
testing set.!?

In pool-based active learning, the learner is provided with a set of inde-
pendent and identically-distributed unlabeled instances. At each step, the
active learner chooses an unlabeled instance to request the label from the
expert by means of a querying function. In the case of text categorization
problems, the queries presented to the expert are documents from the do-
main. Since these are comprehensible to the expert, a correct label can be
assigned.' In the literature, there exist several methods for choosing unla-
beled instances for the expert to label. One of those methods is uncertainty
sampling,'? which uses a selective sampling criterion. It is accomplished by
selecting an instance based on a confidence score in the classification of the
instance. The instances having the lowest confidence scores are supposed
to be the most beneficial for labeling.

The query by committee (QBC) algorithm is an approach to version
space reduction that involves maintaining a committee of models, which are
all trained on the labeled set, but represent competing hypotheses. During
learning, whenever an unlabeled instance is available, the algorithm selects
two random hypotheses from the committee and only queries for the label

4 This is a stream—

of the new instance if the two hypotheses disagree.
based selection algorithm where the learner is given access to a stream of
unlabeled examples taken randomly from the input space according to some
unknown distribution. With time, the prediction capabilities of the learner
will improve and it will discard the majority of the examples drawn from
the stream. In the initial stage, the learner queries the expert extensively,

but this effort is reduced over time.
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Reference 15 presents an active learning framework for drifting (non-
stationary) data streams, which builds a new classifier every time it detects
a decrease in the current classifier accuracy. The framework assumes that
no historical data can be stored in memory implying that the expert should
always be available for labeling some of the incoming instances immediately
upon their arrival. The framework expresses the labeling budget as a frac-
tion of all incoming data.

Reference 16 presents a cloud-based scientific workflow platform Clowd-
Flows for online dynamic adaptive sentiment analysis of microblogging
posts. The ClowdFlows platform uses the stream—based active learning
approach, where examples are constantly arriving from a data stream and
the learning algorithm has to decide in real time whether to select an ar-
riving example for labeling or not. In a practical experiment, the arriving
tweets are split into batches of fixed size (100) and a constant portion of
each batch (10 tweets) is selected for manual labeling. The tweets selected
for labeling include 3 most uncertain tweets along with 7 random tweets.

2.3. Clustering-Based Classification

In most text categorization tasks, labeled examples (e.g., documents or
tweets) are costly to obtain, whereas unlabeled examples are much cheaper
to collect. The document—labeling requirement is a key difficulty in text
categorization algorithms, since without many labeled examples it is hard
to produce a good classifier that can classify text documents with high
accuracy. As recent studies indicate, unlabeled data can contribute to the
learning process. That is, the semi-supervised learning approach, which
uses both labeled and unlabeled data for text categorization is better than
supervised learning based on a small set of labeled data alone.

References 4 and 17 propose a text classification algorithm that com-
bines supervised and unsupervised learning. The reasoning behind this ap-
proach is that if some structure exists in the objects, it is possible to take ad-
vantage of this information and to find a short description of the data. The
difference between this algorithm and others is that given a classification
problem, the training and testing examples are both clustered before the
classification step. This is a rather time—consuming and computationally
expensive process. As a possible extension of their work, Ref. 17 suggests
using incremental clustering to handle the arrival of new documents.

In the method proposed by Ref. 18, unsupervised classification is seen
as a preprocessing step that is performed only once. Then, depending on
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the availability of labeled samples, the supervised classification is applied.
Since in real-world problems classes are not generally well separated, it is
possible to have samples from different classes in one cluster or no sample
of a given class in others. To avoid this, the method uses a combination
of multiple clustering methods e.g., EM and k-means. The authors show
that adding more clusters improves the classification performance since the
objects are described in more detail.

Active learning can be used together with clustering to improve the
classification accuracy of an incoming stream of documents or emails as
demonstrated by Ref. 19 who use a two-class active learning methodology
that incorporates active learning and clustering. The algorithm first con-
structs a classifier from a set of cluster representatives and then propagates
the classification decision to other samples via a local noise model. The al-
gorithm of Ref. 19 uses a soft cluster membership technique, which allows
a sample to be related to more than one cluster.

The authors of Ref. 2 present an active semi-supervised learning ap-
proach, which helps spam filters to better detect spam mail. One of the
problems the method is designed to solve is the unwillingness of the users to
label a large amount of emails that the spam filter is uncertain of. To solve
this difficulty, unlabeled emails are clustered and the label of one email in
each cluster, which is assumed to contain only spam or only ham emails, is
determined by the user. Such a label is propagated to similar emails in the
same cluster meaning that now the user does not have to label many emails.
Emails labeled by the user and by label propagation are used to re-train
the spam filter. The remaining emails can be clustered again to repeat the
whole process until the user is unwilling to label additional emails.

Thus, the current methods for clustering-based text categorization, suf-
fer from the following limitations:

e The active learning methods for clustering-based text categorization are
batch methods, which cannot handle labeling of new arriving documents
or update document clusters over time.

e In most text-categorization methods that use clustering, the number of
clusters is limited, which causes impurity problems with some of the
clusters.

e Clustering-based methods that do not limit the number of clusters, such
as Ref. 11, do not utilize active learning mechanisms.
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3. Methodology

This section presents an active learning algorithm for clustering-based clas-
sification of an incoming stream of text documents.

3.1. Methodology Overview

The proposed methodology deals with a stationary stream of unlabeled
documents. Since our algorithm uses clustering to classify new documents
and active learning to significantly reduce the amount of label queries that
the clustering-based classifier requires, we call it Active learning Clustering—
based Classification Algorithm (ACCA).

Each arriving document is inserted into an existing cluster or starts a
new cluster of its own, without limiting the total number of created clusters.
Once in a while, an expert is called and asked to label several clusters based
on their medoid documents. All documents in a cluster are assigned the
label given to its medoid. The same label is also associated with each
new document assigned to that cluster. We assume that as more arriving
documents belong to already labeled clusters, the amount of expert calls
should decrease dramatically.

ACCA uses an incremental clustering approach, as opposed to the
clustering-based classification algorithm of Ref. 17, which uses a static clus-
tering methodology. Moreover, the amount of clusters in their algorithm
is pre-defined, in contrast to ACCA, which does not limit the number of
clusters in advance. The spam detection algorithms presented in Refs. 20
and 2 use active learning like ACCA does. However, these algorithms do
not use incremental clustering and limit the number of clusters that can be
created. In this paper, we show that removing the restriction on the total
number of clusters can improve the classification accuracy of a clustering-
based classifier.

To sum up, the unique properties of the proposed ACCA methodology
for clustering-based classification of stationary document streams include
the following:

e It uses clustering-based active learning to reduce the amount of docu-
ments that need to be labeled by an expert.

e It does not require the expert to be always available for immediate la-
beling of selected incoming documents by occasionally calling the expert
for a batch labeling of several unlabeled clusters.

e It removes the restriction on the total number of clusters to handle mul-
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tiple topics and subtopics.

e It uses incremental clustering to improve the classification accuracy with
each new arriving document.

e It uses an advanced, keyphrase-based representation of text documents.

3.2. Active Learning Clustering-based Classification
Algorithm (ACCA)

The detailed step-by-step description of the ACCA algorithm is provided
below.

Input: The input of the algorithm is a stationary stream of unlabeled
textual documents, which belong to a fixed and known set of classes (e.g.,
‘spam’ and ‘not-spam’ emails). The assumption is that the stream can keep
going forever although in our evaluation experiments we were limited with
the amount of documents in the available datasets.

Output: Each incoming document either is assigned to one of the known
classes (based on the label of its cluster) or is identified as an unknown
type of document (if its cluster has not been labeled yet). These unlabeled
documents are eventually classified by the algorithm after their respective
clusters are labeled by a domain expert.

The algorithm has the following parameters:

o Similarity threshold - can take a value between zero and one. When
the document similarity to the nearest cluster is below this threshold, it
starts a new cluster.

e Clustering method - in our experiments, we used either cosine or fuzzy
cosine clustering methods. These methods are explained below.

o Cluster labeling strateqy - we used one of the following strategies for
choosing the clusters to be labeled by the expert: random sampling,
density calculation, cluster size, and radius calculation. These strategies
are explained below.

e Percentage of unlabeled clusters chosen for the expert labeling. We used
the following values in our experiments: 15%, 50% and 100%.

3.2.1. Step 1: Document Representation

We use the GenEx algorithm?! to represent each document by a list of
keyphrases and a vector of their importance weights (scores). In Ref. 21,
the concept of keyphrases is defined. A keyphrase may be a single keyword
or a phrase (n-gram) of 2-3 consecutive words. A keyphrase list is defined by
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Ref. 21 as a short list of phrases (typically 5-15 noun-phrases) that capture
the main topics discussed in a given document. Thus, each document may
be represented by a vector of k keyphrase weights (1 < k < m) where m is
the maximum number of keyphrases in a given document. The score w;; of
a keyphrase t; in a document d; is calculated by the GenEx algorithm as
a function of the keyphrase in-document frequency and the location of the
first appearance of each word stem comprising the keyphrase.

3.2.2. Step 2: Document Clustering

At the beginning of the process, there are no documents. As we start
obtaining documents via a document stream, we apply the document rep-
resentation model presented in Step 1 to the incoming documents. The
documents obtained from the stream are clustered upon their arrival. Since
we focus in our work on massive document streams, we may not be aware of
all possible topics and subtopics presented by the incoming documents. To
avoid information loss that may affect the performance during the classifica-
tion phase, we do not limit the number of clusters, similar to the approach
presented in Ref. 9.

In our evaluation experiments, we use two incremental clustering algo-
rithms: Crisp Cosine Clustering (CCC) and Fuzzy-Based Cosine Clustering
(FCC). Both algorithms, which are presented in Ref. 9, process one arriving
vector at a time. When the first document arrives, it forms a new cluster.
Each cluster is represented by its centroid. Both algorithms are partition-
ing clustering algorithms, which produce a flat partition of documents into
clusters.

The Crisp Cosine Clustering (CCC) algorithm defines the cluster cen-
troid ¢ as a normalized vector of the sum of all vectors already in the

cluster C":
c= Z wji/ Z Wi
J J

where the importance weights w;; are normalized with respect to the Eu-

,dj €C (1)

clidean norm || >, wj; || of the centroid. To measure the similarity between
an incoming vector v = (v1, .., Uy, ) and a centroid ¢ = (c1, , ¢y, as v arrives,
the CCC algorithm normalizes the importance weights of v with respect to
its Euclidean norm ||v|| and then calculates the inner product similarity by
Eq. (2), which considers only keyphrases that appear in both vectors:

m

SZC-UZZ(Ck'Uk) (2)

k=1
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The Fuzzy-Based Cosine Clustering (FCC) algorithm assigns to each in-
coming vector v a grade of membership x(v, ¢), which is a number between
0 and 1, computed as a function of the ratio ||v||/||c|| between the Eu-
clidean norm of the document vector and the Euclidean norm of the cluster
centroid. The similarity is then defined as:

s = x(v,¢)(c-0)/(lv]l - llell) (3)

The membership function between v and c is defined as the fraction:

9.2 2
za’(l—a), a< %
NOPES El (@
1, a > %
where a = |[v]|/]|¢|| is the relative size of v with respect to ¢. The above

membership function is proportional to a as long as « is relatively small
(less than a pre—defined threshold). For all values of a above the threshold,
the function is constant and equal to one. Based on Ref. 11, the threshold
we use in Eq. (4) is 2/3. Consequently, the document-cluster similarity of
vectors, which are much smaller in size than the cluster centroid ¢ (less
than 2/3 of its norm) will be lower than the “crisp” cosine similarity, which
totally ignores the size of the vector v.

Finally, both algorithms (CCC and FCC) assign the vector v to the
cluster that produces the maximum similarity (calculated by Eqs. (2) and
(3), respectively), provided it is above a pre-defined similarity threshold.
If all similarity values are below this threshold, the incoming vector starts
a new cluster. Both algorithms do not limit the number of clusters, leading
to continuous creation of new clusters with arrival of new documents, which
are dissimilar to existing clusters. The new clusters will be small (containing
just one document in the beginning) and thus more pure (homogeneous).

3.2.3. Step 3: Calling the Expert

The arriving documents are clustered using an incremental clustering algo-
rithm (such as CCC or FCC). In the beginning of the document stream,
no cluster has a class label and consequently, all arriving documents are
unlabeled as well. After the arrival of z documents, a domain expert is
called for the first time. The number x is specified by the user based on
the document arrival rate and other constraints. Every time an expert is
called, he/she is asked to label a certain percentage p of unlabeled clusters.
The percentage p is specified by the user, based mainly on the labeling
budget, since assigning a label to each cluster requires reading the content
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of a document, which is the medoid of that cluster. We assume that only
one label can be assigned to each cluster.

The expert is called again after the arrival of another x unlabeled docu-
ments, which do not belong to any of previously labeled clusters. Assuming
that the document stream is stationary and the document arrival rate is
relatively stable, we expect the time intervals between the successive expert
calls to increase over time along with a decrease in the actual number of
clusters the expert is asked to label upon each call. Thus, if there is a fixed
cost associated with each expert call and another fixed cost for each labeled
cluster, the total cost of expert services should decrease over time.

3.2.4. Step 4: Choosing the clusters to label

Every time the expert is called, we ask him to label y unlabeled clusters,
which are then used by the clustering-based classifier. In our experiments,
we have evaluated the following strategies for choosing the clusters to label:

e Random Sampling - With random sampling, the clusters brought to the
expert are chosen randomly from the set of still unlabeled clusters. The
random sampling method is used as a baseline for comparison to all other
methods.

e Cluster Density - Cluster density is defined as an average similarity of
each document to all other documents in a cluster. Density is calculated
by:

Z?:l Z?:l S<$i7 :Ej)

n

density = (5)
The n parameter in Eq. (5) is the number of documents in a given cluster
and s(x;,x;) represents similarity between documents x; and z;. In
our evaluation experiments, we test if preferring more dense clusters for
the expert labeling may improve the performance of a clustering-based
classifier.

e (Cluster Size With this strategy, we bring to the expert the medoids of
the largest clusters that the expert has not labeled yet. By choosing this
strategy, we assume that the clusters already having more documents
than others will continue to obtain more documents from the incoming
stream and thus should be preferred for labeling.

o (Cluster Radius - Cluster radius, similar to the cluster density, is defined
as an average distance of the cluster documents to the cluster medoid.
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Radius is calculated the following way:

Lindm 0

The n parameter in Eq. (6) is the number of documents in a given cluster.

radius =

In our evaluation experiments, we test if preferring clusters with a smaller
radius may improve the performance of a clustering-based classifier.

3.2.5. Step 5: Cluster Labeling

For each of y clusters that the expert is asked to label, we calculate the
cluster medoid. The medoid is defined as the most centrally located item in
a cluster, i.e., this is the document, which has the minimal average distance
to all other documents in the cluster. When the expert receives a medoid
and labels it, we assign the same label to all documents in the cluster. When
a new document is assigned to a labeled cluster, it is labeled as having the
class of the cluster. Thus, the expert provides us with knowledge for the
clustering-based classification mechanism.

3.2.6. Step 6: Stopping Criteria

The purpose of active learning is to improve the accuracy of the learner
while remaining sensitive to data labeling costs. It is therefore reasonable
to stop the active learning process if it does not provide a significant im-
provement in the classification performance anymore. In our evaluation
experiments, we seek to determine the fastest way of reaching the point
where the majority of arriving documents can be classified without an ex-
pert, since they are assigned to a labeled cluster, and the difference in classi-
fication performance between successive expert calls is minimal. After that
point, additional expert calls will not be justified and the algorithm can
continue classifying incoming documents on its own, under the assumption
that the arriving data is generated by a stationary process.

4. Evaluation

We have evaluated the proposed method on two document corpora from two
different domains. The goal was to find the best algorithm settings that
will provide the fastest way of reaching the point where nearly all arriving
documents are labeled without the expert’s assistance. We proceed below
with describing in detail the corpora, the data preprocessing operations,
and the experimental setup.
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4.1. Datasets

The first document corpus, the TRECO7p email corpus, was used in Ref. 2.
It is available at http://plg.uwaterloo.ca/~gvcormac/treccorpus07/.
This corpus contains all emails delivered to a particular server between
08/04/2007 and 06/06/2007 and it includes desired emails i.e., ham emails,
and spam emails. Out of the 75,419 mails in the corpus, 25,220 are ham
and 50,199 are spam.

The second corpus used in this work consists of a set of 582 terrorist
documents and 21,528 normal documents. The terrorist documents were
downloaded from various militant Jihadi websites in English, while the nor-
mal documents were collected by passive and anonymous eavesdropping on
a small network of university computers used by students from a university
department. The documents are from different periods in time and deal
with various topics. This corpus was previously used in Ref. 3.

4.2. Preprocessing

We cleaned the documents before running the experiments. In the
TRECO07p corpus, MIME tags were removed and the documents were left
only with data relevant to their classification. In the course of this process,
we discovered that 4,229 of the documents were either empty or invalid.
These documents were removed and were not used in the experiments.
What remained was a corpus composed of 71,190 email documents of which
25,113 were ham emails and 46,077 spam emails.

To create a vector representation of each document, we used the Extrac-
tor tool which is based on the GenEx algorithm.?! The GenEx algorithm
selects the most important keyphrases in a document and represents each
document as a vector of keyphrase weights. The algorithm determines a
list of keyphrases that represent the main content of a given document un-
der two conditions. The first condition is a vector-size limitation that is
given as an input from the user. In this case, the algorithm chooses the
keyphrases that are most representative of each document (have the high-
est importance weights). The second condition removes from the keyphrase
list the phrases that do not provide information about the document con-
tent such as conjunctions and other stopwords. In our experiments, we
limited the vector size of each document to the maximum of 20 keyphrases.
Since different documents in the same corpus may be represented by com-
pletely different keyphrase vectors, the total size of the corpus vocabulary
is bounded by 20N, where NN is the number of corpus documents.
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4.3. Experimental Setup

In our experiments, we used the following parameters to determine the best
settings for reaching a point where most incoming documents are classified
correctly by the ACCA algorithm as quickly as possible.

Similarity threshold. The similarity threshold is used to determine
whether the similarity value calculated by formula Eq. (2) is high enough
for a document to be added to the nearest cluster or it should start a new
cluster. This threshold affects the amount and the content of the clusters
labeled and used by the ACCA algorithm. In our experiments, we used the
similarity thresholds of 0.1, 0.15, 0.2 and 0.3. In the preliminary runs of
the algorithm we found that a threshold higher than 0.3 produced a very
large amount of clusters whereas a threshold lower than 0.1 produced too
few clusters.

Clustering algorithm. The clustering algorithm used by ACCA is of a
key importance. It affects the way the clusters are created, the amount of
created clusters, the assignment of documents to clusters, and finally the
cluster labeling process performed by the expert. In our experiments, we
used the following two clustering algorithms (see sub-section 3.2.2):

e Crisp Cosine Clustering.??
e Fuzzy-based Cosine Clustering.’

These clustering algorithms were chosen since they are incremental and
they do not limit in advance the amount of created clusters. In addition,
these and similar algorithms have demonstrated a reasonable performance
for detection of anomalous web documents in our previous work.% 1122

Cluster Selection Strategy. During the active learning phase of the
ACCA algorithm, the expert obtains a certain amount of clusters to la-
bel. Each cluster is represented by one document, which is the medoid of
that cluster. The clusters to label are chosen using several strategies. In our
experiments, we use the following selection strategies, which were fully dis-
cussed in sub-section 3.2.2 above: random sampling, cluster density, cluster
size, and cluster radius.

Cluster Labeling Percentage. Every time the expert is called, he is asked
to label some percentage of unlabeled clusters. In our experiments, we
tested the values of 15%, 50% and 100% of unlabeled clusters that were
selected for labeling by the expert.

As explained above, the ACCA algorithm has four parameters. Using
combinations of those parameters, we composed a series of experiments.
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The following settings were evaluated:

Four values of the similarity threshold (0.1,0.15,0.2,0.3)
Two clustering algorithms (crisp cosine and fuzzy cosine)

Four clustering strategies (random sampling, density calculation, cluster
size, radius calculation).
e Three values of cluster labeling percentage (15%, 50%, 100%).

Thus, we have conducted 96 experiments per dataset representing the
Cartesian product of these settings (4-2-4-3 = 96) and a total of 192
experiments for both datasets.

4.4. Performance Metrics

We have used the following metrics to measure the quality of the algorithm
results and to find the best combination of parameter settings.

Identification Rate. We refer to identified documents as documents that
at the end of the experiment were assigned to one of the labeled clusters,
regardless of what their real class was. The identification rate of each
experiment was calculated using the following formula:

Amount_of Zidenti fied_documents

(7)

False Positive Error Rate. We refer to false positive documents as
ham/non-terror documents that were classified falsely as spam/terror doc-
uments. The False Positive Error Rate of each experiment was calculated
using the following formula:

Identi fication_rate =
/ Total _amount_of _documents

Amount_of_false_positive_documents

(8)

False Negative Error Rate. We refer to false negative documents as

FalsePositiveError Rate =
Amount_of _identi fied_documents

spam/terror documents that were classified falsely as ham/non-terror doc-
uments. The False Negative Error Rate of each experiment was calculated
using the following formula:

Amount_of_false_negative_documents

9)

Expert Labeling Cost. We define C' as the labeling cost of a single expert
call in the following way:

FalseNegative Error Rate =
I Amount_of _identi fied_documents

C=a+vy-c (10)

The total cost of one expert visit is represented by C', whereas a is the
fixed cost of the expert’s call and ¢ is the cost of labeling a single document.
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We define y as the number of documents the expert labeled during a single
call. In this work, we take a as equal to 100 and ¢ as equal to 1, which
simply means that the fixed cost of the expert’s call is equal to the cost of
labeling 100 documents.

4.5. Analysis of Results
4.5.1. Clustering algorithm effect

The clustering algorithm used by ACCA affects the amount of created
clusters, the content of each cluster, the labeling queries submitted to the
expert, and finally the clustering-based classification decisions of the algo-
rithm. Table 1 and Table 2 show the effect of clustering algorithms on the
obtained results for the terror and the email datasets, respectively.

Table 1. Evaluation of clustering algorithms in the terror dataset

Algorithm Min Max Mean  Std.
Deviation
Crisp Document Identification rate (%) 77.96 99.65 93.97  5.48
Cosine False Positive Error Rate (%) 0.56 1.69 1.00 0.395
False Negative Error Rate (%) 0 0.2 0.003  0.009
Expert labeling cost 1044 3224 1797 654
Fuzzy Document Identification rate (%) 71.64 99.38 93.51  7.07
Cosine False Positive Error Rate (%) 0.411 0.74 0.58 0.13
False Negative Error Rate (%) 0 0.43 0.00 0.000
Expert labeling cost 2614 5562 3787 899

Table 2. Evaluation of clustering algorithms in the email dataset

Algorithm Min Max Mean  Std.
Deviation
Crisp Document Identification rate (%) 89.77 99.49  97.42 2.7
Cosine False Positive Error Rate (%) 0.61 2.24 1.40 0.65
False Negative Error Rate (%) 1.18 3.61 2.31 0.63
Expert labeling cost 1569 8908 4250 2448
Fuzzy Document Identification rate (%) 90.89 99.98  97.96  2.42
Cosine False Positive Error Rate (%) 0.43 1.21 0.69 0.221
False Negative Error Rate (%) 1.61 4.93 3.12 0.844
Expert labeling cost 6509 17595 11007 3813

It is evident from both tables that the cost of expert labeling with the
fuzzy cosine is several times higher than the cost of expert labeling with
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the crisp cosine. This is because the fuzzy cosine algorithm tends to create
more clusters and thus needs more clusters to be labeled by the expert.
However, the False Positive Error Rate with the fuzzy cosine algorithm is
nearly two times lower than with the crisp cosine algorithm. T-tests have
shown that the difference in the False Positive Error Rate is statistically
significant in both datasets. On the other hand, in the email dataset, the
False Negative Error Rate with the crisp cosine clustering is significantly
lower than with the fuzzy cosine algorithm. The document identification
rates are quite high in both datasets disregarding the clustering algorithm.
The mean Kappa Statistic?® values for the terror dataset are 0.834 and
0.898 with the Crisp Cosine and the Fuzzy Cosine algorithms, respectively.
In the email dataset, which is less imbalanced, the mean Kappa Statistic
values are higher: 0.919 (CCC) and 0.918 (FCC).

4.5.2. Cluster Selection Strategy Effect

On each call, the expert receives a certain amount of clusters to label.
Those clusters can be selected using several strategies. Table 3 and Table
4 show the effect of cluster selection strategies on the obtained results in
the terror and the email datasets, respectively.

Table 3. Evaluation of cluster selection strategies in the terror dataset

Strategy Min. Max.  Mean Std.
Deviation

Random  Document Identification rate (%) 71.63 99.64 88.62 10.27

False Positive Error Rate (%) 0.41 1.69 0.88 0.44
False Negative Error Rate (%) 0 0 0 0
Expert labeling cost 1115 5562 2943.75  1210.82
Density =~ Document Identification rate (%) 89.81 99.64 95.15 3.01
False Positive Error Rate (%) 0.43 1.4 0.78 0.34
False Negative Error Rate (%) 0 0.04 0.01 0.01
Expert labeling cost 1044 5562 2718.46  1306.00
Radius Document Identification rate (%) 90.13  99.68  95.560 2.72
False Positive Error Rate (%) 0.43 1.43 0.79 0.35
False Negative Error Rate (%) 0 0.03 0.004 0.01
Expert labeling cost 1087 5562 2765.88  1283.85
Size Document Identification rate (%)  90.13  99.65  95.57 2.72
False Positive Error Rate (%) 0.43 1.43 0.79 0.35
False Negative Error Rate (%) 0 0.03 0.004 0.01

Expert labeling cost 1048 5562 2741.75  1343.05
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Table 4. Evaluation of cluster selection strategies in the email dataset

Strategy Min. Max. Mean  Std.
Deviation

Random  Document Identification rate (%) 89.70 99.98  96.11 4.1

False Positive Error Rate (%) 0.43 2.24 1.08 0.6
False Negative Error Rate (%) 1.18 4.93 2.71 1.22
Expert labeling cost 2080 17595 8221 4691
Density =~ Document Identification rate (%) 94.54 99.98  98.13  1.66
False Positive Error Rate (%) 0.44 2.09 1.03 0.61
False Negative Error Rate (%) 1.71 4.93 2.78 1.18
Expert labeling cost 1569 17283 7349 4681
Radius Document Identification rate (%)  95.07 99.98  98.24  1.56
False Positive Error Rate (%) 0.44 2.23 1.05 0.67
False Negative Error Rate (%) 1.52 4.93 2.63 1.18
Expert labeling cost 1602 17283 7464 4760
Size Document Identification rate (%) 95.43 99.98  98.29  1.47
False Positive Error Rate (%) 0.44 2.09 1.02 0.62
False Negative Error Rate (%) 1.66 4.93 2.74 1.13
Expert labeling cost 1571 17283 7478 4745

In both datasets, we have not found significant differences between var-
ious cluster selection strategies using ANOVA, although the false positive
\negative rates are higher with the random selection strategy. This makes
the random strategy inferior to all non-random strategies evaluated by us.

4.5.3. Cluster labeling percentage effect

Every time the expert is called, he is asked to label a certain amount of
unlabeled clusters. This amount is defined as a percentage of currently
unlabeled clusters. In our experiments, we evaluated the values of 15%,
50%, and 100% of unlabeled clusters. The results are shown in Tables 5
and 6.

As expected, the identification rate increases as a larger percentage of
clusters is selected from the set of unlabeled clusters. Not surprisingly,
the increase in the identification rate is accompanied by an increase in the
expert labeling cost. The false positive \false negative percentage grows
as more clusters are labeled though its growth is statistically insignificant.
Running ANOVA on the results has shown that the difference between
choosing 15%, 50%, and 100% of unlabeled clusters is insignificant in all
parameters, except the lower identification rate and the higher labeling cost
with the 15% labeling. This means that we can choose 50% of unlabeled
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Table 5. Evaluation of cluster labeling percentages in the terror dataset

Cluster ratio Min  Max  Mean Std.
Deviation
15% Document Identification rate (%) 71.64 94.62 88.29 8.01
False Positive Error Rate (%) 043 1.69 0.76 0.37
False Negative Error Rate (%) 0 0.04 0.01 0.01
Expert labeling cost 1044 4742 2593 1103
50% Document Identification rate (%) 91.18 97.9  94.97 1.891
False Positive Error Rate (%) 041 146 0.8 0.36
False Negative Error Rate (%) 0 0 0 0
Expert labeling cost 1087 5371 2819 1320
100% Document Identification rate (%) 95.98 99.65 97.97 1.63
False Positive Error Rate (%) 046 148 0.82  0.37
False Negative Error Rate (%) 0 0 0 0
Expert labeling cost 1115 5562 2966 1381

Table 6. Evaluation of cluster labeling percentages in the email dataset

Cluster ratio Min  Max Mean  Std.
Deviation
15% Document Identification rate (%) 89.77 97.58 94.92 2.69
False Positive Error Rate (%) 043 2.24 1.1 0.63
False Negative Error Rate (%) 1.18 3.91 238 0.96
Expert labeling cost 1569 17595 7310 4624
50% Document Identification rate (%) 97.72 99.52  98.6 0.5
False Positive Error Rate (%) 0.44 2.01 0.99 0.57
False Negative Error Rate (%) 1.67  4.87 2.82 1.16
Expert labeling cost 1602 17410 7809 4742
100% Document Identification rate (%) 99.05 99.98 99.56 0.35
False Positive Error Rate (%) 0.44  2.09 1.05 0.64
False Negative Error Rate (%) 1.1 4.93 2.94 1.27
Expert labeling cost 2080 17283 7766 4737

clusters and still obtain classification performance comparable to 100%.
This may be explained by the fact that when labeling 50% of documents
the expert skips small clusters, which have a minimal effect on the overall
clustering-based classification accuracy.

4.5.4. Similarity Threshold Effect

The similarity threshold is used to determine whether an incoming docu-
ment should be assigned to an existing cluster or start a new cluster. In
Tables 7 and 8, we show the effect of the similarity threshold on the results
in the terror and the email datasets, respectively.
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Table 7. The similarity threshold effect in the terror dataset

Similarity Min Max  Mean Std.
Deviation
0.1 Document Identification rate (%) 74 99.15 94.1 6.63
False Positive Error Rate (%) 0.75 147 1.21 0.23
False Negative Error Rate (%) 0 0.13  0.03 0.05
Expert labeling cost 1044 2915  1991.25 831.45
0.15 Document Identification rate (%) 72.25 99.94 94.53 6.45
False Positive Error Rate (%) 0.74 157 1.16 0.2
False Negative Error Rate (%) 0 0.14  0.03 0.04
Expert labeling cost 1165 3545 2439 1003
0.2 Document Identification rate (%) 71.64 96.86 93.44 5.88
False Positive Error Rate (%) 0.67 169 1.05 0.35
False Negative Error Rate (%) 0 0.04 0.01 0.01
Expert labeling cost 1553 4043 2826 1060
0.3 Document Identification rate (%) 73.28 99.65 94.05 6.73
False Positive Error Rate (%) 041 0.68 0.54 0.1
False Negative Error Rate (%) 0 0.01  0.0006  0.003
Expert labeling cost 1872 5562 3913 1313

Table 8. The similarity threshold effect in the email dataset

Similarity Min Max Mean  Std.
Deviation
0.1 Document Identification rate (%) 90.71 99.73 98.02 2.15
False Positive Error Rate (%) 1.82  3.55 2.58 0.63
False Negative Error Rate (%) 312 11.88 6.85 3.03
Expert labeling cost 1569 8197 4401 2550
0.15 Document Identification rate (%) 91.46 99.61 98.07 2.04
False Positive Error Rate (%) 1.24  2.69 1.7 0.38
False Negative Error Rate (%) 247 794 5.19 1.74
Expert labeling cost 2094 10224 5875 3142
0.2 Document Identification rate (%) 89.77 99.72 9791 2.56
False Positive Error Rate (%) 079 224 1.48 0.57
False Negative Error Rate (%) 1.76  4.93 3.63 0.93
Expert labeling cost 2086 12412 7828 3724
0.3 Document Identification rate (%) 90.27 99.98 97.47 2.58
False Positive Error Rate (%) 043 1.13 0.62 0.2
False Negative Error Rate (%) 1.18  1.94 1.8 0.18
Expert labeling cost 5727 17595 12409 4624

ANOVA has shown a significant increase in the False Positive and False
Negative Error Rates with a decrease in the similarity threshold. This
can be explained by a decrease in the number of clusters as the similarity
threshold becomes lower. Consequently, the clusters become larger and
more heterogeneous, resulting in a declining classification performance.
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4.5.5. Time-based analysis

Figures 1 and 2 show the classification accuracy as a function of time
(amount of arriving documents) in the terror and the email datasets, re-
spectively, with the 50% labeling percentage. We define accuracy as the
portion of documents identified correctly by the clustering-based classifier
out of all incoming documents. The graphs show the difference between
two incremental clustering algorithms (Crisp Cosine Clustering vs. Fuzzy
Cosine Clustering) and three similarity thresholds (0.10, 0.15, and 0.20).
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Fig. 1. Accuracy as a function of time in the terror dataset

The X-axis shows the number of incoming documents over time, while
the Y-axis shows the percentage of arrived documents we were able to
classify correctly using the clusters labeled by the expert. Each point on
the graph represents an expert’s call when he was asked to label several
unlabeled clusters.

We can see that the frequency of expert calls increases as the similar-
ity threshold goes up. This occurs because a higher similarity threshold
increases the number of clusters, which in turn requires calling the ex-
pert more frequently. The graphs also demonstrate that the crisp cosine
clustering results in a higher percentage of correctly identified documents
than the fuzzy cosine clustering and that there is no significant difference
between the similarity thresholds in terms of accuracy. Thus, based on
our results in sub-section 4.5.4 above, the recommended clustering method
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Fig. 2. Accuracy as a function of time in the email dataset

is Crisp Cosine Clustering with the similarity threshold of 0.2, which is a
compromise between the accuracy rate and the FP/FN rates.

We compared the accuracy of our clustering-based algorithm to super-
vised classifiers. In the terror dataset, we used Weka and a resampling
filter to deal with the imbalanced data (21, 528 normal documents and only
582 terror documents). The resampling method is supervised, implying
that 100% of arrived documents had to be identified by the expert before
choosing equal number of instances from each class. The terror dataset
was processed using the J48 classifier with 10-fold cross-validation. We ob-
tained a False Positive Error Rate of 26%, a False Negative Error Rate of
1% and 86.67% of correctly classified instances. The accuracy percentage
was lower than obtained when using the ACCA algorithm and the False
Positive Error Rate was much higher. In Ref. 20, several supervised algo-
rithms were applied to the same email dataset that we used in this paper.
The results showed accuracy rate of 66.7% for SVM and Naive Bayes, which
is considerably lower than the rate we have achieved here.

5. Conclusions

In this paper, we introduced a novel methodology for clustering-based clas-
sification of stationary document streams using active learning. The em-
pirical evaluation shows that by using active learning and clustering we can
improve the classification rate over time. The proposed method aims at
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a stream of incoming documents where, in the beginning, all documents
are unlabeled. The documents arriving from the stream are clustered and
either assigned to an existing cluster or used to start a new cluster. The
number of possible clusters is not limited. Occasionally, we call an expert
who receives several clusters to label. The expert labels the clusters based
on the cluster medoid and all documents in a labeled cluster are assigned
the same label. With arrival of more documents and their labeling, we
should call the expert less frequently considering the fact that most docu-
ments are expected to belong to existing clusters and thus we can identify
them automatically without using the services of a human expert.

We have evaluated the algorithm on two document streams from two
different domains. The goal of our experiments was to find the fastest way
of reaching the point where a high percentage of arriving documents can be
categorized correctly without calling an expert. The number of evaluated
algorithm settings was 192. The conclusion was that the best setting is to
use the Crisp Cosine Clustering algorithm together with either density, size
or radius-based cluster choosing strategy and labeling 50% of unlabeled
clusters on each expert call. The recommended similarity threshold for
clustering is 0.2.

Future research may include evaluation of the proposed method on ad-
ditional document streams to test the consistency of the trends shown in
this work, especially for multi-class text categorization problems. Another
research direction may be increasing the number of documents labeled by
the expert in each cluster. By labeling additional documents, we may be
able to decrease the false negative \positive rates. However, this approach
will also increase the total amount of documents labeled by the expert.

We have used crisp cosine clustering and fuzzy cosine clustering as incre-
mental clustering algorithms. In future work, other incremental clustering
methods, such as Refs. 24 and 7 may be used. In this work, we have assumed
stationarity of the incoming document stream. It would be interesting to
develop methods for incremental clustering of non-stationary data streams,
where the lexicon and the topic set may change over time. As opposed to a
clustering-based classifier, we may use a supervised classification algorithm,
such as Naive Bayes or SVM that will induce a classification model from
the data labeled by the expert.
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Chapter 6

Supporting the Mining of Big Data by Means of Domain Knowledge
During the Pre-mining Phases
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The selection and pre-processing of data are key activities in the
interpretation and extraction of knowledge from data streams. Their
role become even more crucial in the context of big data mining where
huge amounts of (volatile) data from various types are normal, and
simply storing all data is not only becoming infeasible but also
undesired. This makes the exploitation of domain knowledge the key
ingredient to properly reduce the data stream while simultaneously
keep information loss to a minimum. Using several examples from the
completely different fields of cyber security, astronomy (in particular
the detection of exoplanets), criminal justice (in particular in the
Netherlands) and cyber security the importance of domain knowledge
is illustrated. For each of these examples time series analysis is the
goal, but the challenges during the selection and pre-processing stages
are completely different. However, despite the differences, two
different, but related, trends can be distinguished. The first trend shows
that steps that need to be emphasized during pre-processing depend on
the consistency of the time series data, and the second trend shows a
shift from optimizing the records included in the time series data to
optimizing the approach taken to allow the data to be mined.

1. Introduction

According to IBM, about 2.5 Exabyte (=2.5x10'® bytes) of data is
produced every day,' and this is still growing exponentially. This is
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affecting almost all facets of society, ranging from science (e.g. CERN,
genome project, etc.) via the monitoring of processes (e.g. the weather,
manufacturing, etc. ) to social life (e.g. social media, video streaming,
etc.) However, this growth is also creating daunting challenges, not only
in the collection, storage and access of such large data streams, but also
the processing and interpretation. Such large data streams, and the
problems surrounding them, are typically referred to as big data.

Big data is either defined as a term for i) a vague metaphor for
solving complicated problems with data or ii) data that cannot be handled
with conventional tools.> Commonly, big data is characterized by the
‘3Vs’, i.e. high volume, high velocity and/or high variety,’ but other
words starting with ‘V’ are sometimes also included (e.g. value,
veracity, etc.)' High volume indicates the large quantity of data
involved. High velocity is the speed at which data is created, while the
high variety indicates the large variety of data types involved (e.g.
structured databases, images, text, audio, etc.).

Each phase of big data has its own challenges and is leading to new
developments.® Since the storage of the Terabytes of data is non-trivial,
big data is driving recent developments in storage technology. Another
technological problem is the increasing fraction of potentially interesting
data that can never be analyzed due to the huge amounts of data that are
collected.® Furthermore, the sheer variety of non-traditional data (e.g.
unstructured data, audio or video files, etc.) provides new processing
challenges.” Finally, averting privacy breaches, due to the combining of
different data streams, is another challenge.®’

The goal of big data is to extract information to enable enhanced
decision making, insight discovery or process optimization,'* and this is
done with data mining. This field also shows many new developments
and challenges due to big data. For example, the advances in distributed
computing (such as MapReduce and Hadoop) have been driven by big
data,” while cloud computing allows data mining without the need to
invest in expensive infrastructure.' Furthermore, creating and
maintaining a process that extracts and transforms relevant information
from the original sources for analyses is a continuous challenge.’
Another challenge for big data is interpreting the results and making
them understood by the decision makers. This not only includes
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understanding how a result was obtained, but also develop a way to
visualize the results in an intuitive way.

The big data and mining challenges get compounded when the time
component is important. For example, due to concept drift statistical
properties in a data stream can change over time'? (e.g. trending topics
on Twitter, but also periodic seasonal variations). Another related
challenge is the duration of the life cycles of the phenomenon that could
be present in the data stream. A final example is the challenge to
visualize the information that is continuously extracted from the data
streams. Presenting such data over both large and very short timescales
simultaneously requires new visualization techniques."?

In this chapter the challenges with big data during the selection and
pre-processing stages of the mining process are discussed. This is
illustrated with three real-life examples from very different fields that all
have a strong time component, namely: astronomy, criminal justice and
cyber security. It will be shown that each case has its own unique
challenges that are mainly motivated by domain knowledge. Section 2
presents an outline of the different phases in data mining, and paints a
broad picture of the problems during the Selection stage (Sect. 2.1) and
the pre-processing stage (Sect. 2.2). Section 3 presents the challenges for
the astronomy case, Sect. 4 those for the criminal justice system, and
Sect. 5 those for the Cyber Security case. In Sect. 6 the different cases
are compared and their differences and similarities are discussed with
regard to domain knowledge (Sect. 6.1) and the presence of the time
component (Sect. 6.2). Finally, in Sect. 7 the conclusions are presented.

2. The Pre-mining Phases

To mine data streams it is important to take the process of Knowledge
Discovery in Databases (KDD) into account. Knowledge Discovery is
defined as “the non-trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data”,'* and is an
iterative process that consist of multiple stages. Although the approaches

that have been outlined by KDD have been refined over years, e.g. in the
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form of CRISP' or SEMMA,'® nine steps can in essence be recognized,
which can be summarized in 5 more general stages:
(1) Selection

(a) Developing and understanding the application domain

(b) Creating a target dataset/data stream
(2) Pre-processing

(c) Data cleaning and pre-processing
(3) Transformation

(d) Data reduction and projection
(4) Data mining

(e) Choosing the data mining task

(f) Choosing the data mining algorithm

(g) Data mining
(5) Interpretation/Evaluation

(h) Interpreting

(1) Consolidating discovered knowledge.
Nowadays the term data mining has a very broad meaning, and is used
for almost every exercise that tries to extract information.'” This can
range from a pure statistical analysis where the dataset, the model and
the goal are all very well defined to a completely blind search for
patterns in an unknown data stream. In practice, most data mining
exercises are in between these extremes, and (some) ideas about the
content of the datasets and the goal of the data mining are known
beforehand.

Since most data mining exercises have an idea about the goal, the
first two stages of KDD are crucial for a successful campaign. These
stages, the focus of this chapter, become even more important when it is
not possible to store all data or the data has a time component. Since it is
often difficult to explore the original data stream for potential features
when a time component is involved,'® the selection criteria and pre-
processing procedures must typically be developed before the target data
stream can even be created. In the remainder of this section the first two
steps of KDD are described in a more general way.



122 R. Cornelisse & S. Choenni

2.1. The Selection Stage

The goal of the “Developing and understanding the application domain”
step is to obtain feeling for the main issues in the application domain to
identify a well defined problem. Typically this problem needs to be
broken down in many sub-questions, lead to the identification of new
issues that need to be solved. For example, a common problem in Cyber
Security is: “How can malicious intrusions be detected in high-speed
network traffic in real-time without causing noticeable delays (by the
users of the network).” An obvious sub-question is: “What are malicious
intrusions?” which leads to the question of: “What does a specific
malicious intrusion (e.g. certain malware) look like?”’

Obviously, the fact that the main problem is divided into a set of sub-
questions does not mean that these are less important. On the contrary, it
is only by answering all these sub-questions that a data mining exercise
can be developed to find a solution for the main problem. However, one
thing to guard against is losing sight of the main problem. In general, it is
better to only answer the smallest set of questions that still meet the
minimum requirements to answer the main problem. Afterwards, aspects
that could still need further clarification can be identified, and if needed a
new data mining problem can be formulated.

One thing to note is that typically more in-depth domain knowledge
is needed when the sub-question becomes more specific. This leads to a
better understanding of the application domain, leading to a better
formulation of the higher level questions or even the main problem. If a
question has finally been divided in a set of sub-questions that cannot be
further broken down, its optimal solution is usually evident. At this point
it is time to start thinking about creating the target data stream.

During stage 2 the optimal solution to each sub-question is
formulated. Some of these solutions could be as simple as selecting a
specific value from a single attribute or a combination of attributes.
However, due to all kinds of different constraints, the optimal solution is
not always feasible. For example, it is not possible to directly measure
the required attribute needed, or it could take too much bandwidth or
processing time to make the solution feasible. In this case a sub-optimal
solution or even a trade-off needs to be found that will still achieve the
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minimum requirements to answer the question. Also, it could be possible
that with the available data stream it is impossible to answer the
question. In this case the underlying question, or in the worst case the
main problem, will need to be re-phrased. When it is clear that all sub-
questions can be answered with the data streams that are available for
mining, all necessary attributes can be collected to create the target data
stream.

Using again the Cyber security example, where two different kinds
of malicious software need to be detected real-time without causing any
noticeable delay to the network traffic, the considerations during the
Selection phase can be illustrated. The first kind of software is a ‘simple’
piece of malware that redirects a user to a malicious website (which is
located at a specific IP address). For this malware the optimal solution is
to monitor if this IP address (website) is being accessed by outgoing
network traffic. Since checking a common attribute in the network data,
the destination IP addresses of the outgoing traffic, provides the solution,
it is simple to implement. On the other hand, the second piece of
malicious software is a more advanced piece of malware, and the
simplest solution for its detection is to search for a certain signature.
However, if this malware is hidden in an encrypted communication
(thereby making the signature undetectable), or embedded in file that is
too large to scan in depth without large delays in the network traffic, the
simplest solution becomes unfeasible. The trade-off could be that the
detection is not done real-time anymore or that a noticeable delay occurs
in the network traffic. Which trade-off will be made depends if the real-
time or the delay aspect is considered more important. If it is acceptable
that potentially malicious pieces of software are first quarantined and
carefully checked, the original question could then be re-phrased into:
‘How can malware be detected in quasi real-time without causing any
noticeable delays to the remaining network traffic?’

2.2. The Pre-processing Stage

Real data typically has many shortcomings, and raw data is therefore
considered ‘dirty’. For example, a data stream can be incomplete, noisy,
inconsistent, and can be incoherent when multiple data streams are
involved. The goal of the pre-processing stage is to transform this ‘dirty’
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data into a consistent and understandable ‘clean ’data stream. To create
such a ‘clean’ data stream the steps that are carried out are: i) combine
the data from the different data streams into a coherent one, ii) fill in
missing values, iii) resolve inconsistencies, iv) understand the noise
components.

Combining data from different data streams can be challenging. For
example, attributes in different data streams could have the same name,
but this does not guarantee a similar meaning. There might be subtle (or
not so subtle) differences, which have to be taken into account. The
opposite problem, where similar attributes have different names, can also
occur.'”?® Furthermore, combining the noise characteristics of each data
stream and determining how they propagate in the combined set might
not be trivial. Finally, even if the attributes of different data streams
might have a similar meaning, it does not guarantee that they have the
same unit. An example is the different measurement systems that are
used, such as the metric, United States customary units and the Imperial
system (e.g. liter vs. US gallon vs. imperial gallon).

Although it is not always possible, sometimes there are ways to fill
in missing values.?' One such method is to replace a value with one from
a similar attribute. Another way to fill in missing values is to infer the
mean, or most probable, value from relevant attributes. Although these
methods appear similar there is a significant difference. In the first
method a replacement value is directly taken from a different attribute,
while in the second method a value must be derived from one or more
different attributes.

Inconsistencies are common in data streams and can have many
origins. For example, they occur due to human errors such as typing
mistakes (e.g. entries with 981 as the year of birth) that are introduced in
the database. Other common inconsistencies can occur due to the
reluctance to fill out (apparently) unnecessary paperwork that the system
insists on. Generally some generic or nonsense input is given to comply
with the demand of input. Another form of inconsistency occurs when
developments in the real world cannot accurately be taken into account
by the database, leading to new set of values that do not correspond with
the original definition of an attribute. A final form of inconsistency
occurs when there are multiple ways to represent the same object. For
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example, a typical Dutch last name is ‘van Dijk’, which can also be
written in a database as ‘v. Dijk’, ‘Dijk, van’, ‘van Dyk’, etc.

Finally, understanding the noise characteristics of the data stream
and how they propagate can be crucial for certain mining problems. In
general, the following four kinds of noise can be distinguished. 1)
Spurious noise, i.e. outliers that can clearly not be correct (e.g. a person
that is 1035 years old, i.e. was born in 981). 2) Noise due to
measurement errors (intrinsic to all measuring devices). 3) Systematic
noise due to a systemic off-set in the measuring device. 4) Background
noise due to presence of extraneous sources that cannot be separated
from the object is mined. Understanding the importance of each noise
component, and their effect on the confidence of the final answer, can be
crucial.

3. Case I: Astrophysics

The astrophysics case is illustrated by the Kepler satellite mission to
detect Earth-sized exoplanets (see Ref. 22 for an overview of the results),
i.e. planets around stars other than our sun. The mining question can be
summarized as: ‘How common are Earth-sized exoplanets?’ Although
high level of domain knowledge is needed to successfully answer this
question, there are large deviations from the steps presented in the
previous section. These deviations will be discussed, but the emphasis
will be on steps where domain knowledge is crucial.

3.1. The Selection Stage

The largest deviation from the steps described in the previous section is
at the beginning. Since no time series data existed to detect of Earth-
sized exoplanets prior to Kepler, one needed to be created via a dedicated
(scientific) program. This allows for the creation of a perfectly optimized
time series data, instead of the more common situation where the time
series data were never intended to answer the specific mining question.
The first step is to break down the main question into more specific
sub-questions, and could, for example, be: 1) How many stars need to be
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observed to give a meaningful answer to the prevalence of exoplanets?,
2) How to rule out alternative explanations of the data?, 3) How can
Earth-sized exoplanets be detected? These major questions do not have
an obvious optimal solution yet, and need to be broken down further.
Furthermore, these major questions are also strongly dependent on each
other, since the answer to one major question will strongly influence the
answer to the other major questions.

To continue the example, the third major question can be further
divided into the following three (related) questions: 1) What is the most
promising technique to detect exoplanets? 2) What is the minimum
precision needed to detect an Earth-sized exoplanet? 3) How to reach this
minimum precision? The first of these questions does have an obvious
answer to any domain expert, and directly provides the answer to the
second of these questions. However, it will create multiple new sub-
questions for the third of these questions, while also indicating how the
other major questions can be further broken down.

For Kepler the most promising technique to create time series data to
search for Earth-like exoplanets was transit photometry. With this
technique the brightness of a star is continuously measured, and when a
planet crosses between the observer and the star there is a small drop in
the amount of light. Using the Earth-Sun system as a benchmark, the
minimum requirements can be calculated to be able to detect an Earth-
like exoplanet. For a far-away observer the Earth passes in front of the
Sun once every year for a duration of 13 hours, leading to a drop in
brightness of 0.0084%. Since the drop needs to be measurable, the total
noise on each individual measurement needs to be smaller (for Kepler
0.002% was chosen). However, observations with such a small noise
contribution are not feasible from Earth (where at best a drop of at least
0.1% can be measured), leaving only a satellite mission as the alternative
to create such time series data.

A satellite mission adds a lot of new requirements to the nature of the
data that can be collected. For example, a satellite mission has only a
limited lifetime (for Kepler the nominal lifetime was 3.5 years),
constraining the time to create time series data that can answer the main
question. Furthermore, there is only a limited amount of bandwidth to
send information back to Earth. Therefore, the pre-processing at the
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satellite must be done carefully, since not everything can be reproduced
on the ground. Also, satellite missions are expensive and major
modifications are typically impossible after launch. This means that
before the first data is even collected, all potential issues that prohibit the
answer to the main problem must be solved. For Kepler these problems
are, for example, getting the total noise contribution to a small enough
level, making sure that the duration of the time series data is large
enough that alternative explanations for many transits can be excluded,
while still being able to give an answer to the occurrence rate of Earth-
like exoplanets. In Refs. 23 and 24 an overview of the main issues and
the solutions for the Kepler satellite mission are sketched.

3.2. The Pre-processing Stage

For the creation of the Kepler time series data many of the steps in Sect.
2.2 can be skipped. For example, since the time series data is specifically
created to solve the mining question, it is not necessary to combine data
from different data streams. Also the filling in of missing values and the
resolving of inconsistencies can be skipped. Unless a glitch occurred on-
board the satellite (making all data during that period suspect, and should
be discarded), no missing values or inconsistencies occur. However,
understanding the noise characteristics is crucial to its success.

The importance of understanding the noise is illustrated in Fig. 1,
where the (fictive) observations of a transit, with the same characteristics
as the Earth passing in front of the Sun, are shown. Although the
measurements are all the same, the noise decreases from the top to
bottom panel. The top panel shows the best that can be done from Earth,
i.e. it is not possible to distinguish the transit due to the noise. In the
middle panel the noise is similar to the depth of the transit. Although
there is a hint that the brightness is dimming, the noise is still too large to
make a convincing argument. The bottom panel shows the transit with
similar noise characteristics as Kepler, and now there is a clear dip.

Since the noise characteristics play such an important role in
answering the main mining question, a complete understanding of each
source of noise is necessary before the experiment was devised. Some
forms of noise could not be controlled, such as the intrinsic variability of
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a star. There are no stars where the brightness is completely stable, but
some types of stars are more stable than others. Therefore, the
knowledge which stars are most stable is important, especially since
these stars already needed to be selected beforehand (since the bandwidth
for the data transfer to earth does not allow the observation of all stars).
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Figure 1: Examples of the same (fictive) transit observed with different noise
characteristics. In the top panel the noise is similar to the best that can be done from
Earth, in the middle panel the noise is similar to the dip, and in the bottom the noise level
is four times smaller than the dip.

Another source that cannot be controlled is the amount of shot noise
due to the counting of light particles (i.e. photons). The exact size of this
noise contribution depends only on the brightness of a star, i.e. fainter
stars have a higher uncertainty, and should not be included in the list of
observed stars. However, to obtain a reliable measure of the occurrence
rate of Earth-like exoplanets, enough stars need to be included in the
sample. The only way to increase this sample is to increase the mirror
(i.e. allows the inclusion of fainter stars) or increasing the part of the sky
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that is observed (i.e. allows the inclusion of stars that were previously
outside the field of view). However, such changes are challenging and
will have consequences for other sources of noise.

Finally, there is a large range of noise sources that can be controlled
as much as possible, such as the detector, electronics, the instability of
the spacecraft, thermal noise, optical noise or stray light, but also the
background noise. This background noise is always present, but depends
strongly on the chosen satellite orbit. However, changing the orbit leads
to all kinds of changes to the possible design of the spacecraft. In total,
every design choice changes the contribution of each noise component.
Understanding the way these contributions are connected was essential
for the successful design of Kepler and needed to be done before the first
data could be obtained.

4. Case II: Criminal Justice System

The second case is about the criminal justice system in the Netherlands,
and has completely different challenges during the pre-mining phases
than the first case. The goal of the criminal justice system is to uphold
the enforcement of law and the public safety of the people, via an
effective and efficient system and administration. However, the system is
composed of many interdependent agencies (e.g. police, public
prosecution, the courts, etc.), that all have a strong tradition of
independence. Furthermore, each agency has its own task and
information needs, which they register in their own information system,
hampering an efficient exchange of information.”>** Here the problems
and pitfalls are illustrated when the information systems of the different
agencies are combined. Although many different mining questions can
be formulated, the focus will be on the efficiency of the system as a
whole in order to find the different bottlenecks.

4.1. The Selection Stage

The question ‘What is the elapsed time for moving completely through
the criminal justice system in the Netherlands?’ sounds straightforward.
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For example, for the sub-question ‘What are the different parts in the
system?’, most people think of the following linear chain:

(crime) — investigate — prosecute — trial — execute sentence — (case
close)

However, Fig. 2 shows that the flow scheme of only the first part of
the chain is already more complicated. In practice many side chains,
short cuts, and loop backs occur in the criminal justice system. For
example, Fig. 2 shows that during the investigation phase the police
interacts with other agencies (which are indicated by the yellow boxes).
Furthermore, when the police finishes the investigation, it has more than
options for the next step than just moving on to the prosecution (the
green box), most of which are part of the execution of the sentence phase
(red boxes). For example, for small crimes the police in the Netherlands
is allowed to directly pass sentence (i.e. penalty by the police) or come
to an understanding with the suspect about a fitting sentence without
going to court (i.e. police transaction).
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Figure 2: Simplified flow scheme for the first part in the criminal justice system of the
Netherlands.

The simplified flow scheme in Fig. 2 also shows that a typical
elapsed time through the system does not exist.”> Knowledge about all
the possible paths through the chains is needed to answer the sub-
question ‘What are the different chains in the system?’ Since there are a
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large number of routes through the system, only the most common ones
can be explored in detail, and somehow these need to be selected.

Another question that the main one can be broken into is: ‘What is
meant by elapsed time?’ For example, is the elapsed time for someone
sentenced to imprisonment measured until the beginning or the end of
the time in detention, or even until the end of the time on parole?
Another example is when the sentence is a fine. Is the elapsed time in
this case the moment that the collection agency has send a bill, a bailiff is
send, the fine is partially paid, or the fine is fully paid? A final example
is the elapsed time for a convict that is sentenced to both detention and
community service. Is the elapsed time measured after finishing both
imposed sanctions or for each sanction separately? If the second case is
chosen, should one take into account the duration of the other sanction?
Again, a basic understanding of the criminal justice system in the
Netherlands is needed to get optimal answers.

4.2. The Pre-processing Stage

During the pre-processing of the data streams of the criminal justice
system the first 3 steps described in Sect. 2.2 are the most important.
Although some though is given to the noise characteristics, only spurious
noise needs consideration. However, due to the large size of the data
stream and the kind of mining questions, outliers can in general be
ignored.

As illustrated in Fig. 2, data from over a dozen independent agencies,
all with their own data information system, need to be combined. This is
complicated due to the way information is registered at the different
agencies. For example, for the police a case corresponds to a criminal
offense (which can have multiple persons involved), while it corresponds
to an unique person for the public prosecutor (which can be suspected of
multiple crimes). Furthermore, there is the added constraint of privacy
regulations, which makes it impossible to use any sensitive personal
information attributes, and the joining needs to be done via a so-called
case identifier (e.g. the number the public prosecution assigns to the case
of a suspect). However, this case identifier is not always properly
registered for the agencies that are concerned with the execution of a
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sentence (since it is not considered relevant). Therefore, in the
information systems of these agencies it happens that only nonsense is
recorded for the case identifier. This makes the tracing of a unique
person through the criminal justice chain complicated.

Another problem is the definition of the attributes registered by the
different agencies. Seemingly similar attributes could have different
meanings. For example, in the Netherlands there is an agency that
coordinates the execution of sentences and several agencies that actually
carry them out. One would expect that the start date a sentence is
executed is similar for both the coordinating and executing agency, but
this is not always the case. Only by detailed knowledge of all
information systems is it possible to select the correct date to measure the
elapsed time in the case of, for example, a community service.

Another issue that is encountered is that different data streams have
a different value for the same attribute. For example, each data stream
records the date of the verdict, and somehow this value is not always the
same between data streams. Since the correct date cannot be determined
from the registered data alone, one of the conflicting dates has to be
chosen. In this case, knowledge about how this date is registered in each
system is needed to determine which date has the highest probability to
be correct. The opposite, missing values that are only recorded in a
single data stream, also occurs. In this case rules are needed on how to
impute such missing value. For example, from experience it is known
that most crimes are reported on the same day as they are committed.
When the date a crime is committed is not recorded, the reported date
could be used.

A major problem with the data streams in the criminal justice system
is that they are manually filled, dramatically increasing the changes of a
mistake. Fortunately, due to the abundance of data streams it is possible
to include many safety checks to catch these mistakes. For example, for
elapsed times the goal is to obtain a sequence of important dates to
measure the time differences. If one of these dates in the sequence is
anomalous this will be easy to catch. However, although the mistake is
found it is typically not possible to correct, and it must be accepted that
not all elapsed times can be measured.
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A common complication for the criminal justice system is the fast
pace at which definitions change. For example, due to legal reform
existing laws could change meaning or could even be repealed. In
particular when monitoring the elapsed time for a specific offense
through time, these legal changes need to be taken into account to make
sure that same offense (or at least a closely related one) is used. A similar
kind of change is the reclassification of the different judicial districts. For
example, courts could be closed to save money or the exact boundaries
of the districts could change to better divide the workload. In particular
when the elapsed times of specific districts are monitored these changes
can lead to a structural break in the trend.

A related problem is the shift in the severity rating of an offense. For
all kinds of reasons the penalty for an offense could change. For
example, offenses for which the typical sentence used to be
imprisonment could change into a fine or community service. In
particular when the type of penalty changes there is large influence on
the elapsed time, making comparison with previous periods impossible.
Finally, the introduction (or disappearance) of new penalties will have
impact on the duration of the elapsed times. For example, in the
Netherlands the public prosecution is nowadays allowed to pass sentence
over certain offenses, thereby bypassing the judge and dramatically
shortening the elapsed time.

5. Case III: Cyber Security

The final case, cyber security, is a very broad topic and to limit the scope
the focus will be on the more specialized topic of network forensics.?’
The goal of network forensics is the capture, recording and analysis of
network events in order to discover the source of security attacks,
anomalous behavior in network traffic or other problem incidents. The
main challenge of network forensics is that it has to deal with large
amounts of volatile and dynamic information that will otherwise be lost.



134 R. Cornelisse & S. Choenni

5.1. The Selection Stage

The first step in network forensics is the capture and recording of
network traffic. One way to do this is to capture and store all network
data and the analysis happens afterwards. However, this requires large
amounts of storage space, in particular with traffic over a long period of
time. Furthermore, finding important information in such a large amount
of data is challenging. The alternative is to analyze traffic in real-time
and only store information that could be useful. This technique has the
disadvantages that a good processor is needed for the real-time analysis,
beforehand it is decided which information needs to be kept, while it can
still lead to large amounts of stored data. Afterwards, both techniques
still require that the (large amount of) stored network data is optimized
for network forensics purposes. Therefore, the central mining question
can be ‘How to reduce and improve the amount of stored network traffic
data to optimize network forensics analyses?’

The main problem has been formulated in such a way that it
immediately raises new questions. For example, 1) ‘What is meant by
reduce and improve?’, 2) ‘What are typical analyses carried out by
network forensics?’, or 3) “What network data needs to be stored?’ are
several obvious questions. Some of these questions apply for network
forensics in general (e.g. question 1), but others (e.g. question 2) depend
on local constrains. For example, the software tools available at a
company limit the types of possible analyses. Finally, for some questions
the answers depend on external factors, e.g. question 3, such as national
privacy laws that dictate the kind of information to be stored (and how).
The questions from the previous paragraph are related. Depending on the
kind of analyses needed, different kinds of network data have to be
stored. For example, the analyses of email traffic needs different data
than checking for breaches via a vulnerability in a web form, leading to
completely different ways to reduce and improve the stored data. This
implies that the mining question is too broad and needs more focus.
Although this re-focusing of the mining question was done for
illustrative purposes, it also happens when domain understanding
increases.
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For the remainder of this case the focus will be on NetFlow data,?® i.e.
‘How to reduce the amount of stored NetFlow data while simultaneously
optimizing for network forensics analyses?’ NetFlow is a high-level
description of the network traffic that registers where the traffic is
coming from, where it is going and how much is generated (but not the
content of the data). Figure 3 shows example output. For each flow the
sending and destination IP address, the ports that were used (e.g. port 80
is typically used for http traffic), the start time and duration, the

Date first seen Duration Proto Src IP Addr: Port Dst IP Addr: Port Packets Bytes Flows
2014-02-0511:04:21.472 2880 TCP 0.0.0.01:80 = 0.0.0.02:51321 18 11865 1
2014-02-05 11:04:21.536 2.816 TCP 0.0.0.02:51322 > 0.0.0.01:80 31 13317 1
2014-02-0511:04:21.536 2.816 TCP 0.0.0.01:80 = 0.0.0.02:51323 5 2004 1
2014-02-05 11:04:21.920 0.960 TCP 0.0.0.03:50696 -> 0.0.0.04:443 3 152 1
2014-02-05 11:0 .152 20480 TCP 0.0 50560 > 0.0.006:80 41 53489 1
2014-02-0511:04:21.472 3.072 TCP 0.0 151320 > 0.0.0.01:80 27 14848 1
2014-02-0511:04:21.472 2880 TCP 0.0.0.01:80 > 0.0.0.02:51320 24 16081 1
2014-02-0511:04:21.536 3008 TCP 0.0.0.02:51323 -> 0.0.0.01:80 7 3742 1
2014-02-0511:04:22.112 0.256 TCP 0.0.0.07:49168 -> 0.0.0.08:524 2 110 1
2014-02-05 11:04:13.664 9.024 TCP 0.0.0.09:50074 > 0.0.0.01:80 14 5101 1
2014-02-0511:04:21.856 0.768 TCP 0.0.0.10:443 > 0.0.0.11:37578 5 2904 1
2014-02-0511:04:13.984 8576 TCP 0.0.0.12:50567 -> 0.0.0.14:443 4 5073 1
2014-02-0511:04:14.240 8448 TCP 0.0.0.15:443 > 0.0.0.16:49559 4 525 1
2014-02-0511:04:14.112 8384 TCP 0.0.0.16:49559 -> 0.0.0.15:443 3 2185 1
2014-02-0511:04:22.240 0.064 TCP 0.0.0.17:80 = 0.0.0.02:51230 4 334 1
2014-02-0511:04:23.454 3.072 TCP 0.0.0.18.15826 -> 0.0.0.19:50026 3 168 1
2014-02-0511:04:23.454 3.264 TCP 0.0.0.19:50026 -> 0.0.0.18:15826 2 89 1
2014-02-05 11:04:26.334 0.000 UDP 0.0.0.20:51142 > 0.0.0.21:53 1 68 1

Summary: total flows: 20, total bytes: 135582, total packets: 203, avgbps: 4904, avgpps: 9. avg bpp:667
Time window: 2014-02-05 11:03:51 — 2014-02-05 11:09:59

Total flows processed: 20150, Blocks skipped: 0, Bytes read: 1047940

Sys: 0.009s flows/second: 2015403.1 Wall: 0.005s flows/second: 3774822.0

Figure 3: Example output of NetFlow data. Note that the Source (Src IP Addr) and
Destination IP (Dst IP Addr) addresses have been anonymized for privacy reasons.
communication protocol and the number of bytes are recorded. A typical
communication is made up of multiple flows, and NetFlow provides an
overview of the traffic (see Ref. 29 for an overview of NetFlow).
Combined with information from other sources that have probed the
transferred data, NetFlow data is used for Network Forensics purposes.*
However, domain knowledge is again essential to extract information
from NetFlow data that it is useful for network forensics.

5.2. The Pre-processing Stage

Although most steps described in Sect. 2.2 need consideration, many of
the discussed issues are not relevant due to the standardized format of
NetFlow data. For example, inconsistencies are not an issue, and human-
made errors cannot occur. Furthermore, the definition of the attributes in
the NetFlow data is always the same, and each recorded flow should
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always have all attributes (i.e. there are no missing values). Although the
pre-processing of NetFlow data is similar to the astrophysics case in
Sect. 3, there are differences due to the general, multi-purpose, format of
NetFlow (instead of the unique format used in Sect. 3).

Typically, since NetFlow data is collected at different points
(routers) in the network before it is combined, there must be a guarantee
that network traffic from all locations is captured and any overlap in data
streams is known. Therefore, a good understanding of the network layout
of the organization is needed to make sure that no part is missing or
double recorded.

Although the problem of missing attributes is not an issue with
NetFlow data, the sampling of the data needs consideration. With high-
speed networks it is possible that the NetFlow collector cannot handle
the large data stream, leading to drop outs. This is mitigated by setting a
sampling rate, i.e. measuring only a fraction of the packets to determine
the characteristics of each flow. However, only the characteristics of the
measured packets are added to the relevant flow in this case, causing
most short communications (consisting of only a few packets) to be
missed. Also, since the size and arrival time of individual packets varies
a lot, the exact total size and number of packets for each flow is also
unknown. Obviously, this can have consequences during the mining and
one needs to be aware that sampling has occurred.

Although the typical inconsistencies discussed in Sect. 2.2 do not
occur in NetFlow data, it is still necessary to be aware of issues with the
ICT infrastructure of the organization. For example, major software
upgrades, the introduction of new software packages or the replacement
of hardware might lead to different/new features in the network traffic.
Being aware of these changes will limit the risk of false warnings, and
thereby the amount of unnecessary work.

Background noise is an important pre-processing issue for NetFlow
data, in particular when optimizing for network forensics. Since the
majority of the large volumes of highly dynamic and volatile network
traffic is completely innocuous, it can be regarded as background noise
for network forensics purposes. Preferentially this innocuous traffic
should be removed before the mining starts, but a good understanding of
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network traffic (in general and specific for that network) is needed to
determine what constitutes innocuous traffic.

6. Domain Knowledge

The challenges during the pre-mining stages were presented for three
cases covering very diverse domains (i.e. astrophysics, criminal justice
and cyber security), and the importance of domain knowledge was
discussed. For each case it is obvious that domain knowledge plays a key
role during the selection stage, but beforehand it was less obvious that
also for the pre-processing stage each case has its own challenges where
domain knowledge plays an important and central role.

6.1. The Pre-processing Spectrum

For the astrophysics case, a question is formulated and all potential
problems encountered need to be solved before a single piece of data
exists to answer it. However, as soon as data is produced, it is always
automatically generated in the same, optimized, format. Such a set-up is
common for problems in many natural science fields such as physics,
earth science, chemistry, etc. Only after a significant investment in time,
energy and/or money an experiment is developed to create dedicated
time series data to answer the question. The most common pre-
processing steps are avoided with such a dedicated time series data, and
the emphasis is on understanding the noise characteristics. Such
emphasis on noise is common for most natural science problems, since
otherwise the question was already answered with previous generation
instrumentation, and the experiment would not have been constructed.
The criminal justice example shows the other extreme. Here, several,
more or less, unrelated data streams already exist to support tasks at the
operational level of the different organizations, and need to be combined
to provide insight at the strategic level. This is the typical situation for
companies that want to use data mining to improve their efficiency. A
significant amount of the pre-processing is used to combine attributes
from data streams that are filled by hand and were never designed to
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answer strategic level questions. Therefore, the emphasis is on
understanding the definition of the attributes and the meaning of their
values to find out what is relevant, rubbish or has changed over time.

The cyber security example sits in between the previous cases. Like
the astrophysics case, data is automatically generated and will always
have a specified format. However, now the format has not been
optimized for the problem at hand, but is a generally accepted standard.
Stock market analysis and traffic control monitoring are other examples
where data in such a standard format is generated. Not surprisingly,
during the pre-processing phase of such data streams, the problems
discussed for the other two cases play a role, but less severe. In other
words, understanding the noise characteristics to increase the changes of
finding a relevant signature, combined with a good understanding of the
definition of each attribute and its range of values, is essential.

The three cases presented show a range in consistency of the time
series data that are used. Ranging from the low consistency human-filled
time series data of the criminal justice system, via the standard format
time series data of the cyber security case, to the dedicated time series
data of astrophysics with a high consistency. This also corresponds with
a shifting importance of the specific pre-processing steps needed. When
consistency is low the importance of the noise contribution is negligible
compared to the trustworthiness of each value (i.e. is it relevant, rubbish,
and has its meaning changed). When consistency is high it is unlikely
that a recorded value is erroneous or has a different meaning, but the
contribution of the noise to each data point becomes central.

6.2. Time-Series Data

All three cases were chosen because their main question contains a time
component. For the astrophysics and criminal justice cases their final
goals are time series analyses, while for the cyber security case it is the
classification of large volumes of data. Although the actual data mining
stage is not discussed here, the time component does add extra
constraints during the pre-mining stages.

During the selection stage the impact of the dynamic or timing aspect
needs to be developed and understood. Especially since the impact can
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differ at a fundamental level, even if the mining exercise is very similar.
For example, for the astrophysics case the kind questions for the
selection stage to create the time series are: ‘How many stars need to be
simultaneously observed?’, ‘What types of stars have a low intrinsic
variability?’, and ‘What types of stars are more suitable to harbor an
Earth-like exoplanet?’ All these questions are related to determining the
candidates to include in the time series data. For the criminal justice
system on the other hand, the final time series for the mining exercise are
created from the different data streams of the partners in the chain. Here,
typical questions are: ‘“What are typical paths through the chain?’, ‘What
is meant by elapsed time?’, and ‘Does one follow an offence or the
offender through the chain?’ These questions are about optimizing the
approach to building the time series, and are fundamentally different than
the ones for the astrophysics case. Despite the fact that the two cases
have a similar mining problem, these fundamental differences illustrate
that domain knowledge is already essential at the early stages of the
mining process.

The timing and dynamic aspects also add extra considerations during
the pre-processing stage. Foremost is the problem that it is not always
possible to keep all data. Already during the pre-processing stage a
selection must be made what data is kept and which is discarded. Both in
the astrophysics and cyber security cases this plays an important role and
care must be taken that crucial data is not lost by accident. For the Kepler
satellite mission the limited amount of bandwidth allows only 6% of the
total information to be send to Earth, while the remainder is lost during
the pre-processing on board the satellite. In the cyber security case,
already during the pre-processing phase a selection is made which data
will not be of interest for network forensics. Since majority of the
network traffic is benign (e.g. web searches, visits to popular websites,
social media, etc.), this can be excluded from the mining process.
However, a good balance between the data that can be excluded and
needs to be included requires continuous consideration.

A second consideration for dynamic data is changes that occur in the
way the data is recorded. Changes can occur ‘suddenly’ or slowly over
time, but both need to taken into account to make sure that the results
obtained from mining the data stays comparable. For example, in the
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astronomy case, the sensors (i.e. pixels) are continuously degrading over
time due to the hostile space environment, and needs to be corrected for.
An example of change in the criminal justice case is the phasing out of
an old database system and the introduction of a new one. Since the
criminal justice chain consists of many organizations with their own
database system (see Fig. 2), it is likely that at any time one is being
replaced. Such a replacement always come with a revised set of attributes
and corresponding definitions, and care need to be taken that the new
database still allows the mining question to be answered.

The final consideration discussed is the evolution of attributes. For
all kinds of reasons the original meaning of an attribute can change. Not
taking into account these changes will distort the results obtained from
the mining and make a comparison with previous periods difficult. Some
examples are the legal reform (i.e. changing of laws) or the introduction
of new penalties in the legal justice chain. When a law changes, one
compares (slightly) different types of crime when looking at the periods
before and after the change, while a change in penalty (e.g. from
detention into a fine) could lead to a different path through the chain that
has a different elapsed time. Examples from the cyber security case is the
introduction of new software/hardware or changes in internet habits of
the users. if these completely benign changes are not incorporated during
the pre-processing phase it will increase the amount of ‘non-interesting’
information for network forensics or pollute the pre-processing with
benign processes that do not occur anymore.

7. Conclusions

The three cases presented all show that domain knowledge plays an
important role during the first two stages of the mining process. During
the first stage, developing and understanding the application domain, it is
no surprise that domain knowledge plays an important role, but the
presented cases have shown that domain knowledge also plays a key role
during the pre-processing stage. Although there are some universal
guidelines on the different steps taken during the pre-processing stage,
the emphasis given to each step and specific pitfalls to avoid depend on
the domain. Therefore, relying only on generic rules, without taking the
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specific details of the domain into account, will lead to results that are
difficult to interpret or could even be wrong.

Two trends can be distinguished to help determine which aspect of
the pre-processing stage must be emphasized. The first trend is the
consistency of the time series data. Ranging from time series data that
are automatically filled by specialized sensors where the emphasis is on
the noise characteristics to ones that are mainly filled by hand and have
to deal with the trustworthiness of each value. The second trend that can
be distinguished is the optimization of the set of records included in the
time series data versus the optimization of the approach taken to answer
the mining question. At one extreme the questions revolve around
determining the most suitable candidates to include, while at the other
extreme the questions revolve around the most suited approach.

Both trends appear to align, which suggest that they are in some way
related. Looking at the overlap at the two extremes of the trends, such a
relation is understandable. When there are existing data streams that
were not created to answer mining question, most of the effort during the
pre-processing stage will go into understanding the trustworthiness of
resources at hand and determining how they can contribute in answering
the mining question. Although this does require domain knowledge, the
main focus will be on the combining of different data streams and
resolving inconsistencies. The other extreme suggests that for time
series data that are created for a specific mining purpose the noise
characteristics of the candidates that will populate the time series data
play an important role during the selection. This alignment can be
understood when realizing that the time and money needed to invest in
such very specific and dedicated mining expeditions is only obtained
when previous experiments (that most likely had broader mining
questions in the same specialized field) have already hinted that a more
sensitive/specialized set-up will be successful. The main reason that the
previous experiments could not give an unambiguous answer is most
likely due to the noise characteristics that dominated the result. Getting
the noise characteristics down becomes the most challenging aspect for a
‘follow-up’ experiment. Understanding the noise characteristics of this
new experiment requires in general highly specialized knowledge, which
again depends completely on the domain knowledge.
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The dependence on domain knowledge is even more pronounced in
the case of dynamic or time dependent data. Since most of the time too
much data is collected to keep everything for the mining stage, the
decision what is kept and which data to discard (permanently) must
already be made during the pre-processing phase. Without a good
understanding of the domain such a decision is not possible, and the
possibility that crucial information is discarded increases. Furthermore,
even if it is possible to store all data, domain knowledge is still necessary
to guard against the evolution of the attributes or the data. Therefore,
relying on some universal pre-processing tools is best avoided.
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Over the past few years, a lot of devices and machines around us are
becoming ‘smart’. Based on the idea of the Internet of Things (IoT),
different devices and machines can connect to the internet and commu-
nicate with each other. Such internet enabled devices are continuously
observing their environment and logging a lot of data in the back-end
database. By applying data analytics on the gathered Big Data, smart
decisions are made to facilitate the end user according to the current
situation. This capability of adaptive decision making actually makes
ordinary devices and machines ‘smart’. These devices and machines are
becoming intelligent by learning about their surroundings from different
sources, and develop the ability to avoid unforeseen situations by analyz-
ing that data. In this chapter, we provide a comprehensive overview of
how different industrial players are using data analytics to provide bet-
ter services to their customers and improve their internal processes and
workflows. We discuss how different industries use data analytics to gain
vital insights for providing better healthcare to public, making homes
more secure, increasing crop yield, delivering goods more quickly, reduc-
ing the downtime of a machine, avoiding a disease, etc. An overview
of different analytics platforms and solutions used in different industries
for time series and streaming data are also discussed in this chapter.

144
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1. Introduction

We live in an age where data is becoming a key for success in every field
of life. Due to rapid advancements in technology, different players in aca-
demics, research, and industry are collecting different types of data, which
serve as their driving force. However, the data itself has no meaning until
it is carefully analyzed. Data analytics® is a process of analyzing data in
order to discover hidden patterns, knowledge, or trends. Many companies
are using data analytics widely to add value to their business by analyzing
past and current data. The process of data analytics not only includes anal-
ysis of the data, but it refers to a complete workflow which starts with data
collection and other steps including data cleaning, data preparation, data
governance, data analysis/modeling, and finally data visualization. Each
of the steps in this workflow is a key for good analytics.

To maximize the output, efficiency, and for added value, there are differ-
ent data providers, which take care of the initial steps (i.e., data cleaning,
preparation, and governance) in the workflow of data analytics by providing
data externally. This means that in combination with the in-house data
collected by companies, there are many external data sources, which are
being utilized to perform data analytics. Furthermore, due to the evolu-
tion of technology, the mode of data collection has also evolved. Especially,
with the emergence of IoT, which refers to the network of physical devices,
vehicles, buildings, and other items embedded with electronics, software,
sensors, actuators, and network connectivity that enable these objects to
collect and exchange data [1]. Recent studies show that the ToT market
is growing and will continue to grow a lot over the next four years. It is
expected that a market value of nearly $122 billion will be reached by the
year 2022 [2]. Due to these IoT enabled devices, companies are now contin-
uously getting live streams of huge amounts of data. This data is usually
collected over a continuous interval of time, which results in time-series
data. This IoT based time-series data resulted into the evolution of data
analytics where in contrast to traditional data analytics where data clean-
ing, and analysis were at the core, now it becomes even more difficult to
store and maintain the data, which is being collected by these IoT devices.

With the help of data analytics on streaming/time-series data, com-
panies can keep an eye on different aspects, e.g., reducing maintenance
costs, avoiding equipment failures, and improving business operations. In

2Data analytics and Data mining are used interchangeably nowadays. In this chapter,
the term, data analytics is used. In an industrial perspective, data analytics is considered
as a complete workflow, which incorporates data mining among other things.



146 M. Munir et al.

addition, retailers, restaurant chains and makers of consumer goods can
use the data from smartphones, wearable technologies, and in-home de-
vices to do targeted marketing and promotions — the business side of the
ToT’s futuristic world of connected consumer gear.

Almost every industrial sector, be it health care, agriculture, manu-
facturing, agriculture, dairy farming, logistics, automotive, etc. is now
redefining their products and enabling them to IoT for gaining maximum
benefits. In this way, different industrial solutions are also available focus-
ing specifically on data analytics on time-series data. This chapter focuses
of providing insight on the different data analytics solutions available in
different industrial sectors.

2. Data Analytics in Agriculture

With the increase of the world population and the improvement of liv-
ing standards, the demand of high quality food is increasing. Agricultural
mechanization is playing a vital role to fulfill this need with the help of
large-scale production. However, the physical performance of mechaniza-
tion and mass production is limited with the advancements in the fields
of IoT and cloud computing, the devices for data collection and data stor-
age have become affordable and prevalent. In the agriculture sector, data
analytics can be applied on the machinery and farming data collected in
order to reduce loss, improve efficiency, and lower costs under the condition
of unchanged physical properties. This enables a modern farming concept
called precision agriculture (PA) or satellite farming. This kind of farming
helps the farmer to recognize the variations in the farming land and how
to adjust input for different parts of land to optimize the output. A global
positioning system (GPS) is the backbone of PA. With the help of GPS, a
farmer can identify the exact area where soil conditions vary. In conjunc-
tion with the precise location, different measures like air quality, moisture
level, field terrain, crop yield, crop maturity, and gas levels are recorded
and turned into meaningful information using data analytics.

Data driven decision-making has been extended from the business sector
to the agricultural sector. Many large enterprises in the agribusiness are
becoming involved in data analytics research and development. They are
providing solutions for PA and for a variety of other issues in agriculture.
Fierce competition between companies has already begun.

John Deere converted their equipment to the paradigm of IoT to help
farmers manage their fleet, reduce down time, and the cost of produc-
tion. This information is combined with the local weather data, soil data,
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crop characteristics, and other data sets from different sources. MyJohn-
Deere.com is a platform for data analytics, which provides the possibility
to store, analyze, and visualize results on a web-portal (as well as on mobile
application called Mobile Farm Manager). With the help of such plat-
forms, farmers can figure out when and where to plant which kind of crops,
when to plough and when to harvest, and which optimized path should be
followed during the work. The right decision can help farmers to improve
their efficiency. The data collected during different phases of farming are
massive. To take advantage of the collected data, John Deere already steps
into big data analysis for the future of farming.

IBM and SignalDemand have developed a data analytics system
which uses predictive analytics to predict the demand and optimize the
margin to meet the needs of different agribusiness companies. While large
agricultural enterprises have large datasets, advanced equipment, data sci-
entist, and domain experts at their disposal, the majority of farmers neither
have access to such information nor the resources to get benefits from ad-
vancements in technology. To help farmers who are working on a small-scale
and lack the technology infrastructure, IBM built a back-office network.
They supply corn-specific information on a regular basis, along with gener-
alized information on fertilizer and weather conditions to registered farmers
via their mobile phones. A farmer can get timely agronomic intelligence
simply via automated voice mail or text messages on his mobile phone.

aWhere (an American corporation) collects and analyzes over a billion
points of data (which is a pivot element for analysis) from around the globe
each day to create unprecedented visibility and insight which is known
as Agricultural Intelligence. This intelligence is used for critical decision
making from farm level through to national policy [3]. High-quality weather
data is combined and analyzed purely for agricultural use. Their major data
analytics solutions are Weather Terrain, Weather Agronomics, and
Weather Support.

The Climate Corporation (a San Francisco-based company) exam-
ines weather data to provide insurance to farmers who can lock in profits
even in the case of drought, heavy rains, or other adverse weather condi-
tions. FieldView is their data analytics solution, which combines farm-
ers’ field data with real-time and past — soil, crop, and weather data to
help them efficiently manage their operations and gain insights into their
fields [4]. In addition to the FieldView, they also provide a hardware solu-
tion SeedSense for Planter Monitoring. Perfect planter performance can
be achieved by maximizing planter speed and adjusting vacuum pressure
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by using SeenSense. It also enables the farmer to sow precisely, maintain
depth, avoid compaction, and troubleshoot mechanical problems.

The CropOS is a data analytics platform, which uses machine learn-
ing and cloud biology to improve crop performance and help scientists and
breeders with some of the biggest challenges in the agriculture sector. It is
developed and maintained by Benson Hill Biosystems, which is an agricul-
tural solutions company. They unlock the global genetic potential of plants
to enhance the sustainability of food, feed, fiber, and fuel production [5].
CropOS represents a uniquely powerful platform at the intersection of big
data, machine learning, and plant biology. CropOS empowers researchers
to significantly increase the yield of major food crops and identify the most
promising plant genetics in weeks instead of studying long growing seasons.

CLAAS focuses very much on self-propelled machines developing and
producing combine harvesters, self-propelled forage harvesters and trac-
tors [6]. Self-propelled machines are very important especially for crops
like wheat, rye, barley, and corn, which have to be harvested at just the
right point of maturity. Once this harvest maturity has been reached, the
combine harvesters work in the fields day and night. In this process, up
to 50 parameters from the reel to the chopper influence the harvest yield.
The operator has to continuously monitor and evaluate around a dozen of
these parameters. Hardly any operator is capable of keeping an eye on
everything and tapping the machine’s full potential. To solve this problem,
CLAAS also moved toward IoT enabled combine harvesters. In addition to
this, an assistance and analytics system is used, which permanently moni-
tors the harvesting process and automatically adjusts the machine setting
to the current conditions which is faster and more precise when compared
to a human operator. Furthermore, together with the German Research
Center for Artificial Intelligence (DFKI), and the Fraunhofer Institute of
Optronics, System Technologies, and Image Exploitation (IOSB), CLASS is
working on extending the data analytics to improve the performance of mo-
bile work machines with unsupervised anomaly detection algorithms, which
can detect unexpected events without any previous domain knowledge.

3. Data Analytics in Healthcare

Similar to agriculture, data analytics is playing a vital role in the advance-
ment of the healthcare sector. With the easy availability of smart devices
(including smart watches, smart phones, and smart wristbands), a new di-
mension of healthcare has emerged — Smart Healthcare. The end-user smart
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devices are continuously collecting users’ data regarding different activities
performed over a day, month, or year using different sensors.

Data analytics on smart sensors’ data have opened new dimensions of
research and applications in Connected or Smart healthcare. Smart health-
care is supporting, and slowly replacing traditional healthcare. By analyz-
ing the streaming data generated by smart wearables, it is possible to see if a
user is healthy, or if some preventive measures are required, in order to avoid
a potential health problem. Now doctors can remotely examine their pa-
tients and suggest treatments on the go. Smart healthcare offers many new
possibilities for patients too. Patients can keep updated with their health
and fitness data all the time, find other patients suffering with the same dis-
ease to discuss various treatments, and easily track the post-surgical needs.
The digitization of patient health data encourages the communication and
collaboration of all the stakeholders involved in the patient’s health. For in-
stance, 1) government institutes can use the data to extract different statis-
tics and to make policies as needed, ii) pharmaceutical companies can use
the data to track the positive or negative effects of different medicines, iii)
doctors can use this data to choose a treatment when a patient has high
cardiovascular risk, etc. With smart and connected healthcare, healthcare
is shifting from being episodic/reactive to preventive/proactive. Different
companies (mentioned below) are providing solutions for connected, smart,
or preventive healthcare.

IBM Healthcare is a data analytics solution, which focuses on health
monitoring and intervention, analyzing streaming data (such as data gen-
erated in ICU), and helping in detecting signs of various changes occurring
in a patient’s health. The detected early signs are used to generate medical
alerts for proactive intervention. It also enables healthcare providers to
improve operational performance, reduce cost of care, and counter fraud in
healthcare by using integrated data management and analytics. Further-
more, it provides consumer level analytics to understand consumer pref-
erences and behaviors by capturing data from different sources such as
claims, clinical history, and social platforms; and then merges all the data
into one unified view. It also helps building a predictive model that evalu-
ates the risk of readmission for patients with chronic obstructive pulmonary
disease [7]. Researchers at National Institutes of Health (NIH) are using
IBM PureData System for analytics to unlock new insights from data
gathered over decades. With the help of this system, researchers can run
analysis on large, complex data sets (both clinical and genomic research
data) and generate reports faster than ever before [8].
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SAP Real-Time Analytics is a complete solution for patient care,
human resources, finance, care collaboration, and healthcare analytics. The
big health data collected from electronic health records, research, physician
notes, insurance claims, and social media data are used by SAP Real-Time
Analytics to reduce cost and improve quality of care. This solution enables
data scientists to separate noise from signals and derive meaningful insights
from the data. The unified analytics model transform data from a wide
range of sources into actionable information. Seoul National University
Bundang Hospital (South Korea) has developed its clinical data warehouse
(CDW) using SAP Data Services and SAP HANA. Their CDW is used
to automate the clinical indicators system, gather critical data in real-time,
provide instantaneous feedback to clinicians, and provide multidimensional
analyses based on patient characteristics, diseases, and location [9].

General Electric (GE) provides many healthcare solutions in general;
and some solutions are based on data analytics in the areas of diagnosis,
clinical decision-making, and asset monitoring. The GE Marquette 12SL
ECG analysis program provides diagnostic confidence to care providers by
giving fast and reliable cardiac care decisions. In the area of patient mon-
itoring, GE provides CARESCAPE Central Station which allows the
integration of different medical devices and systems to access patient’s his-
torical data. When a patient moves to a care area, this solution enables care
providers to perform in-depth analyses and offers clinical decision support.
Centricity Imaging Analytics is a real-time dashboard which provides
visibility into the workflows of the radiology department for increasing de-
partment throughput and patient care.

Combined Applications to Reduce Exposure (CARE) (by
Siemens) is an analytics solution, which is designed to improve dose mon-
itoring in different interventional radiology systems. The dose of an indi-
vidual patient is recorded in addition to other data, such as CT-dose index,
dose length product, and total recording time. This data is also used to
enhance dose reporting and assessment, transparency regarding dose per
case, reporting on patient dose history, and cross-institutional reporting.

Apple CareKit is an open source platform for creating health related
apps to regularly track care plans, monitor users’ progress, and share their
insights. One Drop (by Informed Data Systems, Inc.) is an example of
such a mobile app created using CareKit. Apple ResearchKit enables
developers to create apps, which enable researchers and doctors to gather
robust and meaningful data for their health related studies, and obtain a
complete history of their patients. The real life data collected is used to
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find physical patterns, correlation between physical history and medica-
tion, predict a particular problem, and recommend diet and fitness plans.
With the help of ResearchKit and CareKit, researchers use Apple Watch
to predict seizures before they actually happen. For instance, EpiWatch
(an Apple Watch app by Johns Hopkins University) enables people to ac-
curately track the onset and duration of seizures in real time. A patient
sensing an impending seizure launches the app on Apple Watch and an alert
is automatically sent to a designated family member or caregiver. Similarly,
Asthma Health (by Weill Medical College), Concussion Tracker (by NYU
Langone Medical Center), GlucoSuccess (by Massachusetts General Hospi-
tal), and C' Tracker (by Boston Children’s Hospital) are examples of such
apps which are built on top of CareKit and ResearchKit.

4. Data Analytics in Manufacturing

Data analytics provides a granular approach to diagnose and improve whole
manufacturing flaws. It is always in the manufacturers’ interest to im-
prove their production processes, product quality, production cycle, and
the amount of output per unit of input. Due to the involvement of a num-
ber of players and processes in the manufacturing life cycle, it is hard to find
the cause of failure or inefficiency exactly. With the growth of Industrial
IoT in recent years, everything is going digital and connected. With the
help of this digitization and connectivity, a lot of streaming data related to
equipment, automation, production lines, systems, and products are gen-
erated and stored. Manufacturers can use data analytics to leverage the
data collected from on-the-floor factory machinery alongside other tradi-
tional (factory logs) and social data. Some of the advantages of using data
analytics in manufacturing are to — i) get unexpected insights into different
processes, ii) increase accuracy, quality, and yield (amount of output per
unit of input), iii) improve the forecast of product supply and demand, iv)
enhance the understanding of plant performance across multiple metrics, v)
boost the product quality, vi) track all products with defected components,
vii) predict machine failure, viii) quantify how daily production impacts
financial performance, ix) provide preemptive maintenance and service by
continuously monitoring a product instead of fixed term maintenance, and
x) identify the root cause of a failure. Figure 1 shows how advance data
analytics can help decode and improve complex manufacturing processes.
The main challenges in manufacturing are a lack of collaboration across
different departments, disparate systems and data sources, and difficulty
in coordinating supply and demand chains. Such challenges, among others
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Fig. 1. This figure shows how advanced analytics can be used in streamlining manu-
facturing value chains by finding the core determinants of process performance [10].

are tackled in the solutions provided by different companies using advanced
data analytics.

IBM Analytics provides a complete analytics solution to be used in au-
tomotive, defense, chemical, petroleum, energy, aerospace, electronics, and
other industries to uncover deeper insights into operations, inventory, mar-
ket demands, supply chain, and performance [11]. By applying advanced
data analytics on aggregated data from different sources (such as different
sensors, maintenance logs, and production systems), manufacturers can ef-
ficiently achieve their demand, production, and supply requirements; while
properly managing all the resources at minimal cost. It can integrate struc-
tured as well as unstructured data from different sources. IBM analytics can
unveil a number of critical manufacturers questions, such as how operating
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costs can be reduced while having better project financial performance,
how greater visibility into supply chains can be achieved, how the supply
chain’s needs can be predicted, and how the maintenance cost can be cut
down. It can also uncover insights into customers’ behavior, their needs,
and market trends to make better business decisions. Nowadays, produc-
tion assets and consumer products are transmitting vital operational data
to backend data warehouses. IBM Predictive Maintenance and Qual-
ity software solution leverages the data collected from different sources
and predicts when a particular asset or machine needs maintenance. In
contrast to the traditional scheduled maintenance, predictive maintenance
recommends when maintenance is required and when it is not. This type
of maintenance helps to keep critical production lines and consumer prod-
ucts running, while saving money and minimizing customer inconvenience.
Muller, Inc., USA, is a retailer and manufacturer of metal products. They
used IBM Cognos Business Intelligence, IBM Cognos TM1, IBM SPSS
Modeler, and IBM Business Analytics to pull data from all points of sale,
inventory, and ERP systems; so that the employees can view and analyze
company data, measure individual performance, and access how their work
affects the bottom line [12]. The Vaasan group (a leading bakery operator
in Northern Europe) used IBM Analytics to enhance forecasting and in-
ventory management. The solution based on the IBM Cognos Controller,
IBM Cognos Intelligence, and IBM Cognos 8 Planning enabled the bakery
to predict production requirements and helped them prepare for fluctuating
orders [13].

SAP provides multiple solutions in the domain of manufacturing. SAP
Manufacturing Execution System connects, monitors, and controls dif-
ferent manufacturing operations. With the help of automated data collec-
tion, it provides visibility into the manufacturing processes which helps
process managers to find and resolve quality issues. Its asset utilization
functionality improves overall equipment effectiveness, facilitates predic-
tive maintenance, and minimizes downtime. SAP Enterprise Resource
Planning (ERP) is an enterprise level system for streamlining the man-
ufacturing, services, sales, finances, and human resource processes. It is
composed of different modules, which accelerate the entire manufacturing
process, boost sales and customer satisfaction, provide support for admin-
istration tasks, streamline and automate financial operations, and provides
real-time analytics based on ERP data. SAP Manufacturing Integra-
tion and Intelligence (MII) is the solution for smart manufacturing
which exploit the data collected from Industrial Internet of Things (IToT).
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It automates the IIoT and facilitates in manufacturing data transforma-
tion and integration. This software is equipped with the Manufacturing
Analytics Platform, which provides statistical process control and pre-
dictive analytics. It can also identify the root cause of machine downtime
and efficiency loss; which makes the maintenance task easy for technicians
and helps the operation team to improve efficiency. The SAP Predictive
Maintenance and Service solution leverages the IoT data to transform
reactive maintenance to predictive maintenance. It provides the visibility
into manufacturing asset and consumer product health by remotely ob-
serving their behavior and patterns. By analyzing the Big Data collected,
future needs are predicted [14].

Microsoft Azure IoT is a complete suite for connecting IoT devices,
collecting IoT data, analyzing the collected data, and mining disparate
data [15]. Existing data and systems can also be integrated with new data
sources to create new insights and business models. A Predictive Analytics
module in Azure provides insight into how a certain product behaves in
normal conditions and in other special conditions by finding patterns and
correlations in historical and new sensor data. Based on such analytics,
this suite is able to provide warning signs, identify where a problem exists,
and notify when equipment needs maintenance. With such preemptive
warnings, small repairs can be made before big failures occur. It also helps
in prioritizing the maintenance task by providing information about which
equipment is at high risk. Once an actual root cause of the failure is
detected, it can facilitate a technician by recommending the error code
(with possible fixes) for that condition. The technician’s time of finding
the root cause of a failure is saved, now he just has to fix the defective
component (with the help of some recommendations about possible fixes).
This suite enables manufacturers to remotely monitor their assets, which
are deployed outside the factory. Automatic notifications can be triggered
on this live data to get real-time asset feedback and maintenance requests.

General Electric (GE) Brilliant Manufacturing is a software suite,
which connects people, machines, materials, and processes in IoT. This
suite maximizes manufacturing production performance and optimizes op-
erations through advanced real-time analytics. It allows the integration
and aggregation of whole manufacturing life cycle data from the beginning
till the end. Data driven analytics from disparate manufacturing sources
allow manufacturers to take optimal decisions to drive improvements in
end-to-end production [16]. This suite includes different products including
the following: i) Efficiency Analyzer provides an up-to-date view of the
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entire production process and transforms real-time machine data into ac-
tion efficiency metrics. Such unified metrics help plant managers to reduce
unplanned downtime, maximize yield, improve production quality, increase
flexibility, and maximize team productivity. ii) Production Quality An-
alyzer analyzes data to catch non-conforming events before they occur to
help quality engineers to easily identify the problem. iii) Production Exe-
cution Supervisor digitizes documentation, instructions, orders, and pro-
cess steps, enabling manufacturers to get the right information at the right
time. iv) Product Genealogy Manager builds a record of all equipment,
raw materials, tools, and personnel which are required to build the finished
goods. It helps service personnel to manage services in an efficient way.

Manufacturing Analytics by BOSCH is a solution for analyzing pro-
duction data. Different types of data such as test, process, and machine
data from different sources can be used to improve the production process
and product quality while reducing the cost with the help of this suite. This
suite can integrate the existing production data with the new data. The pre-
dictive models can be applied to real-time data for predictive maintenance
and root cause analysis. Data analytics unveils the previously unknown
correlations in data and helps manufacturers in gaining new insights. The
newly discovered data insights and prediction models can be applied using
this suite to automate the analytics process.

SAS provides different solutions to get the best out of the manufac-
turing life cycle. SAS Demand-Driven Planning and Optimization
suite improves the supply and demand planning processes. This suite uses
analytical insights of demand patterns to help manufacturers in making
supply plans, which are aligned with the demand forecast. Production and
logistics can also be managed to match the ever-changing customer needs
and market dynamics. SAS Quality Analytics suite includes data mining
and predictive analytic technologies for predictive maintenance and iden-
tification of potential problems. It also helps in reducing the total cost
of quality by reducing the scrap and rework, and identifying design and
production defects. SAS Field Quality Analytics helps in making after-
market service efficient by integrating and analyzing internal and external
data sources. It helps in detecting and prioritizing warranty and service is-
sues. SAS Customer Intelligence 360 collects, analyzes, and reports on
customer experiences to improve sales and marketing performance. It pro-
vides insight into customer segmentation: which customer groups are more
likely to buy which kind of product and why. With the help of such fore-
casts, advertising and promotion campaigns can be planned and targeted
at customer groups [17].
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5. Data Analytics in Connected Vehicles

A connected vehicle is a vehicle designed with the capability of connecting
to the internet and other connected devices including smart phones, traffic
lights, other vehicles on the road, smart home appliances, etc. It is predicted
by Gartner, Inc. that by the year 2020, one in five vehicles in the world
will have some form of wireless connectivity in them, which adds up to 250
million connected vehicles [18]. The accumulated data based on driver’s be-
havior, car machinery, sensors installed in the car and in the surroundings
can leverage data analytics in the following functional areas: autonomous
driving, safety, infotainment, well-being of driver’s health, vehicle man-
agement, mobility management, and smart home integration [19]. Vehicle
manufactures like BMW and Volkswagen are making these connected vehi-
cles smart by introducing functionalities like autonomous car parking and
emergency assist respectively. Data analytics provides car manufacturers
with crucial insights into the vehicle system, behavior of the vehicles in cer-
tain conditions, and drivers’ patterns. Thousands of components inside the
vehicle are continuously logging data. Even if the test driver observes an
unexpected shifting characteristic, it is hard for a manufacturer to exactly
find the defective component or the contributing components. But, with
the help of data analytics, the defective component and the contributing
components can be figured out precisely.

Ford and IBM are working together to develop a platform which an-
alyzes data collected from a vehicle. Based on the small chunks of ve-
hicular data, this platform can spot patterns, correlations, and trends to
help the driver make efficient transportation decisions. Data collected from
Ford Smart Mobility Experimentation Platform helps their scien-
tists to spot tendencies and behaviors, and their customers to have a better
travel experience. They are working on using real-time analytics to learn
about a problem on a particular route by taking data feed from different
systems [20]. In the domain of predictive maintenance, Ford is working
on sending personalized oil change and brake maintenance notifications to
drivers. The collected data is statistically analyzed in order to evaluate the
maintenance needs for each vehicle separately [21].

Daimler is making their cars and trucks intelligent by enabling them
with anticipatory planning. Based on data from different sources, their ve-
hicles are able to operate on an anticipatory basis in which they can foresee
different things which the human eye cannot see. Their trucks and buses
are equipped with Predictive Powertrain Control (PPC), which can
anticipate the terrain and adjust the vehicle accordingly. Based on the 3D
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map data, PPC adjusts the vehicle speed and gear selection optimally to the
topography of the transport route. This control reduces fuel consumption
by up to 5% [22].

BMW group is also using IBM Big Data and Analytics technol-
ogy to optimize their products, repairs, and maintenance processes. IBM
SPSS predictive analytics software is used to combine and analyze data
from different sources like pre-production sensor data, workshop notes, and
numerous test drives of prototypes [23]. In this way, different vulnerabilities
can be identified quickly, and eliminated before the model goes into series
production. Before this automated process, this evaluation took months to
complete. IBM Big Data and Analytics are used to analyze data from all
available sources to discover anomalous patterns and predict maintenance
needs.

Volkswagen, in collaboration with CSC (a technology solutions and
service provider company ), use data analytics to support predictive market-
ing to increase aftermarket service revenues [24]. They combine customer
data with vehicle data, and notes written by technicians at the service
centers. With the help of that data, they are able to predict upcoming
maintenance for specific drivers.

Tesla car manufacturer is collecting data from their connected cars and
using telematics to batch stream key data points to backend big data pool.
The collected data enable engineers and manufacturing lines to resolve the
issues and send back fixes with their over-the-air software updates. They
are providing continuously improving customer experience based on the
data and analytic views [25].

Audi is also making its vehicles intelligent with a vision to reduce fuel
consumption. The predictive efficiency assistant enables the vehicle to slow
down or automatically adjust the speed to the conditions in an anticipatory
manner. The system analyzes the route topography, speed limits, road users
ahead, and navigation data.

Caterpillar, Inc. is the world’s leading manufacturer of construction
and mining equipment. They have created a new organizational division
called Analytics and Innovation (AI) to form a broad and connected an-
alytics ecosystem. The data collected from gigantic machines are used to
develop predictive and proscriptive information. This predictive diagnostics
is shifting their customers from reactive (repair after failure) to proactive
(repair before failure) mode [26]. By using data analytics, they are able to
point out inefficiencies in the operation of a particular machine by compar-
ing its operational data with that machine’s benchmark data.
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6. Data Analytics in Logistics

Logistics service providers move masses of goods from one location to an-
other. A lot of data related to shipments, origin, destination, size, weight,
and content are stored per shipment. Some of the advantages of using
data analytics in the logistics sector are, i) optimization of delivery time,
resource utilization, and geographical coverage, ii) goods storage capacity
and required resources forecast, iii) valuable insight into customer sentiment
and product quality, and iv) insight into the global flow of goods.

DHL uses big data analytics to make their operations more efficient.
Rapid processing of real-time information enables their SmartTruck to
optimize the delivery route in real-time. Delivery routes are also auto-
matically updated according to traffic conditions. Unsuccessful delivery
attempts are avoided in intelligent routing, based on the availability and
location information provided by the recipient. SmartTrucks are re-routed
on the go, based on the combined analytics of geographical factors, envi-
ronmental factors, and recipient data [27]. It is important for a logistics
company to plan operational capacity in time. The optimal planning can-
not be done by neglecting external factors, such as unexpected bankruptcy,
a regional outbreak disease, or natural disasters etc. DHL Solutions and In-
novation is working on an analytics tool to measure external factors on the
expected volume of shipment to make efficient shipment volume prediction.
Based on the shipment records, DHL provides an online geo marketing tool
Geovista, to analyze business potential. This tool provides a sales forecast
and local competitor analysis. DHL is also working on a Supply Chain Risk
Management Solution which will improve the resilience of logistic providers
entire supply chain with the help of predictive analytics on a global scale
(by aggregating data from different local sources such as politics, economy,
nature, health, etc.).

Amazon was the first company to give recommendations about items in
which a user might be interested. Today, it uses different parameters (such
as, which items are bought by a particular user before, what he has in his
wish list and virtual cart, which items he has rated or viewed, and which
items a similar user has bought) to customize the browsing and buying
experience. Predictive analytics is used to ensure the right item must be
in stock when a customer orders it. Amazon is taking data analytics to
a different level with its patent on Anticipatory Shipping. The patent is
officially called ‘Method and system for anticipatory package shipping’. The
idea of anticipatory shipping is to predict who will order what and when,
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and then ship that item even before it is ordered. Another scenario is also
discussed in patent for ‘speculative shipping’. In this type of shipping, a
package is sent to a geographical area, without completely specifying the
delivery address at the time of shipment - the package might remain in near
continuous transit on trucks until a customer makes a purchase [28]. In this
way, the package is shipped to the customer instantaneously.

7. Data Analytics in Dairy Market

The current trend of automation and data exchange in modern manufactur-
ing is inextricably linked with the production industry as it helps making
cars autonomous or factories more productive. Nowadays, not only these
industries can benefit from IoT, but one of the oldest sector of mankind,
i.e., milk production, is also taking advantage of smart technologies. For
a long time, the dairy market has been suffering from low prices, which
means that modern technologies and data analytics can neither influence
market prices, nor the bargaining power of the dairy, nor the retail industry.
However, these new technological trends can help farmers to reduce their
production costs and enable them to produce more milk by keeping a keen
eye on their cows health.

Effects of the globalized milk market are already noticeable. Farmers
are suffering mostly from the extremely sharp fall in prices. The low milk
prices make it nearly impossible for farmers to obtain profits, as they are
not covering costs. They are forced to optimize their production. Legal
requirements and a change in social perception restricted many alternatives,
like the prophylactic use of antibiotics in Europe, for optimization [29].
The only chance to raise their economic performance is to reduce costs and
increase the efficiency of their production.

The welfare of cows is of enormous importance for farmers because only
healthy and happy cows give the maximum amount of milk. The farmers are
able to determine the health of their cows themselves, but this is only true
for small herd sizes. Farmers lack the time to monitor each cow individually
in herds of dozens or hundreds of cows as can be found nowadays [30]. This
is why farmers are making more frequent use of tracking systems and data
analytics for the automatic health monitoring of their herd.

These tracking systems take advantage of the architecture of modern
barns in Central Europe and North America, in which cows can move
around freely. As a result, the everyday movement and activity behav-
ior of cows is an important indicator of their health and whether they are
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in heat. In general, sick cows move less than cows without any diseases as
shown in Figure 2. When cows are in heat, they move much more. The
movement behavior is commonly measured with either accelerometers or
pedometers embedded into the collar of each cow. These sensors are the
central component in these systems as they are measuring the activity and
vital parameters of the equipped cows continuously and autonomously.

Motion Index in Steps
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In Heat
200 —

100 -*ﬁéﬁ‘_
B
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g Normal

Fig. 2. Simplified movement behavior of cows. Different conditions of cows can be
classified based on their movement patterns.

In more recent times, acceleration sensors are used instead of pedome-
ters. They are superior since they cannot only recognize the amount of
activity, but also the precise type of movement: walking, running, or lying.
From a data perspective, the sensors are just counting steps, which do not
tell the farmer anything directly about the health of a cow. However, the
number of steps per day is a strong indicator, and it is directly linked to
diseases and in heat detection of individual cows in the herd. The smart
dairy products are sold by SCR FEurope, Lely, DairyMaster, and DeLaval.
They have all placed sensors in the collars of cows and the data is trans-
ferred wirelessly to the server station (in most cases, by using proprietary
radio standards). By analyzing that data, data analytics provide meaning-
ful information about the cow’s health and notify when it is in heat. SCR
Europe product named Heatime and Lely product named Qwes-H also
integrate rumination detection. It tells the farmer how much time each cow
spends on ruminating which is an essential indicator for their health and
whether they are in heat if the average time per day differs significantly [31].

In the year 2014, the first tracking system based on locating cows within
the barns entered the market. Smartbow and CowView draw the diagno-
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sis from positioning data of cows instead of using pedometers or accelerom-
eters. Both systems utilize an ultra-wide band (UWB) RFID techniques in
combination with an approach based on Time Difference of Arrival (TDOA)
for locating the cows [32].

Indoor location techniques directly measure the distance traveled by
cows instead of indirectly “guessing” them based on step counts or ac-
celerometer values. Data analytics in this case works the same way as for
the step count: under certain thresholds, which already had been figured
out in studies a priori, cows are marked as in heat while they are classified
as diseased above this threshold.

Beyond health monitoring, the determination of being in heat is a very
sensitive process as the determination of the correct time is essential for a
successful insemination. A failed insemination not only leads to repeated
insemination costs, but also results in lower milk production. Nowadays,
the insemination of cows in the dairy industry is done synthetically. In
contrast to bulls (which can smell the hormones of cows and interpret their
behavior), humans can only draw their conclusions based on the interpre-
tation of their behavior. Studies show that the in heat observation plays
a time-consuming role — three times a day, 15 minutes of observation are
needed for complete heat detection (in addition to the normal working hours
in the cowshed) [30]. It is understandable that the farmers need automated
heat detection as an alternative to the time-consuming manual observa-
tion. The same kind of sensors as used for health monitoring can also be
used for in heat detection. Cows in heat, feature a special characteristic
in their movement behavior which significantly differs from healthy as well
as diseased cows (see Figure 2). This movement behavior can be used to
draw conclusions not only about health, but also about being in heat. The
tracking systems help farmers to reduce their costs for insemination and
again, increase their milk yield.

Now farmers are able to access data about the health and movement
behaviors of their herd from their PC, notebook, or smartphone anywhere
and at anytime. More importantly, they are notified if a cow shows an
abnormal pattern like a reduced feeding behavior. These alarms enable the
farmer to look after their cows and call a veterinarian if required before it is
too late. Not only the welfare of cows, but also the economic performance of
farmers is this improved. Sick cows cause high veterinarian and drug costs
for the farmers. Tackling these issues in time also leads to a better yield
due to increased milk production. As a result, modern IoT-based products



162 M. Munir et al.

as well as data analytics improve the quality of dairy products and enable
farmers to spend less time in the barn.

8. Data Analytics in Smart Homes

The IT market research company, Gartner predicts that in 2022, there will
be more than 500 smart objects in an average family household [33]. The
smart home market is now flooded with IoT based devices. Many of the
manufacturers are embedding wireless data exchange and interoperability
into their devices.

Heating control is one of the areas in smart homes where people can
actually save money. Products like Thermostat+ (by ELV) and Comet
Blue (by EUROtronic Technology) can easily be installed without even
drilling a single hole [34, 35]. Heating control devices are easily plugged onto
radiators, and are commonly shipped together with sensor windows (to get
the knowledge if the window is close or open) and a gateway. The gateway
bridges the heating control devices wirelessly so that a PC or smartphone
can control the whole system. These smart devices enable customers to
define the rules for temperature by the room, and to control and monitor
their heating remotely from anywhere. Customers can specify the required
temperature and define different time slots when they are not at home.
With the help of data analytics applied on the collected data, people can
analyze their habits and behaviors to save energy and more importantly for
them — money.

Radio-controlled sockets are cheap and small devices which can be
plugged between normal sockets and the device to be powered, such as
Parce One [36]. They are commonly equipped with Bluetooth 4.0 alias
Low Energy and are easily connectible with modern Android or iPhone
based smart phones. With the help of these smart sockets, i) customers can
(gain the possibility to) monitor the exact power consumption of their elec-
tronic devices and, ii) they can define rules when the device gets switched
on or off. With these smart sockets, all of the electrical devices can be
turned into smart devices by switching them on and off autonomously. The
data of the consumed energy can be analyzed per device, which gives cus-
tomers the possibility to limit the use of a particular device which helps in
minimizing the overall energy consumption.

The scope of smart homes is not confined only to the inside area of a
home. Gardena is regularly offering new products in order to make gardens
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and gardening smart [37]. Gardena’s Sensor Control Set contains a
smart gateway (which has to be installed indoors and connected via Wi-Fi
or cable to the network), magnetic valves for taps, and plant sensors. The
plant sensor measures temperature, soil humidity, and light intensity. These
values can be used to define irrigation profiles. The goal of this application
is to automatically identify if the plant needs some water or fertilizer. There
is a link between the level of photosynthesis within a plant and its energy
supply. Once the soil is dry, the magnetic valve is automatically opened.
Customers can fine-tune the irrigation rules, for instance, based on the type
of plant. Aquatic plants need more water than a cactus that will survive
even if the soil is dry. Environmental factors complicate the data analytics
part in this application field. However, a smart irrigation system saves
a labor force and more importantly, helps plants to survive even if their
owners are not present.

Now, most smart home devices are capable of measuring their surround-
ings, such as temperature, power consumption, or soil humidity. Addi-
tionally, they have the possibility to interact with their environment like
switching off devices, activating the heating, or watering plants. What
they currently lack is autonomous learning to interact with their environ-
ment based on the measured values. Nowadays, the customers still have
to manually define some rules for each device. But, there are some sys-
tems which are becoming intelligent with the help of analyzing data from
different sensors.

Apple wanted to change this situation with the development of Home-
Kit: a powerful, interoperable smart home control system which is easy
and fast to set up and usable on i0S devices out of the box [38]. Certi-
fied vendors and products (which are currently limited in number) can be
connected to 10S over Wi-Fi or Bluetooth 4.0. Afterwards, the connected
devices can be verbally configured, controlled, and monitored via Apple Siri.
Besides the fact that smart home devices have to support Apple’s Home-
Kit and implement its functions into their system, Siri is not yet capable of
communicating with people in a way one would expect or wish (to have it).
For example, Siri only listens to commands containing the exact name of a
device (which has to be defined a priori). General descriptions, which are
often used in colloquial and everyday language, are not understood for now.

Vivint is one of the largest home automation companies in North
America. Different smart home devices including small appliances, HVAC
(Heating, ventilation and air conditioning), security systems, video devices,
thermostats, smart doors and locks, smart bulbs, and smoke alarms are
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connected via Vivint touchscreen panel and make a network of smart de-
vices. That network produces a lot of streaming data, which is stored
in Hadoop — an open source framework, for processing and storage of ex-
tremely large datasets. They use Datameer (a big data analytics platform)
to shorten the time of using raw data for different analytics and actionable
intelligence purposes [39]. The collected data is analyzed to better under-
stand the usage patterns of different smart devices, which can be further
used to improve the service and reduce energy consumption.

Google Nest offers smart devices including security cameras, ther-
mostats, and smoke detectors. These are devices of daily use which have
been in use for ages. But, data analytics and big data have changed the
way these devices work. Before becoming ‘smart’, these devices were used
to just record videos, maintain heating to a certain level, and sound the
alarm when smoke is detected, respectively. Now, by learning user behav-
ior, Nest’s smart thermostat adapts to the user’s usage and season changes.
It automatically controls the temperature by learning the user schedule. By
detecting unwanted events inside and outside a home, and making smart
alerts, Nest Aware software makes security cameras intelligent. In con-
trast to the old security cameras which only record the video, Nest’s smart
security cameras can make custom alerts for the activities a user is inter-
ested in. By making the smart notifications, Nest’s smoke detectors can
tell the user (by speaking or by making mobile notification) in which room
there is smoke and gives early warnings to avoid any emergency situation.
It can distinguish between steam, food burn, carbon monoxide, and smoke.
These smart devices can also be connected to each other to make a home
safer and more secure. For example, security cameras, light bulbs, and win-
dow shades can work together to give an impression that you are at home
when you are away. Or, when a thermostat is set to ‘away’, it can auto-
matically turn on the security camera. By using data analytics, such smart
devices can build up a profile which allows them to intelligently adjust
themselves to the environment, minimize human effort, maximize human
safety, improve service quality, and save energy [40].

The smart home vision affords many business opportunities, but also
faces many challenges. Currently, smart devices are hindered by a lack of in-
teroperability and the communication standard between products designed
by different manufacturers. There are different products which are trying
to integrate and bridge as many different products, protocols, and wire-
less standards as possible. Mediola Gateway V4+ produced by Mediola
supports both 433 and 868 MHz [41]. The advantage is that various sensors
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and products of different manufacturers can interoperate which enable cus-
tomers to mix them in rules and profiles. This works quite well; at least as
long as Mediola supports them.

The smart home market is a mix of many different networking tech-
nologies and protocols, which are mostly proprietary and not designed for
interoperation. All producers in the domain of smart home want a big
piece of the cake to consolidate their market position. Thus, they are in-
tending to raise barriers for new producers to enter this market by using
proprietary protocols and prevent interoperability between different prod-
ucts. The market will most likely remain technically fragmented through
2020 [33]. From a consumer point of view, their biggest concern is data
privacy. There is a need to develop a trust between the service provider
and the consumer. It is very important for a consumer that the important
information collected about their private life is only used to facilitate them,
and not for earning money by selling that information to a third party
without the consent of the consumer.

9. Conclusion

This chapter provides an insight into different industrial solutions available
for data analytics. In addition to analytics on traditional data, most of these
solutions are focusing on the data analytics on streaming/time-series data
coming from IoT enabled devices. Almost all fields of life are benefiting from
data analytics, including agriculture, healthcare, manufacturing, logistics,
crowd analysis, dairy farming, smart homes, etc. This chapter attempts to
provide a state-of-the-art in industrial/commercial data analytics solutions
available in different fields. A deeper look at these solutions shows that
there is still a lot of room and potential for improvement. Especially, most
of the existing solutions are based either on traditional statistical-based
approaches or to some extent using machine learning. However, almost
none of the existing solutions is using the potential of deep learning, which
could be very helpful to bring these analytics to the fingertips of data
scientists and end users. Big players like Microsoft, Apple, SAP, and IBM
have already developed cloud-based solutions, which are very suitable for
streaming and time-series data. This already facilitates data scientists and
companies a lot in terms of handling and managing the big streaming data
from IoT devices. Companies are also making explicit efforts to evolve their
analytics methods, which can deal with big data to gain maximum benefit
from the collected data.
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